International Journal of Mathematical Archive-3(6), 2012, 2402-2415 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

g^{*S} I – closed Sets in Ideal Topological Spaces

Sr. Pauline Mary Helen* Associate Professor, Nirmala College, Coimbatore, India

Mrs. Ponnuthai Selvarani Associate Professor, Nirmala College, Coimbatore, India

Mrs. Veronica Vijayan Associate Professor, Nirmala College, Coimbatore, India

(Received on: 03-06-12; Revised & Accepted on: 30-06-12)

ABSTRACT

In this paper, $g^{*S}I$ – closed sets, *s - additive, *s - multiplicative, $g^{*S}I$ - additive and $g^{*S}I$ - multiplicative spaces are introduced and their properties are investigated. We introduce the notion of $g^{*S}I$ – continuous function and other related functions. The relationships between them are also studied.

Keywords: Semi local function, $g^{*S}I$ - closed set, $g^{*S}I$ - open set, $g^{*S}I$ - continuous function, weakly $g^{*S}I$ - continuous function, strongly $g^{*S}I$ - continuous function, $g^{*S}I$ - additive space, $g^{*S}I$ - multiplicative space, $g^{*S}I$ - connected space, $g^{*S}I$ - compact space.

1. Introduction

Ideals in topological spaces have been considered since 1930. In 1990, Jankovic and Hamlett [5] once again investigated applications of topological ideals. EI – Monsefetal [1] in 1992 and quite recently Khan and Noiri [7] have studied semi-local functions in ideal topological spaces. Ig - closed sets were first introduced by Dontchev etal [2] in 1999. gI - closed sets were introduced by M. Khan and T. Noiri [6] in 2010, sgI - closed sets were introduced by M. Khan and T. Noiri [8] in 2011, and $I_{s^*g} - closed$ sets were introduced by M. Khan and M. Hamza[4] in 2011. In this paper we define $g^{*S}I - closed$ sets, $g^{*S}I - continuous$ function, and various other related properties of these closed sets and the relationship between these functions are obtained.

2. Preliminaries

An ideal I on a non empty set X is a collection of subsets of X which satisfies the following properties.

(i) $A \in I$, $B \in I \implies A \cup B \in I$ (ii) $A \in I$, $B \subset A \implies B \in I$

A topological space (X, τ) with an ideal I on X is called an ideal topological space and is denoted by (X, τ, I) .

Let *Y* be a subset of *X*. $I_Y = \{I \cap Y / I \in I\}$ is an ideal on *Y* and by $(Y, \tau / Y, I_Y)$ we denote the ideal topological subspace. Let P(X) be the power set of *X*, then a set operator ()*: $P(X) \to P(X)$ called the local function [10] of A with respect to τ and *I* is defined as follows:

For $A \subset X$, $A^*(I, \tau) = \{x \in X / U \cap A \notin I \text{ for every open set } U \text{ containing } x\}$.

Corresponding author: Sr. Pauline Mary Helen*, Associate Professor, Nirmala College, Coimbatore, India

We simply write A^* instead of $A^*(I,\tau)$ in case there is no confusion. A Kuratowski closure operator $cl^*()$ for a topology $\tau^*(I,\tau)$, called the τ^* - topology is defined by $cl^*(A) = A \cup A^*[4]$.

A subset A of a space (X, τ) is said to be semi-open[1] if $A \subset cl(int(A))$.

A set operator $()^{*s}: P(X) \to P(X)$ called a semi local function and $cl^{*s}()$ [1] of A with respect to τ and I are defined as follows:

For $A \subset X$, $A^{*s}(I,\tau) = \{x \in X / U \cap A \notin I \text{ for every semi open set } U \text{ containing } x\}$. and $Cl^{*s}(A) = A \cup A^{*s}$.

Note: A^{*s} defined in [1] and A_* defined in [9] are the same. For a subset A of X, cl(A) (resp scl(A)) denotes the closure (resp semi closure) of A in (X, τ) . Similarly $cl^*(A)$ and $int^*(A)$ denote the closure of A and interior of A in (X, τ^*) .

A subset A of X is called * closed [5] (resp.* s - closed) if $A^* \subseteq A$ (resp $A^{*S} \subseteq A$). A is called * - dense [5] in itself (resp.* s - dense). If $A \subset A^*$ (resp $A \subset A^{*S}$) A is called * - perfect [5] (resp.* s - perfect). If $A = A^*$ (resp $A = A^{*S}$) A subset A of a topological space (X, τ) is said to be generalized closed [5] (briefly g-closed) if $cl(A) \subset U$ whenever $A \subset U$ and U is open in X. The complement of g - closed set is said to be g - open.

Definition 2.1: A subset A of a space (X, τ, I) is said to be (i) gI - closed[6] if $A^{*s} \subseteq U$ wherever $A \subseteq U$ and U - open in X. (ii) $I_g - closed[2]$ if $A^* \subseteq U$ wherever $A \subseteq U$ and U - open in X. (iii) sgI - closed[8] if $A^{*s} \subseteq U$ wherever $A \subseteq U$ and U - semi open in X. (iv) $I_{s^*g} - closed[4]$ if $A^* \subset U$ wherever $A \subseteq U$ and U - semi open in X.

The complements of gI - closed (resp I_g - closed, sgI - closed, I_{s^*g} - closed) are called gI - open (resp I_g - open, sgI - open, I_{s^*g} - open).

Lemma 2.2 [1]: For A, B in (X, τ, I) we have (i) If $A \subset B$ then $A^{*S} \subset B^{*S}$ (ii) $(A^{*S})^{*S} \subseteq A^{*S}$ (iii) $A^{*S} \cup B^{*S} \supseteq (A \cup B)^{*S}$ (iv) $(A \cap B)^{*S} \subseteq A^{*S} \cap B^{*S}$ (v) If $I = \{\phi\}$, $A^{*S} = scl(A)$ and $cl^{*S}(A) = scl(A)$ (vi) If $I = \rho(X)$ then $A^{*S} = \phi$ and $cl^{*S}(A) = A$ (vii) $A^{*S} = scl(A^{*S}) \subset scl(A)$ and A^{*S} is semi closed.

3. $g^{*s}I$ - closed sets

Definition 3.1: A subset A of an ideal space (X, τ, I) is said to be $g^{*S}I$ closed, if $cl^{*S}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.

The complement of $g^{*S}I$ - closed set is said to be $g^{*S}I$ - -open. The collection of all $g^{*S}I$ - closed sets (resp $g^{*S}I$ - open sets) is denoted by $G^{*S}IC(X)$ (resp $G^{*S}IO(X)$) © 2012, IJMA. All Rights Reserved

Remarks: 3.1

- 1. If I = p(X) then $cl^{*s}(A) = A \quad \forall A \subseteq X$ and hence every subset of X is $g^{*s}I closed$.
- 2. Since $A^{*s} = \{\phi\}$ for every $A \in I$, every member of I is $g^{*s}I closed$.
- 3. Since every open set is g open, every $g^{*S}I closed$ set is gI closed. But the converse is not true in general as seen from example (3.1).
- 4. Every τ^{*s} *closed* set is $g^{*s}I$ *closed*. But the converse is not true in general as seen from example (3.3).
- 5. I_{s^*g} closed and $g^{*s}I$ closed are independent concepts as seen from example (3.3, 3.2).
- 6. $I_g closed$ and $g^{*S}I closed$ are independent concepts as seen from example (3.1, 3.4).
- 7. sgI closed and $g^{*s}I closed$ are independent concepts as seen from example (3.1).

Example 3.1: Let (X, τ) be an indiscrete space, $x_0 \in X$ and $I = \{\phi, \{x_0\}\}$.

Then
$$A^{*s} = A^* = X$$
 if $A \neq \{x_0\}$
= ϕ if $A = \{x_0\}$.

Any subset $A \neq \{x_0\}$ is gI - closed, I_g - closed, sgI - closed, I_{s^*g} - closed but not τ^{*s} - closed and $g^{*s}I$ - closed.

Example 3.2: Let (X, τ) be an indiscrete space $p \in X$ and $I = \{A \subseteq X \mid p \notin A\}$.

Then $A^{*S} = A^* = X$ if $p \in A$ = ϕ if $p \notin A$.

 $A = \{p\} \text{ is } gI - closed \text{ , } I_g - closed \text{ , } sgI - closed \text{ , } I_{s^*g} - closed \text{ but not } \tau^{*S} - closed \text{ and } g^{*S}I - closed \text{ .}$

Example 3.3: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{a, b\}, X\}$, and $I = \{\phi\{a\}\}$, then $A = \{a, c\}$ is $g^{*s}I$ - closed but not τ^{*s} - closed and $A = \{c\}$ is $g^{*s}I$ - closed but not I_{s^*g} - closed.

Example 3.4: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, and $I = \{\phi\}$, then $A = \{a\}$ is $g^{*S}I - closed$ but not Ig - closed.

Note: In an ideal space (X, τ, I) , $(A \cup B)^{*s} \neq A^{*s} \cup B^{*s}$ in general as seen from example 3.5.

Example 3.5: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, I = \{\phi\}$.

Then $\{a\}^{*s} = \{a\}, \ \{b\}^{*s} = \{b\}$ and $\{a,b\}^{*s} = X$.

This shows $(A \cup B)^{*S} \neq A^{*S} \cup B^{*S}$.

Definition 3.2: An ideal space (X, τ, I) is said to be

(i)
$$*S - \text{finitely additive if } \left[\bigcup_{i=1}^{n} A_i \right]^{*S} = \bigcup_{i=1}^{n} (A_i)^{*S} \text{ for every positive integer } n.$$

(ii) $*S - \text{countably additive if } \left[\bigcup_{i=1}^{n} A_i \right]^{*S} = \bigcup_{i=1}^{\infty} (A_i)^{*S}.$

(iii) * *S* – additive if $\left[\bigcup_{\alpha\in\Omega}A_{\alpha}\right]^{*S} = \bigcup_{\alpha\in\Omega}(A_{\alpha})^{*S}$ for all indexing sets Ω where A_i 's are subsets of X.

Similarly we define s - finitely multiplicative, countably multiplicative ideal spaces by taking intersection in the place of union.

(iv) $g^{*S}I$ - finitely additive (resp $g^{*S}I$ - countable additive, $g^{*S}I$ - additive) if finite union (resp countable union, arbitrary union) of $g^{*S}I$ - closed sets is $g^{*S}I$ - closed.

Similarly we define $g^{*S}I$ - finitely multiplicative (resp $g^{*S}I$ - countably multiplicative, $g^{*S}I$ - multiplicative) if finite intersection (resp countable intersection, arbitrary intersection) of $g^{*S}I$ - *closed* sets is $g^{*S}I$ - *closed*.

Remark 3.2:

1. * *s* - finitely additive (resp $g^{*s}I$ - countable additive, additive spaces)are $g^{*s}I$ - finitely additive (resp countably additive, additive) but not conversely.

2. * *s* - additive spaces are * *s* countably additive and * *s* countable additive spaces are * *s* - finitely additive but not conversely.

3. $g^{*S}I$ additive spaces are $g^{*S}I$ - countably additive and $g^{*S}I$ - countably additive spaces are $g^{*S}I$ - additive but not conversely.

Example 3.3: Let X = R, $I = \{\phi\}$, τ - cofinite topology.

Then $\tau = \left\{ \phi, X, A/A^c is \quad finite \right\}$. Closed sets are ϕ, X and all the finite subsets. $A^{*s} = A$ if A is finite and X if A is infinite.

if A is infinite.

For every positive integer n,

let $A_n = \{-n, -n+1, \dots, 0, \dots, n-1, n\}$ then $A_n^{*S} = A_n \forall n \cdot (UA_n)^{*S} = (Z)^{*S} = R$ and $U(A_n)^{*S} = Z$ let A, B be set of all non negative and non positive integers respectively.

Then $A^{*s} = R = B^{*s}$, $A^{*s} \cap B^{*s} = R$ and $(A \cap B)^{*s} = \{0^{*s}\} = \{0\}$. Therefore this space is 1. not * *s* - finitely multiplicative, and hence not * *s* - countably multiplicative, and not * *s* - multiplicative. 2. * *s* - finitely additive but not countably * *s* - additive, and not * *s* - additive. 3. $g^{*s}I$ - multiplicative, $g^{*s}I$ - finitely multiplicative and $g^{*s}I$ - countably multiplicative.

4. $g^{*s}I$ - finitely additive, but not $g^{*s}I$ - countably additive and not $g^{*s}I$ - additive.

Example 3.4: Let (X, τ) be indiscrete space $x_0 \in X$ and $I = \{\phi, \{x_0\}\}$. then $GO(X) = \{all \ subsets\}$. $A^{*s} = X$, if $A \neq \{x_0\}$ and $A^{*s} = \phi$ if $A = \{x_0\}$, $cl^{*s}(A) = X$ if $A \neq \{x_0\}$ and $cl^{*s}(A) = A$ if $A = \{x_0\}$. $G^{*s}IC(X) = \{\phi, X, \{x_0\}\}$. If $B = \{x_0, x_1\}$ and $C = \{x_0, x_2\}$ where $x_1, x_2 \neq x_0$ in X,

then $B^{*S} = X$, $C^{*S} = X$, $B^{*S} \cap C^{*S} = X$; $(B \cap C)^{*S} = \{x_0\}^{*S} = \{\phi\}$. Therefore this space is

- 1. not *s multiplicative, and not *s finitely multiplicative, and not *s countably multiplicative.
- 2. $g^{*S}I$ additive $g^{*S}I$ multiplicative, $g^{*S}I$ finitely additive, $g^{*S}I$ multiplicative and $g^{*S}I$ countably additive and $g^{*S}I$ countably multiplicative.
- 3. *s additive, *s finitely additive and *s countably additive.

Remark: 3.3: In an ideal topological space (X, τ, I) which is *S - finitely additive we have following results:

1.
$$cl^{*s}(\phi) = \phi$$

2. $cl^{*s}(X) = X$
3. $A \subseteq cl^{*s}(A)$
4. $cl^{*s}(A \cup B) = cl^{*s}(A) \cup cl^{*s}(B)$
5. $cl^{*s}(cl^{*s}(A)) = cl^{*s}(A)$

for all subsets A, B and X.

Therefore $cl^{*s}(\cdot)$ satisfies Kuratowski Closure axioms [10] and hence it defines a topology τ^{*s} whose closure operation is given as $cl^{*s}(A) = A \cup A^{*s}$. Note that $\tau \subseteq \tau^* \subseteq \tau^{*s} \cdot cl^{*s}(A)$ and $int^{*s}(A)$ denote the closure and interior of A in (X, τ^{*s}) .

Theorem 3.1: A subset of a *S – finitely additive ideal space (X, τ, I) is $g^{*S}I$ – open if and only if $F \subset Int^{*S}(A)$ wherever $F \subseteq A$ and F is a g – closed subset of X.

Proof: Let A be $g^{*S}I$ – open and F be a g – closed subset of X contained in A. Then (X - F) is a g – open set containing X - A which implies $X - Int^{*S}(A) = cl^{*S}(X - A) \subset X - F$ Conversely, let $F \subset Int^{*S}(A)$ whenever $F \subseteq A$ and F is a g – closed subset of X.

Let U be g-open and $X - A \subset U$. Then $X - U \subset Int^{*S}(A) = X - cl^{*S}(X - A)$. Therefore $cl^{*S}(X - A) \subset U$ which proves X - A is $g^{*S}I$ -closed. So A is $g^{*S}I$ -open.

Theorem 3.2: For each $x \in (X, \tau, I)$ either $\{x\}$ is g-closed or $\{x\}^c$ is $g^{*s}I$ -closed in X.

Proof: Suppose $\{x\}$ is not g-closed, then $\{x\}^c$ is not g-open. Therefore the only g-open set containing $\{x\}^c$ is X and $(\{x\}^c)^{*S} \subseteq X$ which proves that $\{x\}^c$ is $g^{*S}I-closed$.

Theorem 3.3: In an ideal space (X, τ, I) which is *S - finitely additive, if U is semi-open and A is $g^{*S}I - open$, then $U \cap A$ is $g^{*S}I - open$.

Proof: Let $X - (U \cap A) \subset G$ and G be g - open.

Then $(X - A) \cup (X - U) \subset G$ and this implies $X - A \subset G$ and $X - U \subset G$. (X - A) is $g^{*S}I$ -closed and G is g-open imply $cl^{*S}(X - A) \subset G$ and $cl^{*S}(X - U) \subset scl(X - U) = X - U \subset G$

Therefore $cl^{*s}[X - (A \cap U)] = cl^{*s}[(X - A) \cup (X - U)]cl^{*s}(X - A) \cup cl^{*s}(X - U) \subset G$ (since the ideal space is *S - finitely additive) This implies $A \cap U$ is $g^{*s}I - open$.

Theorem 3.4: If *B* is a subset of a *S - finitely additive space (X, τ, I) such that $A \subset B \subset cl^{*S}(A)$ and *A* is $g^{*S}I$ - closed, then *B* is also $g^{*S}I$ - closed in *X*.

Proof: Let U be g – open and $B \subset U$. Then $A \subset U$ implies $cl^{*S}(A) \subset U$

Therefore $cl^{*s}(B) \subset cl^{*s}(cl^{*s}(A)) \subset cl^{*s}(A) \subset U$ which proves B is $g^{*s}I$ - closed.

© 2012, IJMA. All Rights Reserved

Note: In general intersection of g-closed sets need not be g-closed.

Definition 3.3 A topological space (X, τ) is said to be a g-multiplicative space if arbitrary intersection of g-closed sets in X is g-closed.

Remark 3.4

- (i) In g-multiplicative spaces, gcl(A) which is the intersection of all g-closed sets in X containing A is also g-closed.
- (ii) Any indiscrete topological space (X, τ) is g multiplicative.
- (iii) If $X = \{a,b,c\}$ and $\tau = \{X, \phi, \{a\}\}$ then $\{a,c\}$ and $\{a,b\}$ are g-closed but $\{a\}$ is not g-closed and hence (X, τ) is not g-multiplicative.

Theorem 3.5: Let (X, τ, I) be a g-multiplicative ideal space and A be $g^{*S}I$ - closed subset of X. Then (i) $scl(A^{*S}) \subset U$ for all g - open set U containing A.

(ii) For all
$$x \in scl(A^{*s})$$
, $gcl(\{x\}) \cap A \neq \phi$

- (iii) $scl(A^{*s}) A$ contains no non empty g closed set.
- (iv) $(A^{*s}) A$ contains no non empty g closed set.

Proof:

- (i) Since $(A^{*s}) = scl A^{*s}$, the result follows from definition.
- (ii) Let $x \in scl(A^{*s})$. Suppose $gcl(\{x\}) \cap A = \phi$ then $A \subset X gcl(\{x\})$ which is g open By (i) $scl(A^{*s}) \subset X gcl(\{x\})$ which is a contradiction to the fact $x \in scl(A^{*s})$.
- (iii) Suppose that there exists a non empty g closed set F such that $F \subset scl(A^{*s}) A$.

If
$$x \in F$$
, then $gcl(\{x\}) \subseteq gcl(F) = F$ and $A \cap gcl(\{x\}) = \phi$.

Since $x \in scl(A^{*s})$, by (ii) $gcl(\{x\}) \cap A \neq \phi$ which is a contradiction.

(iv) It follows from (iii) since $A^{*s} = scl(A^{*s})$.

Theorem 3.6: Let (X, τ, I) be a g-multiplicative ideal space and let A be $g^{*S}I$ - closed. Then A is τ^{*S} - closed $\Leftrightarrow A^{*S} - A$ is closed.

Proof:

Necessity: A is $\tau^{*s} - closed \implies A^{*s} \subset A \implies A^{*s} - A = \phi$ which is closed.

Sufficiency: Let $A^{*s} - A$ be closed. Then it is g - closed By (iv) of theorem (3.5), $A^{*s} - A = \phi$ which implies $A^{*s} \subset A$.

Theorem 3.7: Let (X, τ, I) be a g-multiplicative ideal space and $A \subset X$. If A is $g^{*S}I$ - closed then $A \cup (X - A^{*S})$ is $g^{*S}I$ - closed.

Proof: Let U be g - open and $A \cup (X - A^{*s}) \subset U$.

Then $X - U \subset X - [A \cup (X - A^{*S})] = A^{*S} - A$. Since A is $g^{*S}I - closed$, $A^{*S} - A$ contains no non empty g - closed set. Therefore $X - U = \phi$ which implies X = U. Thus X is the only g - open set containing $A \cup (X - A^{*S})$ which proves $A \cup (X - A^{*S})$ is $g^{*S}I - closed$.

Theorem 3.8: Let A be a subset of a g-multiplicative ideal space (X, τ, I) . If A is $g^{*S}I$ - *closed* then $A^{*S} - A$ is $g^{*S}I$ - *open*.

Proof: Since $X - (A^{*s} - A) = A \cup (X - A^{*s})$, the proof follows from theorem 3.7.

Theorem 3.9: Let (X, τ, I) be an ideal space. If every g - open set is $\tau^{*s} - closed$, then every subset of X is $g^{*s}I - closed$.

Proof: Let $A \subset U$ and U be a g-open set in X. Then $cl^{*s}(A) \subset cl^{*s}(U) = U$ which proves A is $g^{*s}I$ -closed.

Theorem 3.10: [(6) Theorem 3.20] Let (X, τ, I) be an ideal space and $A \subset Y \subset X$ where Y is α – open in X. Then $A^{*S}(I_Y, \tau/Y) = A^{*S}(I, \tau) \cap Y$.

Theorem 3.11: Let (X, τ, I) be an ideal space and $A \subset Y \subset X$. If A is $g^{*S}I$ - closed in $(Y, \tau/Y, I_Y)$, Y is α - open and τ^{*S} - closed in X. Then A is $g^{*S}I$ - closed in X.

Proof: Let $A \subset U$ and U be g - open in X. Then $A^{*s}(I_Y, \tau/Y) = A^{*s}(I, \tau) \cap Y \subset U \cap Y$.

Then $Y \subset U \cup (X - A^{*S}(I, \tau))$. Since Y is $\tau^{*S} - closed$, $Y^{*S} \subset Y$. Therefore $A^{*S} \subset Y^{*S} \subset Y \subset U \cup (X - A^{*S}(\tau, I))$. This implies $A^{*S} \subset U$ and hence $cl^{*S}(A) \subset U$. So A is $g^{*S}I - closed$ in X.

Definition 3.4: $\{A_{\alpha} \mid \alpha \in \Omega\}$ is said to be a locally finite (resp. locally countable) family of sets in (X, τ, I) if for every $x \in X$, there exists an open set U in X containing x that intersects only a finite (resp. countable) number of members $A_{\alpha_1}, \ldots, A_{\alpha_n}$ (resp $A_{\alpha_i}, i = 1, \ldots, \infty$) of $\{A_{\alpha} \mid \alpha \in \Omega\}$.

Theorem 3.13: Let (X, τ, I) be an ideal space which is *S - finitely additive, and let $\{A_{\alpha} \mid \alpha \in \Omega\}$ be a locally finite family of sets in (X, τ, I) . Then $\left(\bigcup_{\alpha \in \Omega} A_{\alpha}\right)^{*S} = \bigcup_{\alpha \in \Omega} (A_{\alpha})^{*S}$.

Proof: $A_{\alpha} \subseteq \bigcup A_{\alpha}$ implies $A_{\alpha}^{*S} \subseteq \left(\bigcup A_{\alpha}\right)^{*S}$. Therefore $\bigcup_{\alpha \in \Omega} (A_{\alpha})^{*S} \subseteq \left(\bigcup_{\alpha \in \Omega} A_{\alpha}\right)^{S}$ (1)

On the other hand, if $x \in \left(\bigcup_{\alpha \in \Omega} A_{\alpha}\right)^{*s}$ then there exists an open set U containing x, that intersects only finite number of members $A_{\alpha_1}, \ldots, A_{\alpha_n}$. Let V be a semi-open set containing x. Then $U \cap V$ is a semi-open set containing x.

which implies
$$(U \cap V) \cap \left(\bigcup_{\alpha \in \Omega} A_{\alpha}\right) \notin I$$
.
i.e. $\left[(U \cap V) \cap \left(\bigcup_{\alpha \neq \alpha_{i}} A_{\alpha}\right) \right] \cup \left[(U \cap V) \cap \left(\bigcup_{i=1}^{n} A_{\alpha_{i}}\right) \right] \notin I$
i.e. $\{\phi\} \cup \left[(U \cap V) \cap \left(\bigcup_{i=1}^{n} A_{\alpha_{i}}\right) \right] \notin I$ and this implies $V \cap \left(\bigcup_{i=1}^{n} A_{\alpha_{i}}\right) \notin I$

© 2012, IJMA. All Rights Reserved

Therefore $x \in \left(\bigcup_{i=1}^{n} A_{\alpha_{i}}\right)^{s} = \bigcup_{i=1}^{n} (A_{\alpha_{i}})^{s} \subseteq \bigcup_{\alpha \in \Omega} (A_{\alpha})^{s}$ Therefore $\left(\bigcup_{\alpha \in \Omega} A_{\alpha}\right)^{s} \subseteq \bigcup_{\alpha \in \Omega} (A_{\alpha})^{s}$ From 1 and 2 the result follows: $\left(\bigcup_{\alpha \in \Omega} A_{\alpha}\right)^{s} = \bigcup_{\alpha \in \Omega} (A_{\alpha})^{s}$ (2)

Theorem 3.14: Let (X, τ, I) be a *S - countably additive ideal space which is, and let $\{A_{\alpha} / \alpha \in \Omega\}$ be a locally countable family of sets in (X, τ, I) . Then $\left(\bigcup_{\alpha \in \Omega} A_{\alpha}\right)^{*S} = \bigcup_{\alpha \in \Omega} (A_{\alpha})^{*S}$.

Proof: Similar to proof of Theorem 3.13.

Theorem 3.15: Let the ideal space (X, τ, I) be *S - finitely additive, and $\{A_{\alpha} / \alpha \in \Omega\}$ be a locally finite family of sets in (X, τ, I) . If each A_{α} is $g^{*S}I$ - closed then $\bigcup_{\alpha \in \Omega} A_{\alpha}$ is $g^{*S}I$ - closed in X.

Proof: Let $\bigcup_{\alpha \in \Omega} A_{\alpha} \subseteq U$ and U be g - open in X. Then $A_{\alpha} \subseteq U \forall \alpha \in \Omega$ implies $cl^{*S}(A_{\alpha}) \subseteq U \forall \alpha \in \Omega$. By theorem (3.13) $cl^{*S}\left(\bigcup_{\alpha \in \Omega} A_{\alpha}\right) = \bigcup_{\alpha \in \Omega} cl^{*S}(A_{\alpha}) \subseteq U$.

Therefore $\bigcup_{\alpha \in \Omega} A_{\alpha}$ is $g^{*S}I$ - closed.

Theorem 3.16: Let the ideal space (X, τ, I) be *S - countably additive. If $\{A_{\alpha} \mid \alpha \in \Omega\}$ is a locally countable family of sets in (X, τ, I) and each A_{α} is $g^{*S}I$ - closed then $\bigcup_{\alpha \in \Omega} A_{\alpha}$ is $g^{*S}I$ - closed.

Proof: Similar to proof of Theorem 3.15.

4. - $g^{*s}I$ – continuous functions

Definition 4.1: A function $f: (X, \tau, I) \to (Y, \Omega, J)$ is said to be weakly I^{*s} – *continuous* if for each $x \in X$ and for every V in Ω containing f(x), there exists an open set U containing x such that $f(U) \subseteq cl^{*s}(V)$.

Definition 4.2: A function $f:(X,\tau,I) \to (Y,\sigma)$ is said to be $g^{*s}I$ - continuous if for every $U \in \Omega$, $f^{-1}(U)$ is $g^{*s}I$ - open in X. Equivalently for every closed set V in Y, $f^{-1}(V)$ is $g^{*s}I$ - closed in X.

Definition 4.3: A function $f:(X,\tau,I) \to (Y,\Omega,J)$ is said to be strongly $g^{*S}I$ - continuous if for $g^{*S}I$ - open (resp $g^{*S}I$ - closed) set V in Y, $f^{-1}(V)$ is open (resp closed) in X.

Definition 4.4: A function $f: (X, \tau, I) \to (Y, \Omega, J)$ is said to be weakly $g^{*S}I$ - continuous if for every $x \in X$ and for every $V \in \Omega$ containing f(x), there exists $g^{*S}I$ - open set U in X such that $x \in U$ and $f(U) \subseteq cl^{*S}(V)$.

Definition 4.5: A function $f: (X, \tau, I) \to (Y, \Omega, J)$ is said to be $g^{*S}I$ - *irresolute* if for every $g^{*S}I$ - *open* (resp $g^{*S}I$ - *closed* set) set V in Y, $f^{-1}(V)$ is $g^{*S}I$ - *open* (resp $g^{*S}I$ - *closed*) in X.

Remarks: 4.1:

- 1. Every continuous function is $g^{*S}I$ *continuous* (since every open set is $g^{*S}I$ *open*) but the converse is not true as seen from example 4.1.
- 2. Every strongly $g^{*s}I$ *continuous* function is continuous and hence it is $g^{*s}I$ *continuous* but the converse is

not true as seen from example (4.2).

- 3. Every $g^{*s}I$ *continuous* function is weakly $g^{*s}I$ *continuous* but the converse is not true as seen from example (4.2).
- 4. Every weakly I^{*s} *continuous* function is weakly $g^{*s}I$ *continuous*
- 5. Every strongly $g^{*S}I$ *continuous* function is $g^{*S}I$ *irresolute* and $g^{*S}I$ *irresolute* function is $g^{*S}I$ *continuous*

Example 4.1: Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, I = \{\phi, \{a\}\}, Y = X, \Omega = \tau$.

Let $f: (X, \tau, I) \to (Y, \Omega, J)$ be defined by f(a) = c, f(b) = f(c) = a.

Then f is $g^{*s}I$ – *continuous* but not continuous.

Example 4.2: Let X = Y be indiscrete space and $I = \{\phi, x_0\} = J$ where $x_0 \in X$.

Let $f:(X,\tau,I) \to (Y,\Omega,J)$ be identity map. $Y, \phi, X-\{x_0\}$ are the only $g^{*s}I$ -open sets in Y. $f^{-1}(X-\{x_0\})=X-\{x_0\}$ is not open in X. Therefore f is not strongly $g^{*s}I$ -continuous but f is both continuous and $g^{*s}I$ -continuous.

Example 4.3: Let (X, τ) be an indiscrete space, $x_0 \in X$ and $I = \{\phi, x_0\} = J$.

Let Y = X, $\Omega = \tau$, J = g and $f : (X, \tau, I) \to (Y, \Omega, J)$ be identity function. Then f is an irresolute function. $A = \{x_0\}$ is $g^{*s}I - closed$ in Y, but $f^{-1}(A) = \{x_0\}$ is not closed in X.

Therefore f is not strongly $g^{*s}I$ – continuous.

Let $x_1 \neq x_0$ be a point of X and $f: (X, \tau, I) \to (Y, \Omega, J)$ be defined by $f(x_0) = x_1$, $f(x_1) = x_0$ and $f(x) = x \forall x \neq x_0, x_1$. Then f is $g^{*S}I$ - continuous. $A = \{x_0\}$ is $g^{*S}I$ - closed in Y and $f^{-1}(A) = \{x_1\}$ is not $g^{*S}I$ - closed in X. Therefore f is not $g^{*S}I$ - irresolute.

Definition 4.6: Let N be a subset of (X, τ, I) and $x \in X$. The subset N of X called a $g^{*S}I$ – open neighbourhood of x if there exists $g^{*S}I$ – open set U containing x such that $U \subset N$.

Theorem 4.1: Let (X, τ, I) be an ideal space which is $g^{*S}I$ – *multiplicative*. Then the following are equivalent. 1. f is $g^{*S}I$ – *continuous*

2. For each $x \in X$ and each open set V in Y with $f(x) \in V$, there exists an $g^{*S}I - open$ set U containing x such that $f(U) \subset V$.

3. For each $x \in X$ and each open set V in Y with $f(x) \in V$, $f^{-1}(V)$ is a $g^{*S}I - open$ neighbourhood of x.

Proof: Since X is $g^{*S}I$ – multiplicative, arbitrary union of $g^{*S}I$ – open sets is $g^{*S}I$ – open. $1 \Rightarrow 2$: Let $x \in X$ and V be open in Y containing f(x). Then $U = f^{-1}(V)$ is $g^{*S}I$ – open, $x \in U$ and $f(U) \subseteq V$.

2 ⇒ 3: Let $x \in X$, V open in Y containing f(x). By (2), there exists an $g^{*S}I$ – open set U containing x such that $f(U) \subseteq V$. So $x \in U \subseteq f^{-1}(V)$ which proves $f^{-1}(V)$ is an $g^{*S}I$ – open neighbourhood of x.

3 \Rightarrow 1: Let V be open in Y and $x \in f^{-1}(V)$. Then $f^{-1}(V)$ is a $g^{*S}I - open$ neighbourhood of x.

Thus for each $x \in f^{-1}(V)$, there exists an $g^{*s}I - open$ set U_x containing x such that $x \in U_x \subset f^{-1}(V)$.

Therefore $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} \bigcup_{x}$ is a $g^{*S}I$ - open which proves that f is $g^{*S}I$ - continuous.

Theorem 4.2: Let (X, τ, I) be a $g^{*S}I$ – multiplicative ideal space in which every open set is *S – closed. Then a function $f: (X, \tau, I) \to (Y, \Omega)$ is weakly $g^{*S}I$ – continuous if and only if it is $g^{*S}I$ – continuous.

Proof: Obviously $g^{*S}I - continuity \implies$ weakly $g^{*S}I - continuity$. Conversely, let f be weakly $g^{*S}I - continuous$. Then for each $x \in X$ and open set V containing f(x), there exists $g^{*S}I - open$ set U such that $x \in U$ and $f(U) \subset cl^{*}(V) = V$. Therefore by theorem 4.1, f is $g^{*S}I - continuous$.

Theorem 4.3: Let $f: (X, \tau, I) \to (Y, \Omega, J)$ and $g: (Y, \sigma, \tau) \to (Z, \Omega, K)$ be functions between ideal spaces. 1. If f is strongly $g^{*s}I$ – continuous and g is $g^{*s}I$ – continuous then gof is continuous.

- 2. If f is $g^{*s}I$ continuous and g is continuous then gof is $g^{*s}I$ continuous.
- 3. If f is strongly $g^{*S}I$ continuous and g is $g^{*S}I$ irresolute then gof is strongly $g^{*S}I$ continuous and $g^{*S}I$ irresolute.
- 4. If f and g are $g^{*s}I$ irresolute then gof is $g^{*s}I$ irresolute.

Proof: Obvious from definition.

Theorem 4.4: Let (X, τ, I) be *s - finitely additive. Let $f: (X, \tau, I) \to (Y, \Omega)$ be $g^{*s}I - continuous$ and U be $g^{*s}I - open$ in X. Then $f/U: (U, \tau_U, I_U) \to (Y, \Omega)$ is $g^{*s}I - continuous$.

Proof: Since (X, τ, I) is *s - finitely additive, finite intersection $g^{*s}I - open$ sets is $g^{*s}I - open$. Let V be open in (Y, Ω) . Then $f^{-1}(V)$ is $g^{*s}I - open$ in X.

Therefore $(f/U)^{-1}(V) = f^{-1}(V) \cap U$ is $g^{*s}I - open$. Therefore (f/U) is $g^{*s}I - continuous$.

Note: The result is true if $g^{*s}I$ – continuous is replaced by $g^{*s}I$ – irresolute.

Theorem 4.5: Let (X, τ, I) be an ideal space which is *S - multiplicative finitely additive and $g^{*S}I - multiplicative$.

Then $f: (X, \tau, I) \to (Y, \Omega)$ is $g^{*S}I$ - *continuous* if and only if the graph function $g: X \to X \times Y$ defined by g(x) = (x, f(x)) for each $x \in X$ is $g^{*S}I$ - *continuous*.

Proof:

Necessity: Let $x \in X$ and W be any open set in $X \times Y$ containing g(x) = (x, f(x)). Then there exists basic open set $U \times V$ such that $g(x) \in U \times V \subseteq W$. Therefore $f(x) \in V$.

Since f is $g^{*S}I$ - continuous, there exists $g^{*S}I$ - open set U_1 containing X such that $x \in U_1$ and $f(U_1) \subseteq V$ (by theorem 4.1) and By theorem 3.3 $U_1 \cap V$ is $g^{*S}I$ - open in X. Then $x \in U_1 \cap U$ and $g(U_1 \cap U) \subset U \cap V \subset W$. Therefore g is $g^{*S}I$ - continuous.

Sufficiency: Let $g: X \to X \times Y$ be $g^{*S}I$ - continuous. Let $x \in X$ and V be an open set in Y containing f(x). Then $X \times V$ is an open set in $X \times Y$. Since g is $g^{*S}I$ - continuous, there exists $g^{*S}I$ - open set U in X such that $x \in U$ and $g(U) \subset X \times V$. Hence $x \in U$ and $f(U) \subseteq V$ which proves that f is $g^{*S}I$ - continuous.

Theorem 4.6: Let $\{X_{\alpha} \mid \alpha \in \nabla\}$ be any family of topological spaces. If $f: (X, \tau, I) \to \prod_{\alpha \in \nabla} X_{\alpha}$ is a

 $g^{*s}I$ - continuous, function, then $P_{\alpha} \circ f : X \to X_{\alpha}$ is $g^{*s}I$ - continuous for each $\alpha \in \nabla$ where P_{α} is projection of $\prod X_{\alpha}$ onto X_{α} .

Proof: Consider a fixed $\alpha_o \in \nabla$. Let G_{α_o} be an open set in X_{α_o} . Then $P_{\alpha_o}^{-1}(G_{\alpha_o})$ is open in X_{α_o} . (P_{α_o} is continuous). Therefore $f^{-1}[(P_{\alpha_o})^{-1}(G_{\alpha_o})] = (P_{\alpha_o} of)^{-1}(G_{\alpha_o})$ is $g^{*S}I - open$ in X. Therefore $P_{\alpha_o} o f$ is $g^{*S}I - continuous$.

Theorem 4.7: For any bijection $f: (X, \tau, I) \to (Y, \Omega, J)$ the following are equivalent. (i) $f^{-1}: (X, \tau, I) \to (Y, \Omega, J)$ is $g^{*S}I$ – *continuous*. (ii) f(U) is $g^{*S}I$ – *open* in Y for every open set U in X. (iii) (ii) f(U) is $g^{*S}I$ – *closed* in Y for every closed set U in X.

Proof: Obvious.

 $\mathbf{z} g^{*s} I$ - compact spaces and $g^{*s} I$ - connected spaces

Definition 5.1: A collection $\{A_{\alpha} \mid \alpha \in \Omega\}$ of $g^{*s}I - open$ set in an ideal topological space X is called $g^{*s}I - open$ cover of a subset B of X if $B \subseteq U\{A_{\alpha} \mid \alpha \in \Omega\}$.

Definition 5.2: An ideal topological space (X, τ, I) is called $g^{*S}I$ - compact modules I, if for every $g^{*S}I$ - open cover $\{A_{\alpha} \mid \alpha \in \Omega\}$ of (X, τ, I) , there exists a finite subset Ω_0 and Ω such that $X - U\{A_{\alpha} \mid \alpha \in \Delta_0\} \in I$.

Theorem 5.1: The image of $g^{*S}I$ - compact modulo I space (X, τ, I) under a $g^{*S}I$ - continuous subjective function f is f(I) - compact.

Proof: Let (X, τ, I) be a $g^{*S}I$ - compact modulo I space and $f: (X, \tau, I) \to (Y, \eta)$ be a subjective $g^{*S}I$ - continuous function. Then f(I) is an ideal in (Y, η) .

Let $\{A_{\alpha} \mid \alpha \in \Omega\}$ be an open cover for $(Y, \eta, f(I))$

Then $f^{-1}(A_{\alpha})$ is $g^{*S}I - open$ in X for every $\alpha \in \Omega$ so $\{f^{-1}(A_{\alpha}) | \alpha \in \Omega\}$ is a $g^{*S}I - open$ cover for X.

Since (X,τ,I) is $g^{*S}I$ - compact modulo *I*, there exists a finite subset Ω_0 of Ω such that $X - \bigcup_{\alpha \in \Omega_0} \{f^{-1}(A_\alpha)\} \in I$. Therefore $Y - \bigcup_{\alpha \in \Omega_0} \{A_\alpha\} \in f(I)$ which proves that $(Y,\eta,f(I))$ is compact modulo f(I).

The following examples prove that there exist spaces which are $g^{*S}I$ - compact and spaces which are not $g^{*S}I$ - compact.

Example 5.1: Consider the space in example (3.1) Here the only $g^{*S}I - open$ covers are $\{X\}$ and $\{X, X - \{x_0\}\}$. Hence the space is $g^{*S}I$ - compact modulo I.

Example 5.2: Let X = Z, τ - cofinite topology and $I = \{\phi\}$.

Let for every positive integer n, $A_n = \{-n, -n+1, \dots, 0, 1, \dots, n-1, n\}$. Then $\{A_n^c\}_{n=1}^{\infty}$ is a $g^{*S}I$ - open cover for Z. Suppose there exists a finite subset $\{\alpha_1, \dots, \alpha_k\}$ of positive integers such that $X - \bigcup_{i=1}^k A_{\alpha_i}^c = \Phi$ then

 $X = \bigcup_{i=1}^{k} A_{\alpha_{i}}^{c} \text{ and hence } \Phi = \bigcap_{i=1}^{n} A_{\alpha_{i}} = A_{\alpha} \text{ where } \alpha = \min\{\alpha_{1}, \alpha_{2}, \dots, \alpha_{k}\} \text{ which is not true, since } A_{\alpha} = \{-\alpha, -\alpha + 1, \dots, 0, \dots, \alpha\} = \Phi.$

Therefore this space is not $g^{*S}I$ - compact modulo *I*.

Definition 5.3: An ideal topological space (X, τ, I) is said to be $g^{*S}I$ – connected if X cannot be written as the disjoint union of two non-empty $g^{*S}I$ – open sets. A subset of X is said to be $g^{*S}I$ connected if it is $g^{*S}I$ – connected as a subspace A space which is not $g^{*S}I$ – connected is said to be $g^{*S}I$ – disconnected.

Remark 5.1: An ideal space (X, τ, I) is $g^{*S}I$ – *disconnected* if and only if there exists a proper subset which is both $g^{*S}I$ – *open* and $g^{*S}I$ – *closed*.

Theorem 5.2: Let $f: (X, \tau, I) \to (Y, \sigma, J)$ be an onto function.

1. If f is continuous and X is $g^{*s}I$ – *connected* then Y is connected.

2. If f is $g^{*S}I$ - *irresolute* and X is $g^{*S}I$ - *connected* then Y is also $g^{*S}I$ - *connected*.

3. If f is strongly $g^{*S}I$ – continuous and X is connected then Y is $g^{*S}I$ – connected

Proof:

1. Suppose Y is disconnected the Y can be written as disjoint union of open sets A and B.

Then $X = f^{-1}(Y) = f^{-1}(A)Uf^{-1}(B)$ which is a disjoint union of $g^{*S}I$ – open sets. This is a contradiction to the fact that X is $g^{*S}I$ – connected. Therefore Y is connected. © 2012, UMA. All Rights Reserved 2413

2. Similar to the proof of 1.

3. Similar to the proof of 1.

Definition 5.4: An ideal topological space (X, τ, I) is called $g^{*S}I$ – normal if for every pair of disjoint closed sets A and B of subset of (X, τ, I) there exists disjoint $g^{*S}I$ – open sets U, $V \subseteq X$ such that $A \subseteq U$ and $B \subseteq V$.

We now give examples of spaces which are $g^{*s}I - normal$ and not $g^{*s}I - normal$.

Example 5.3: Let X be an finite set τ - cofinite topology and $I = \{\phi\}$. Here $G^*SIO(X) = \{\phi, X, A/A^c \text{ is finite.} Suppose U and V are two disjoint <math>g^{*S}I - open$ sets then $U \cap V = \phi$. Therefore $U^c \cup V^c = X$ which is a contradiction since U^c and V^c are finite.

Hence (X, τ, I) is not $g^{*s}I$ – normal.

In the above example, if I = P(X) then (X, τ, I) is $g^{*S}I - normal$.

Theorem 5.3: Let $f: (X, \tau, I) \to (Y, \sigma, J)$ be a closed, injective function.

1. If f is $g^{*S}I$ – continuous then Y is normal \Rightarrow X is $g^{*S}I$ – normal.

2. If f is $g^{*S}I$ – *irresolute* then Y is $g^{*S}I$ – *normal* \Rightarrow X is $g^{*S}I$ – *normal*.

3. If f is strongly $g^{*s}I$ – continuous then Y is $g^{*s}I$ – normal \Rightarrow X is normal.

Proof:

(i) Let F_1 and F_2 be two disjoint closed sets in X. Since f is closed and injective, $f(F_1)$ and $f(F_2)$ are disjoint

closed sets in Y. Then there exists open sets V_1 and V_2 in Y such that $f(F_1) \subseteq V_1$ and $f(F_2) \subseteq V_2$. Then

 $F_1 \subseteq f^{-1}(V_1)$, $F_2 \subseteq f^{-1}(V_2)$ where $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are two disjoint $g^{*S}I$ – open sets in X. Hence X is $g^{*S}I$ – normal.

(ii) Similar to the proof of (i).

(iii) Similar to the proof of (i).

References

[1] M.E. Abd El-Monsef, E.F. Lashien and A.a. Nasef, some Topological operations Via ideals, Kyungpook Mathematical Journal, Vol 32, Number 2, December, 1992.

[2] J. Dontchev, M. Ganster, Unified approach of generalized closed sets via topological ideals, Math. Japon, 49 (1999), 395 - 401.

[3] E.Hayashi, topologies defined by local properties, Math Ann. 1964, 156: 205 – 215.

[4] Khan M, M. Hamza, I_{s^*g} – *closed* sets in Ideal Topological spaces, Global Journal of Pune and Applied Mathematics, 7(1), 89 – 99. 2011.

[5] D. Jankovic and T.R., New topologies from old via ideals, Amer. Math. Monthly, 1990, 97 (4).

[6] M. Khan, T. Noiri, On gI - closed sets in Ideal topological spaces, Journal of Advanced studies in topology, Vol. 1, 2010, 29 – 33.

[7] M. Khan, and T. Noiri, semi local functions ideal topological spaces. J. Adv. Res. Pure Math., 2010, 2(1): 36 – 42.

[8] M. Khan, T. Noiri, On sgI - closed sets in Ideal Topological spaces, International Electronics Journal of Pune and Applied Mathematics, Vol. 3, No.1 2011, 2010, 29 – 38.

[9] M. Khan, and T. Noiri, On I – *continuous* functions in Ideal Topological spaces European Journal of Pune and Applied Mathematics.

- [10] K. Kuratowski, topology I, Warsjawa, 1933.
- [11] N. Levine, generalized closed sets in topology, Rend. Circ. Mat. Palereno, 1970, 19(2): 89 96.
- [12] R. Vaidyanathaswamy, set topology, Chelsea Publisher Company, 1946.

Source of support: Nil, Conflict of interest: None Declared