International Journal of Mathematical Archive-3(6), 2012, 2445-2450

COMMON FIXED POINTS OF A-COMPATIBLE AND S-COMPATIBLE MAPPINGS

Th. Indubala Devi*

CMJ University, Shillong, Meghalaya, India

&

Md. Sahidur Rahman CMJ University, Shillong, Meghalaya, India

(Received on: 30-05-12; Revised & Accepted on: 19-06-12)

ABSTRACT

In this paper we prove two common fixed point theorems of A-compatible and S-compatible mappings. Our results modify results of [1, 4, 5, 6, 7].

Keywords: Fixed point, complete metric space, compatible mappings, A-compatible, S-compatible.

2000 AMS Classification: 47H10, 54H25.

1. INTRODUCTION

The first important result in the theory of fixed point of compatible mappings was obtained by Gerald Jungck in 1986 [2] as a generalization of commuting mappings. In 1993 Jungck, Murthy and Cho [3] introduced the concept of compatible mappings of type (A) by generalizing the definition of weakly uniformly contraction maps. Pathak and Khan [5] introduced the concept of A-compatible and S-compatible by splitting the definition of compatible mappings of type (A).

The aim of this paper is to prove two common fixed point theorems by using the concept of A-compatible and S-compatible mappings in metric spaces considering four self mappings.

Following are definitions of types of compatible mappings.

Definition 1.1 [2]: Let *A* and *S* be mappings from a complete metric space *X* into itself. The mappings *A* and *S* are said to be compatible if $\lim_{n\to\infty} d(ASx_n, SAx_n) = 0$ whenever $\{x_n\}$ is a sequence in *X* such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = t$ for some $t \in X$.

Definition 1.2 [3]: Let *A* and *S* be mappings from a complete metric space *X* into itself. The mappings *A* and *S* are said to be compatible of type (A) if $\lim d(ASx_n, SSx_n) = 0$ and $\lim d(SAx_n, AAx_n) = 0$ whenever $\{x_n\}$ is a sequence in *X*

such that for $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = t$ for some $t \in X$.

Definition 1.3 [5]: Let A and S be mappings from a complete metric space X into itself. The mappings A and S are said to be A-compatible if $\lim_{n\to\infty} d(ASx_n, SSx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that for $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n$

$$= t$$
 for some $t \in X$.

Definition 1.4 [5]: Let *A* and *S* be mappings from a complete metric space *X* into itself. The mappings *A* and *S* are said to be S-compatible if $\lim_{n\to\infty} d(SAx_n, AAx_n) = 0$ whenever $\{x_n\}$ is a sequence in *X* such that for $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = t$ for some $t \in X$.

Proposition 1.5[6]: Let A and S be mappings from a complete metric space (X, d) into itself. If a pair (A, S) is A-compatible on X and St = At for $t \in X$, then ASt = SSt.

*Corresponding author: Md. Sahidur Rahman, CMJ University, Shillong, Meghalaya, India

Th. Indubala Devi* & Md. Sahidur Rahman/ COMMON FIXED POINTS OF A-COMPATIBLE AND S-COMPATIBLE MAPPINGS/ IJMA- 3(6), June-2012, Page: 2445-2450

Proof: Let $\{x_n\}$ be a sequence in X defined by $x_n=t$ for n=1, 2... and let At=St. Then we have $\lim_{n\to\infty} Ax_n = At$ and $\lim_{n\to\infty} Sx_n = St$. Since the pair (A, S) is A-compatible we have

$$d(ASt, SSt) = \lim_{n \to \infty} d(ASx_n, SSx_n) = 0.$$

Hence ASt=SSt.

Proposition 1.6[6]: Let A and S be mappings from a complete metric space (X, d) into itself. If a pair (A, S) is S-compatible on X and St = At for $t \in X$, then SAt = AAt.

Proof: Let $\{x_n\}$ be a sequence in *X* defined by $x_n=t$ for n=1, 2, ... and let At=St. Then we have $\lim_{n \to \infty} Ax_n = At$ and $\lim_{n \to \infty} Sx_n = St$. Since the pair (A, S) is S-compatible we have

$$d(SAt, AAt) = \lim_{n \to \infty} d(SAx_n, AAx_n) = 0.$$

Hence *SAt=AAt*.

Proposition 1.7[6]: Let A and S be mappings from a complete metric space (X, d) into itself. If a pair (A, S) is A-compatible on X and $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = t$ for $t \in X$, then $SSx_n \to At$ if A is continuous at t.

Proof: Since *A* is continuous at *t* we have $ASx_n \rightarrow At$. Since the pair (A, S) is A-compatible, we have $d(ASx_n, SSx_n) = 0$ as $n \rightarrow \infty$. It follows that

 $d(At, SSx_n) \le d(At, ASx_n) + d(ASx_n, SSx_n)$

Therefore, $\lim_{n \to \infty} d(At, SSx_n) = 0.$

And so we have $SSx_n \rightarrow At$ as $n \rightarrow \infty$.

Proposition 1.8[6]: Let *A* and *S* be mappings from a complete metric space (*X*, *d*) into itself. If a pair (*A*, *S*) is S-compatible on *X* and $\lim Ax_n = \lim Sx_n = t$ for $t \in X$, then $AAx_n \to St$ if *S* is continuous at *t*.

Proof: Since *S* is continuous at *t* we have $SAx_n \rightarrow St$. Since the pair (*A*, *S*) is S-compatible, we have $d(SAx_n, AAx_n) = 0$ as $n \rightarrow \infty$. It follows that

 $d(St, AAx_n) \leq d(St, SAx_n) + d(SAx_n, AAx_n)$

Therefore, $\lim_{n \to \infty} d(St, AAx_n) = 0.$ And so we have $AAx_n \to St$ as $n \to \infty$.

2. MAIN RESULTS

We need the following lemma.

Lemma 2.1[1]: Let A, B, S and T be mapping from a metric space (X, d) into itself satisfying the following conditions:

(1)
$$A(X) \subseteq T(X)$$
 and $B(X) \subseteq S(X)$

 $(2) [d(Ax, By)]^{2} \le a[d(Ax, Sx)d(By, Ty) + d(By, Sx)d(Ax, Ty)] + b[d(Ax, Sx)d(Ax, Ty) + d(By, Ty)d(By, Sx)]$

where $0 \le a + 2b < 1$; *a*, *b* ≥ 0

(3) Let $x_0 \in X$ then by (1) there exists $x_1 \in X$ such that $Tx_1 = Ax_0$ and for x_1 there exists $x_2 \in X$ such that $Sx_2 = Bx_1$ and so on. Continuing this process we can define a sequence $\{y_n\}$ in X such that

 $y_{2n+1} = Tx_{2n+1} = Ax_{2n}$ and $y_{2n} = Sx_{2n} = Bx_{2n-1}$

then the sequence $\{y_n\}$ is Cauchy sequence in X.

Th. Indubala Devi^{*} & Md. Sahidur Rahman/ COMMON FIXED POINTS OF A-COMPATIBLE AND S-COMPATIBLE MAPPINGS/ IJMA- 3(6), June-2012, Page: 2445-2450

Proof: By condition (2) and (3), we have

 $\begin{aligned} [d(y_{2n+1}, y_{2n})]^2 &= [d(Ax_{2n}, Bx_{2n-1})]^2 \\ &\leq a[d(Ax_{2n}, Sx_{2n})d(Bx_{2n-1}, Tx_{2n-1}) + d(Bx_{2n-1}, Sx_{2n})d(Ax_{2n}, Tx_{2n-1})] \\ &+ b[d(Ax_{2n}, Sx_{2n})d(Ax_{2n}, Tx_{2n-1}) + d(Bx_{2n-1}, Tx_{2n-1})d(Bx_{2n-1}, Sx_{2n})] \end{aligned}$

 $= ad(y_{2n+1}, y_{2n})d(y_{2n}, y_{2n-1}) + bd(y_{2n+1}, y_{2n})d(y_{2n+1}, y_{2n-1})$

 $[d(y_{2n+1}, y_{2n})] \le ad(y_{2n}, y_{2n-1}) + b[d(y_{2n+1}, y_{2n}) + d(y_{2n}, y_{2n-1})]$

 $[d(y_{2n+1}, y_{2n})] \le pd(y_{2n}, y_{2n-1})$ where $p = \frac{a+b}{1-b} < 1$.

Hence $\{y_n\}$ is Cauchy sequence.

Now we give our main theorem.

Theorem 2.2: Let *A*, *B*, *S* and *T* be self maps of a complete metric space (*X*, *d*) satisfying the following conditions:

(1)
$$A(X) \subseteq T(X)$$
 and $B(X) \subseteq S(X)$

 $(2) [d(Ax, By)]^{2} \le a[d(Ax, Sx)d(By, Ty) + d(By, Sx)d(Ax, Ty)] + b[d(Ax, Sx)d(Ax, Ty) + d(By, Ty)d(By, Sx)]$

where $0 \le a + 2b < 1; a, b \ge 0$

(3) Let $x_0 \in X$ then by (1) there exists $x_1 \in X$ such that $Tx_1 = Ax_0$ and for x_1 there exists $x_2 \in X$ such that $Sx_2 = Bx_1$ and so on. Continuing this process we can define a sequence $\{y_n\}$ in X such that

 $y_{2n+1} = Tx_{2n+1} = Ax_{2n}$ and $y_{2n} = Sx_{2n} = Bx_{2n-1}$

then the sequence $\{y_n\}$ is Cauchy sequence in X.

(4) One of A, B, S or T is continuous.

(5) (A, S) and (B, T) are A-compatible on X.

Then A, B, S and T have a unique common fixed point in X.

Proof: By lemma 2.1, $\{y_n\}$ is Cauchy sequence and since X is complete so there exists a point $z \in X$ such that $\lim y_n = z$ as $n \to \infty$. Consequently subsequences Ax_{2n} , Sx_{2n} , Bx_{2n-1} and Tx_{2n+1} converges to z.

Let *A* be continuous. Since *A* and *S* are A-compatible on *X*, then by proposition 1.7 we have $S^2 x_{2n} \rightarrow Az$ and $ASx_{2n} \rightarrow Az$ as $n \rightarrow \infty$.

Now by condition (2) of lemma 2.1, we have

 $[d(ASx_{2n}, Bx_{2n-1})]^2 \leq a[d(ASx_{2n}, S^2x_{2n})d(Bx_{2n-1}, Tx_{2n-1}) + d(Bx_{2n-1}, S^2x_{2n})d(ASx_{2n-1}, Tx_{2n-1})]$ $+ b [d(ASx_{2n}, S^2x_{2n})d(ASx_{2n}, Tx_{2n-1}) + d(Bx_{2n-1}, Tx_{2n-1})d(Bx_{2n-1}, S^2x_{2n})]$

As $n \rightarrow \infty$, we have

$$[d(Az, z)]^2 \le a[d(Az, z)]^2,$$

which is a contradiction. Hence Az = z,

Now since Az = z, by condition (1) $z \in T(X)$. Also *T* is self map of *X* so there exists a point $u \in X$ such that z = Az = Tu. More over by condition (2), we obtain,

 $[d(z, Bu)]^{2} = [d(Az, Bu)]^{2} \le a[d(Az, Sz)d(Bu, Tu) + d(Bu, Sz)d(Az, Tu)] + b[d(Az, Sz)d(Az, Tu) + d(Bu, Tu)d(Bu, Sz)]$

i.e., $[d(z, Bu)]^2 \le b [d(z, Bu)]^2$.

Hence Bu = z i.e., z = Tu = Bu. © 2012, IJMA. All Rights Reserved

Th. Indubala Devi* & Md. Sahidur Rahman/ COMMON FIXED POINTS OF A-COMPATIBLE AND S-COMPATIBLE MAPPINGS/ IJMA- 3(6), June-2012, Page: 2445-2450

By proposition 1.7, we have *BTu=TTu*

Hence Bz = Tz.

Now,

 $[d(z, Tz)]^{2} = [d(Az, Bz)]^{2} \le a[d(Az, Sz)d(Bz, Tz) + d(Bz, Sz)d(Az, Tz)] + b[d(Az, Sz)d(Az, Tz) + d(Bz, Tz)d(Bz, Sz)]$

i.e., $[d(z, Tz)]^2 \le a[d(z, Tz)]^2$ which is a contradiction. Hence z = Tz i.e, z = Tz = Bz.

Now since Bz = z, by condition (1) $z \in S(X)$. Also S is self map of X so there exists a point $v \in X$ such that z = Bz = Su. Moreover by (2) we have

 $[d(Au, z)]^{2} = [d(Au, Bz)]^{2} \le a[d(Au, Su)d(Bz, Tz) + d(Bz, Su)d(Au, Tz)] + b[d(Au, Su)d(Au, Tz) + d(Bz, Tz)d(Bz, Su)]$

i.e., $[d(Au, z)]^2 \le b[d(Au, z)]^2$.

Hence Au = z i.e., z = Au = Su.

By proposition 1.5, we have *ASu=SSu*

Hence Az = Sz.

Therefore z is common fixed point of A, B, S and T. Similarly we can prove this when any one of A, B or T is continuous.

Finally, in order to prove the uniqueness of z, suppose w be another common fixed point of A, B, S and T then we have,

 $[d(z, w)]^{2} = [d(Az, Bw)]^{2} \le a[d(Az, Sz)d(Bw, Tw) + d(Bw, Sz)d(Az, Tw)] + b[d(Az, Sz)d(Az, Tw) + d(Bw, Tw)d(Bw, Sz)]$

which gives

 $[d(z, Tw)]^2 \le a[d(z, Tw)]^2$. Hence z = w.

This completes the proof.

Theorem 2.3: Let *A*, *B*, *S* and *T* be self maps of a complete metric space (*X*, *d*) satisfying the following conditions:

(1) $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$

 $(2) [d(Ax, By)]^{2} \le a[d(Ax, Sx)d(By, Ty) + d(By, Sx)d(Ax, Ty)] + b[d(Ax, Sx)d(Ax, Ty) + d(By, Ty)d(By, Sx)]$

where $0 \le a + 2b < 1$; *a*, $b \ge 0$

(3) Let $x_0 \in X$ then by (1) there exists $x_1 \in X$ such that $Tx_1 = Ax_0$ and for x_1 there exists $x_2 \in X$ such that $Sx_2 = Bx_1$ and so on. Continuing this process we can define a sequence $\{y_n\}$ in X such that

$$y_{2n+1} = Tx_{2n+1} = Ax_{2n}$$
 and $y_{2n} = Sx_{2n} = Bx_{2n-1}$

then the sequence $\{y_n\}$ is Cauchy sequence in *X*.

(4) One of A, B, S or T is continuous.

(5) (A, S) and (B, T) are S-compatible on X.

Then A, B, S and T have a unique common fixed point in X.

Proof: By lemma 2.1, $\{y_n\}$ is Cauchy sequence and since X is complete so there exists a point $z \in X$ such that $\lim y_n = z$ as $n \to \infty$. Consequently subsequences Ax_{2n} , Sx_{2n} , Bx_{2n-1} and Tx_{2n+1} converges to z.

Let *S* be continuous. Since *A* and *S* are S-compatible on *X*, then by proposition 1.8 we have $SAx_{2n} \rightarrow Sz$ and $AAx_{2n} \rightarrow Sz$ as $n \rightarrow \infty$.

Th. Indubala Devi^{*} & Md. Sahidur Rahman/ COMMON FIXED POINTS OF A-COMPATIBLE AND S-COMPATIBLE MAPPINGS/ IJMA- 3(6), June-2012, Page: 2445-2450

by condition (2) of lemma 2.1, we have

$$[d(AAx_{2n}, Bx_{2n-1})]^2 \leq a[d(AAx_{2n}, SAx_{2n})d(Bx_{2n-1}, Tx_{2n-1}) + d(Bx_{2n-1}, SAx_{2n})d(AAx_{2n-1}, Tx_{2n-1})] \\ + b[d(AAx_{2n}, SAx_{2n})d(AAx_{2n}, Tx_{2n-1}) + d(Bx_{2n-1}, Tx_{2n-1})d(Bx_{2n-1}, SAx_{2n})]$$

As $n \rightarrow \infty$, we have

 $[d(Sz, z)]^2 \le a[d(Sz, z)]^2,$

which is a contradiction. Hence Sz = z,

Now $[d(Az, Bx_{2n-1})]^2 \leq a[d(Az, Sz)d(Bx_{2n-1}, Tx_{2n-1}) + d(Bx_{2n-1}, Sz)d(Az, Tx_{2n-1})] + b[d(Az, Sz)d(Az, Tx_{2n-1}) + d(Bx_{2n-1}, Tx_{2n-1})d(Bx_{2n-1}, Sz)]$

Letting $n \rightarrow \infty$, we have $[d(Az, z)]^2 \le b[d(Az, z)]^2$. Hence Az = z.

Now since Az = z, by condition (1) $z \in T(X)$. Also *T* is self map of *X* so there exists a point $u \in X$ such that z = Az = Tu. More over by condition (2), we obtain,

 $[d(z, Bu)]^{2} = [d(Az, Bu)]^{2} \le a[d(Az, Sz)d(Bu, Tu) + d(Bu, Sz)d(Az, Tu)] + b[d(Az, Sz)d(Az, Tu) + d(Bu, Tu)d(Bu, Sz)]$

i.e., $[d(z, Bu)]^2 \le b[d(z, Bu)]^2$.

Hence Bu = z i.e., z = Tu = Bu.

By proposition 1.6, we have TBu = BBu

Hence Tz = Bz.

Now,

 $[d(z, Tz)]^{2} = [d(Az, Bz)]^{2} \le a[d(Az, Sz)d(Bz, Tz) + d(Bz, Sz)d(Az, Tz)] + b[d(Az, Sz)d(Az, Tz) + d(Bz, Tz)d(Bz, Sz)]$

i.e., $[d(z, Tz)]^2 \leq a[d(z, Tz)]^2$ which is a contradiction. Hence z = Tz i.e, z = Tz = Bz.

Therefore z is common fixed point of A, B, S and T. Similarly we can prove this when any one of A, B or T is continuous.

Finally, in order to prove the uniqueness of z, suppose w be another common fixed point of A, B, S and T then we have,

$$[d(z, w)]^2 = [d(Az, Bw)]^2$$

 $\leq a[d(Az, Sz)d(Bw, Tw) + d(Bw, Sz)d(Az, Tw)] + b[d(Az, Sz)d(Az, Tw) + d(Bw, Tw)d(Bw, Sz)]$

which gives

 $[d(z, Tw)]^2 \le a[d(z, Tw)]^2$. Hence z = w.

This completes the proof.

REFERENCES

- [1] Bijendra Singh and M.S. Chauhan, On common fixed points of four mappings, *Bull .Cal. Math. Soc.* **88**, 451-456 (1996).
- [2] Jungck G., Compatible maps and common fixed points, *Inter .J. Math. and Math. Sci.* 9, 771-779 (1986).
- [3] Jungck G., Murthy P.P. and Cho Y.J., Compatible mappings of type (A) and common fixed points, *Math. Japonica* **38**(1993), 381-390.
- [4] Koireng M., Leenthoi N. and Rohen Y., Common fixed points of compatible mappings of type (R) (communicated).

Th. Indubala Devi^{*} & Md. Sahidur Rahman/ COMMON FIXED POINTS OF A-COMPATIBLE AND S-COMPATIBLE MAPPINGS/ IJMA- 3(6), June-2012, Page: 2445-2450

- [5] H.K. Pathak and M.S. Khan, A comparison of various types of compatible maps and common fixed points, *Indian J. pure appl. Math.*, **28**(4): 477-485, April 1997.
- [6] H.K. Pathak, M.S. Khan and Reny George, Compatible mappings of type (A-1) and type (A-2) and common fixed points in fuzzy metric spaces, *International Math. Forum*, **2**(11): 515-524, 2007.
- [7] Y. Rohen and L. Ibeni, Compatible mappings of type (A-1) and type (A-2) in cone metric spaces (Communicated).

Source of support: Nil, Conflict of interest: None Declared