A new topology τ^{*b} via b-local functions in ideal topological spaces

Mrs. Ponnuthai Selvarani, Mrs. Veronica Vijayan, Sr. Pauline Mary Helen. M* Associate Professors, Nirmala College, Coimbatore-641018, India

(Received on: 13-06-12; Accepted on: 30-06-12)

ABSTRACT

In this paper we introduce and study three different notions via ideals namely b-local function, the set operator Ψb and b-compatibility of τ with I. We characterize these new sorts. Several properties of them have been studied and their relationships with other types of similar operators are also investigated.

Keywords: b-open set,*b-additive space, *b- finitely additive space,b-local function,() *b operator, Ψ_b operator,b-compatibility of τ with I

1. INTRODUCTION

Ideals topological spaces have been first introduced by K. Kuratowski [4] in 1930. Vaidyanathaswamy [9]introduced local function in 1945 and defined a topology τ . M.E. Abd El Monsef , E.F. Lashien and A.a Nasef [1] introduced semi local function in 1992 and defined a topology τ^{*s} . In 2012 Sukalyan Mistry and Shyamapada Modak [8] defined Pre local function and Ψ_p operator. In this paper we introduce and study three different notions via ideals namely b-local function, the set operator Ψ_b , and b-compatibility of τ with I and investigate their relationships with other types of similar operators .

2. PRELIMINARIES

Let (X,τ) be a topological space and $A\subseteq X$. We denote closure of A and interior of A by clA and int A respectively.

Definition 2.1: A set A in a topological space (X, τ) is called

- (a) semi open [3] if $A \subseteq cl(int(A))$
- (b) pre open [5] if $A \subseteq \operatorname{int}(cl(A))$
- (c) b-open [2] if $A \subset cl(\operatorname{int}(A)) \cup \operatorname{int}(cl(A))$

The class of all semi open, pre open and b-open sets in X will be denoted by $SO(X,\tau)$, $PO(X,\tau)$ and $BO(X,\tau)$ respectively. The complements of these open sets are called corresponding closed sets.

Definition 2.2: [2] The intersection of all b-closed sets containing A is called b-closure of A and is denoted by bcl(A). The union of all b-open sets contained in A is called b-interior of A and is denoted by bint(A). It is easy to prove that bint(A) = X - bcl(X - A), A is b-closed if and only if A = bcl(A) and A is b-open if and only if A = bint(A). A subset $N_x \subseteq X$ is called a b-neighbourhood of x if there exists a b-open set $A \subseteq X$ such that $x \in A \subseteq N_x$. The family of all b-neighbourhoods of x will be denoted by BN(x). It is seen that $bcl(A) = \{x \in X \mid U \cap A \neq \emptyset \text{ for every } U \in BN(x)\}$

Definition 2.3: [4] An ideal I on a non empty set X is a collection of subsets of X which satisfies the following properties:

- (i) $A \in I$, $B \in I \Rightarrow A \cup B \in I$ (ii) $A \in I$, $B \subset A \Rightarrow B \in I$
- A topological space (X,τ) with an ideal I on X is called an ideal topological space and is denoted by (X,τ,I) .

Corresponding author: Sr. Pauline Mary Helen. M* Associate Professors, Nirmala College, Coimbatore-641018. India

Let Y be a subset of X. $I_Y = \{I \cap Y/I \in I\}$ is an ideal on Y and by $(Y, \tau/Y, I_Y)$ we denote the ideal topological subspace. Let P(X) be the power set of X, then a set operator ()*: $P(X) \to P(X)$ called the local function [7] of A with respect to τ and I is defined as follows: For $A \subset X$, $A^*(I,\tau) = \{x \in X/U \cap A \not\in I \text{ for every open set } U \text{ containing } x\}$.

We simply write A^* instead of $A^*(I,\tau)$ in case there is no confusion. A Kuratowski closure operator $cl^*(\)$ for a topology $\tau^*(I,\tau)$, called the τ^* - topology is defined by $cl^*(A) = A \cup A^*$. A set operator $\psi(I,\tau): P(X) \to P(X)$ is defined as follows: For any $A \subseteq X$, $\psi(I,\tau)(A) = \{x \in X \text{ such that there exists}\}$ open set U such that $U - A \in I\}$. I is said to be compatible with τ , denoted by $I \sim \tau$ if the following holds: for $A \subseteq X$, if for every $x \in A$ there exists open set U such that $U \cap A \in I$ then $A \in I$.

Definition 2.4 [1] A set operator $()^{*s}: P(X) \to P(X)$ called a semi local function with respect to τ and I is defined as follows: For $A \subset X$, $A^{*s}(I,\tau) = \{x \in X/U \cap A \not\in I \text{ for every semi open set } U \text{ containing } x\}$. A Kuratowski closure operator $cl^{*s}()$ for a topology $\tau^{*s}(I,\tau)$ is defined by $Cl^{*s}(A) = A \cup A^{*s}$. A set operator $\psi_s(I,\tau): P(X) \to P(X)$ is defined as follows: For any $A \subseteq X$, $\psi_s(I,\tau)(A) = \{x \in X \text{ such that there exists } U \in SN(x) \text{ such that } U - A \in I\}$. I is said to be s-compatible with τ , denoted by $I \sim \tau$ if the following holds: for $A \subseteq X$, if for every $x \in A$ there exists $U \in SN(x)$ such that $U \cap A \in I$ then $A \in I$.

Definition 2.5[6] A set operator $()^{*p}: P(X) \to P(X)$, called the pre-local function of I with respect to τ is defined as follows. For $A \subseteq X$, $A^{*p}(I,\tau) = \{x \in X \mid U_x \cap A \notin I \text{ for every pre open set } U \text{ containing } x\}$ when there is no ambiguity, we will simply write $A^{*p}(I)$ or $(A)^{*p}$ instead of $A^{*p}(I,\tau) \cdot cl^{*p}(A)$ is defined as $A \cup (A)^{*p}(I)$

A set operator $\psi_p(I,\tau): P(X) \to P(X)$ is defined as follows: For any $A \subseteq X$, $\psi_p(I,\tau)(A) = \{x \in X \text{ such that there exists } U \in PN(x) \text{ such that } U - A \in I\}$.

3. b-LOCAL FUNCTION

In this section we introduce new class of the set operator $\binom{a}{b}$ using b-neighbourhood and discuss various properties.

Definition 3.1: Given an ideal space (X, τ, I) , a set operator $()^{*b}: P(X) \to P(X)$, called the b-local function of I with respect to τ is defined as follows.

For $A \subseteq X$, $A^{*b}(I,\tau) = \{x \in X / U_x \cap A \notin I \text{ for every } U_x \in BN(x)\}$ when there is no ambiguity, we will simply write $A^{*b}(I)$ or $(A)^{*b}$ instead of $A^{*b}(I,\tau)$. $cl^{*b}(A)$ is defined as $A \cup (A)^{*b}(I)$

Remark 3.2: Since $\tau \subseteq PO(X) \subseteq BO(X)$ and $\tau \subseteq SO(X) \subseteq BO(X)$ we have the following.

- (a) Every b-local function is a semi local function
- (b) Every b-local function is a pre local function.

Theorem 3.3: Let (X, τ, I) be an ideal topological space and $A, B \subseteq X$. Then the following statements hold.

$$1.\phi^{*b} = \phi$$
, $A \subseteq B \Rightarrow A^{*b} \subseteq B^{*b}$ and $E^{*b} = \phi$ if $E \in I$

- 2. For another ideal $J,I\subseteq J\Rightarrow A^{*b}(J)\subseteq A^{*b}(I)$
- 3. $A^{*b} \subseteq A^{*p} \subseteq A^* \subseteq cl(A)$

4.
$$A^{*b} \subseteq A^{*s} \subseteq A^* \subseteq cl(A)$$

5.
$$A^{*b} \subseteq bcl(A) \subseteq cl(A)$$

6.
$$\left(A^{*b}\right)^{*b} \subseteq \left(A\right)^{*b}$$

7.
$$(A \cap B)^{*b} \subset (A)^{*b} \cap (B)^{*b}$$

8.
$$(A \cup B)^{*b} \supset A^{*b} \cup B^{*b}$$

9.
$$(A)^{*b} = bcl(A)^{*b} \subset cl(A)$$

10. If
$$E \in I$$
 then $(A \cup E)^{*b} = A^{*b} = (A \setminus E)^{*b}$

11. If
$$U \in \tau$$
 then $U \cap (A)^{*b} = U \cap (U \cap A)^{*b} \subset (U \cap A)^{*b}$

Proof:

- (1) and (2) are obvious by definition of b-local function.
- (3) Obvious since $\tau \subseteq Po(X) \subseteq Bo(X)$ and $\phi \in I$.
- (4) Obvious since $\tau \subseteq So(X) \subseteq Bo(X)$ and $\phi \in I$.
- (5) $x \in A^{*b}$ implies $A \cap U \notin I$ for every $U \in BN(x)$ implies $A \cap U \neq \phi$ for every $U \in BN(x)$ implies $x \in bcl(A)$.

(6)
$$(A^{*b})^{*b} = \{x \in X / U_x \cap (A)^{*b} \notin I \text{ for every } U_x \in BN(x)\}$$

$$\subseteq \{x \in X / U_x \cap A \notin I \text{ for every } U_x \in BN(x)\}$$

$$= (A)^{*b}.$$

- (7) Follows from (1)
- (8) Follows from (1)
- (9) If $x \in X \setminus (A)^{*b}$ then there exists $M \in BN(x)$ such that $A \cap M \in I$. Therefore there exists

 $U \in Bo(X)$ such that $x \in U \subseteq M$. So $A \cap U \in I$ and this implies $U \subseteq X \setminus (A)^{*_b}$. Therefore

 $X - (A)^{*b}$ is the union of b-open sets and hence it is b-open. So $(A)^{*b}$ is b-closed. Therefore

$$(A)^{*b} = bcl(A)^{*b} \subseteq bcl(bcl(A)) = bcl(A) \subseteq cl(A) \text{ . Hence } A^{*b} \text{ is b-closed sub set of } cl(A).$$

$$(10) \ A - E \subset A \text{ implies } (A - E)^{*b} \subset A^{*b}$$

$$(A)$$

Let $x \in A^{*b}$. Suppose $x \notin (A \setminus E)^{*b}$, then there exists $U_x \in BN(x)$ such that $U_x \cap (A \setminus E) \in I$.

Then $E \cup [U_x \cap (A \setminus E)] \in I$. This implies that $E \cup [U_x \cap A] \in I$. So, $U_x \cap A \in I$ which is a contradiction to the fact that $x \in A^{*b}$. So, $A^{*b} \subset (A \setminus E)^{*b}$

From (A) and (B) we get $(A \setminus E)^{*b} = A^{*b}$ when $E \in I$.

(11) Let $U \in \tau$, $x \in U \cap (A)^{*b}$ and U_x be a b-open set containing x. Then $U \cap U_x \in BO(X)$ and hence $(U_x \cap U) \cap A \notin I$ which proves $x \in (U \cap A)^{*b}$. Therefore $U \cap (A)^{*b} \subseteq (U \cap A)^{*b}$.

So
$$U \cap (A)^{*b} = U \cap (U \cap (A)^{*b}) \subseteq U \cap (U \cap A)^{*b}$$
 (A)

On the otherhand, $U \cap A \subseteq A$ implies $(U \cap A)^{*b} \subseteq A^{*b}$

Therefore
$$U \cap (U \cap A^{*b}) \subseteq U \cap (A)^{*b}$$
 (B)

From (A) and (B) it follows that $U \cap (A)^{*b} = U \cap (U \cap A)^{*b}$

Remark 3.4: In general $(A \cup B)^{*b} \neq A^{*b} \cup B^{*b}$ and $(A \cap B)^{*b} \neq A^{*b} \cap B^{*b}$ as seen from examples (3.5) and (3.6).

Example 3.5: Let Z be the set of integers, τ be the cofinite topology in X and $I = \{\phi\}$. Then $BO(X) = \{\varphi, \text{ all infinite subsets of } X \}$ and $BC(X) = \{X, A/A^C \text{ is infinite } \}$.

Let
$$A = Z^+$$
 and $B = Z^-$. Then $A \cup B = Z - \{o\}$.

In this space, for a subset $K \subseteq Z$, $K^{*b} = bcl(K) = K$ if K^{C} is infinite = Z if K^{C} is finite.

So
$$A^{*b} = A$$
, $B^{*b} = B$, $A^{*b} \cup B^{*b} = Z - \{o\}$ whereas $(A \cup B)^{*b} = Z$.

Therefore $(A \cup B)^{*b} \neq A^{*b} \cup B^{*b}$ and $cl^{*b}(A \cup B) \neq cl^{*b}(A) \cup cl^{*b}(B)$.

Example 3.6: In the ideal space given in example (3.5), let $A = Z \setminus \{-n, -n+1, \dots, n-1, n\}$ and $B = \{-n, -n+1, \dots, n-1, n\}$. Then $(A \cap B) = \phi$, $(A \cap B)^{*b} = \phi$, $A^{*b} = Z$, $B^{*b} = B$ and $A^{*b} \cap B^{*b} = B \neq (A \cap B)^{*b}$. Therefore $cl^{*b}(A \cap B) \neq cl^{*b}(A) \cap cl^{*b}(B)$.

Remark 3.7: In the ideal space (X, τ, I) because $cl^{*b}(A \cup B) \neq cl^{*b}(A) \cup cl^{*b}(B)$ in general, we are not able to define a topology using the operator $cl^{*b}(A)$. To define a topology we need the following definitions.

Definition 3.8: An ideal space (X, τ, I) said to be

1.*
$$b$$
 - finitely additive if $\left[\bigcup_{i=1}^{n} A_{i}\right]^{*b} = \bigcup_{i=1}^{n} (A_{i})^{*b}$ for every finite positive integer n.

2. *
$$b$$
 – additive if $\left[\bigcup_{\alpha\in\Omega}A_{\alpha}\right]^{*b}=\bigcup_{\alpha\in\Omega}\left(A_{\alpha}\right)^{*b}$ for every indexing set Ω .

3. *
$$b$$
 - finitely multiplicative if $\left[\bigcap_{i=1}^{n} A_{i}\right]^{*b} = \bigcap_{i=1}^{n} \left[A_{i}\right]^{*b}$ for every finite positive integer n.

4. *
$$b$$
 - multiplicative if $\left[\bigcap_{\alpha \in \Omega} A_{\alpha}\right]^{*b} = \bigcap_{\alpha \in \Omega} \left[A_{\alpha}\right]^{*b}$ for every indexing set Ω .

Remark 3.9:

- 1. Every *b- additive (resp *b- multiplicative) space is *b- finitely additive (resp *b- finitely multiplicative).
- 2. $A \subseteq cl^{*b}(A)$
- 3. If (X, τ, I) is *b finitely additive then
- (a) $cl^{*b}(A \cup B) = cl^{*b}(A) \cup cl^{*b}(B)$ and
- (b) $cl^{*b}(cl^{*b}(A)) = cl^{*b}(A)$.

Therefore in a *b – finitely additive space, $cl^{*b}()$ satisfies Kuratowski closure axioms.

Definition 3.10: Let (X, τ, I) be a *b - finitely additive space. If a *b -closed set A is defined to be one for which $cl^{*b}(A) = A$, then the class of all complements of such sets is a topology on X denoted by τ^{*b} , whose closure operation is given as $cl^{*b}(A) = A \cup (A)^{*b}$.

Example 3.11: The ideal space given in example (3.5) is not *b – finitely additive, not *b – finitely multiplicative and hence not *b – additive and *b – multiplicative.

Example 3.12: Let (X,τ) be an indiscrete space, $x_0 \in X$ and $I = \{\phi, \{x_0\}\}$. In this space all subsets are b-open and b-closed. $A^{*b} = A - \{x_0\}$ if $x_0 \notin A$

This space is both *b – additive and *b – multiplicative.

Example 3.13: Let (X, τ) be an indiscrete space, $p \in X$ and $I = \{A \subseteq X \mid p \notin A\}$.

In this space
$$A^{*b} = \{p\}$$
 if $p \in A$
= ϕ if $p \notin A$

This space is both *b – additive and *b – multiplicative.

These examples show that spaces which are *b – additive, *b – multiplicative and spaces which are not *b – additive, not *b – multiplicative do exist.

Remark 3.14: In a *b – finitely additive space, (X, τ, I) ,

(1)
$$\tau^{*b} = \{A \subseteq X / cl^{*b} (X - A) = X - A\}$$

(2)
$$cl^{*b}(A) \subseteq cl^{*s}(A) \subseteq cl^{*}(A) \subseteq cl(A)$$
 and hence $\tau \subseteq \tau^{*} \subseteq \tau^{*s} \subseteq \tau^{*b}$.

Thus a new topology τ^{*b} is defined in a *b - finitely additive ideal space (X, τ, I) , with the help of b-local function and this topology is finer than τ^* - topology.

Theorem 3.15: Let (X, τ, I) be an ideal space. For $A \subset X$, we have the following results.

1.If
$$I = \{ \phi \}$$
 then $A^{*b} = bcl(A)$ and $cl^{*b}(A) = bcl(A)$.

2.If
$$I = P(X)$$
 then $A^{*b} = \phi$ and $cl^{*b}(A) = A$.

Proof: Obvious from the definition of $(A)^{*b}$

Remark 3.16: In a *b - finitely additive space (X, τ, I) with I = P(X), τ^{*b} is the discrete topology since every subset is *b - open and *b - closed.

Theorem 3.17: If I and J are two ideals in a $^*b-$ finitely additive space such that $I\subseteq J$. Then $au^{^*b}(I)\subseteq au^{^*b}(J)$.

Proof: Let A be closed in $au^{*b}(I)$ topology

$$I \subseteq J \Rightarrow A^{*b}(J) \subseteq A^{*b}(I)$$
.

Therefore $cl_J^{*b}(A) \subseteq cl_I^{*b}(A)$

Then $A \subseteq cl_I^{*b}(A) \subseteq cl_I^{*b}(A) = A$. which proves $A \subseteq cl_I^{*b}(A)$ and so A is closed in $\tau^{*b}(J)$.

Definition 3.18: A subset A in an ideal space (X, τ, I) is said to be

1. *
$$b$$
 – dense subset in X if $cl^{*b}(A) = X$

2. *
$$b$$
 - perfect if $A^{*b} = A$.

3. *
$$b$$
 - closed in X if $cl^{*b}(A) = A$

Theorem 3.19: In a *b – finitely additive ideal space (X, τ, I) the following are equivalent

1.
$$W \in \tau^{*b}$$

2.
$$X - W$$
 is τ^{*b} - closed

3.
$$(X-W)^{*b} \subseteq (X-W)$$

4.
$$W \subset X - (X \setminus W)^{*b}$$

Proof: Obvious.

4. THE SET OPERATOR $\psi_b(I,\tau)$.

Definition 4.1: Let (X, τ, I) be an ideal space. A set operator $\psi^b(I, \tau) : P(X) \to P(X)$ is defined as follows.

For any $A \subseteq X$, $\psi_b(I, \tau)(A) = \{x \in X \mid \text{there exists } U \in BN(x) \text{ such that } U - A \in I\}$.

Remark 4.2:

- 1. Obviously $x \in \psi_b(I, \tau)(A)$ if and only if $x \notin (A^c)^{*b}$. Therefore $\psi_b(I, \tau)(A) = X \setminus (X \setminus A)^{*b}$.
- 2. We denote $\psi_h(I,\tau)$ simply by ψ_h when no ambiguity is present.

$$3.\psi(A) \subseteq \psi^s(A) \subseteq \psi_b(B)$$

$$_{A} \psi(A) \subseteq \psi_{p} (A) \subseteq \psi_{b}(B)$$

Theorem 4.3: For a subset A in an ideal space (X, τ, I) the following results are true.

1. If
$$I = {\phi}$$
 then $\psi_b(A) = b \operatorname{int}(A)$.

2. If
$$I = P(X)$$
 then $\psi_b(A) = X$.

Proof:

1.
$$\psi_b(A) = X \setminus (X \setminus A)^{*b} = X \setminus bcl(X \setminus A) = b \operatorname{int}(A)$$

2.
$$\psi_b(A) = X \setminus (X \setminus A)^{*b} = X - \phi = X$$

The following theorem gives many basic and useful facts for the operator ψ_h .

Theorem 4.4: Let A and B subsets in an ideal space (X, τ, I) .

1. If
$$A \subseteq B$$
 then $\psi_h(A) \subseteq \psi_h(B)$.

2.
$$\psi_h(A \cap B) \subseteq \psi_h(A) \cap \psi_h(B)$$
.

Proof

$$1.A \subseteq B \Rightarrow X \setminus B \subseteq X \setminus A \Rightarrow (X \setminus B)^{*b} \subseteq (X \setminus A)^{*b} \Rightarrow X \setminus (X \setminus A)^{*b} \subseteq X \setminus (X \setminus B)^{*b} \Rightarrow \psi_b(A) \subseteq \psi_b(B)$$

2. Follows from 1.

Theorem 4.5: Let (X, τ, I) be a *b – finitely additive space. Then

1. If
$$U \in \tau^{*b}$$
 then $U \subseteq \psi_b(U)$.

- 2. For every $A \subseteq X$, then $\psi_b(A) \in \tau$.
- 3. For every $A \subseteq X$, then $\psi_h(A) \subseteq \psi_h(\psi_h(A))$.
- 4. For every $A \subset X$ and $E \in I$ then $\psi_b(A \setminus E) = \psi_b(A) = \psi_b(A \cup E)$.
- 5. If $A \in Bo(X)$ then $A \subset \psi_b(A)$.
- 6. If $A \in \tau$ then $A \subseteq \psi_h(A)$.

- 7. If A is semi open then $A \subseteq \psi_h(A)$.
- 8. If A is pre open, then $A \subseteq \psi_h(A)$.
- 9. If $A \in \tau^{\alpha}$ then $A \subseteq \psi_h(A)$.
- 10. If $(A \setminus B) \cup (B \setminus A) \in I$ then $\psi_h(A) = \psi_h(B)$.

Proof:

1.
$$U \in \tau^{*b} \Rightarrow (X \setminus U)^{*b} \subseteq X \setminus U$$
. Then $\psi_b(U) = X \setminus (X \setminus U)^{*b} \supseteq U$.

2. By theorem 3.3, $(X - A)^{*b}$ is b-closed. Therefore $cl^{*b}[(X \setminus A)^{*b}] \subseteq bcl(X \setminus A)^{*b} = (X \setminus A)^{*b}$.

Therefore $(X \setminus A)^{*b}$ is *b – closed and hence $\psi_b(A) = X \setminus (X \setminus A)^{*b} \in \tau^{*b}$.

- 3. By (2) $\psi_h(A) \in \tau^{*b}$ and hence $\psi_h(A) \subseteq \psi_h(\psi_h(A))$ by (1).
- $4. \psi_b(A \setminus E) = X \setminus \left[(X \setminus (A \setminus E) \right]^{*b} = X \setminus \left[(X \setminus A) \cup E \right]^{*b} = X \setminus \left[X \setminus A \right]^{*b} = \psi_b(A) \text{ .(by thm (4.3))}$ $\psi_b(A \cup E) = X \setminus \left[X \setminus (A \cup E) \right]^{*b} = X \setminus \left[(X \setminus A) \setminus E \right]^{*b} = X \setminus \left[X \setminus A \right]^{*b} = \psi_b(A) \text{ .}$
- 5. If $A \in Bo(X)$ then $X \setminus A$ is b-closed. Therefore $(X \setminus A)^{*b} \subseteq bcl(X \setminus A) = (X \setminus A)$ and this implies A is *b open. So by (1) $A \subseteq \psi_b(A)$.
- 6. Follows from 5 since $\tau \subseteq Bo(X)$.
- 7. Follows from 5 since $So(X) \subset Bo(X)$.
- 8. Follows from 5 since $Po(X) \subseteq Bo(X)$.
- 9. Follows from 5 since $\tau^{\alpha} = So(X, \tau) \cap Po(X, \tau)$.
- 10. Let $A \setminus B = E$ and $B \setminus A = H$. Then $E \cup H \in I$ implies E and H are in I.

By (4)
$$B = (A \setminus E) \cup H$$
 implies $\psi_b(A) = \psi_b(A \setminus E) = \psi_b[(A \setminus E) \cup H]$ (since $H \in I$) $= \psi_b(B)$.

Definition 4.6: In an ideal space (X, τ, I) , we say two subsets A and B are congruent modulo I (in notation $A \equiv B \mod I$) if $(A \setminus B) \cup (B \setminus A) \in I$. Obviously " $\equiv \mod I$ " is an equivalence relation.

Theorem 4.7 Let A and B are two subsets in *b – finitely additive ideal space (X, τ, I) . If $A \equiv B \mod I$ then $\psi_b(A) = \psi_b(B)$.

Proof: It follows from definition of $A \equiv B \pmod{I}$ and by (10) of theorem (4.5).

5. B-COMPATABILITY OF au WITH I

Definition 5.1 Given a space (X, τ, I) , I is said to be b-compatible with τ , denoted by $I \sim \tau$ if the following holds: for $A \subseteq X$, if for every $x \in A$ there exists $U \in BN(x)$ such that $U \cap A \in I$ then $A \in I$.

Remark 5.2

Since
$$\tau \subseteq SO(X) \subseteq BO(x)$$
, $I \sim \tau \Rightarrow I \sim \tau \Rightarrow I \sim \tau$

The following example shows the existence of this compatibility.

Example 5.3 Let (X, τ) be an indiscrete space, $p \in X$ and $I = \{A \subseteq X \mid p \notin A\}$. In this space $I \sim \tau$.

Theorem 5.4 If (X, τ, I) is a *b-finitely additive ideal space then the following are equivalent.

- (1) $I \sim \tau$
- (2) If A has a cover of b-open set each of whose intersections with A is in I then A is in I.

(3) For every
$$A \subseteq X$$
, $A \cap A^{*b} = \phi \Longrightarrow A \in I$

(4) For every
$$A \subset X$$
, $A \setminus A^{*b} \in I$

(5) For every
$$\tau^{*b}$$
-closed subset $A, A - A^{*b} \in I$

(6) For every $A \subseteq X$, if A contains no non-empty subset $B \subset B^{*b}$ then $A \in I$.

Proof: (1) \Rightarrow (2) Let $I \stackrel{b}{\sim} \tau$ and $A = \bigcup A_{\alpha}$ where each A_{α} is b-open and $A \cap A_{\alpha} \in I$. Then by definition $A \in I$.

$$(2) \Rightarrow (3)$$
 for $A \subset X$. Let $A \cap A^{*b} = \emptyset$. So if $x \in A$ then $x \notin A^{*b}$

Therefore there exists $U_x \in BN(x)$ such that $U_x \cap A \in I$. Then $\{U_x \mid x \in A\}$ is an open cover for A and $U_x \cap A \in I$ hence $A \in I$.

$$(3) \Rightarrow (4)$$
 Let $x \in A = A^{*b}$. Suppose $x \in (A - A^{*b})^{*b}$ then for every $U \in BN(x), U \cap (A - A^{*b}) \notin I$.

This implies $U \cap A \notin I$ which implies $x \in A^{*b}$ which is a contradiction.

$$\therefore (A - A^{*b}) \cap (A - A^{*b})^{*b} = \phi \text{ and hence } A - A^{*b} \in I \text{ by (3)}.$$

 $(4) \Rightarrow (5)$ Proof is obvious.

$$(5) \Rightarrow (1)$$
 Let $A \subseteq X$ and for every $x \in A$ there exists $U \in BN(x)$ such that $U \cap A \in I$.

Then $A \cap A^{*b} = \phi$. Since (X, τ, I) is *b-finitely additive $(A \cup A^{*b})^{*b} = A^{*b} \cup (A^{*b})^{*b} \subseteq A^{*b} \cup A^{*b} = A^{*b} \subseteq A \cup A^{*b}$. $\therefore A \cap A^{*b}$ is *b-closed. By (5), $(A \cup A^{*b}) - (A \cup A^{*b})^{*b} \in I$.

But
$$(A \cup A^{*b}) - (A \cup A^{*b})^{*b} = (A \cup A^{*b}) - A^{*b} = A$$
. $\therefore A \in I$

$$(4) \Rightarrow (6)$$
. Let $A \subseteq X$. By (4) $A - A^{*b} \in I$. Let $x \in A \cap A^{*b}$.

Suppose $x \notin (A \cap A^{*b})^{*b}$ then there exists $U \in BN(x)$ such that $U \cap (A \cap A^{*b}) \in I$. This implies that $U \cap A \in I$ which is a contradiction. Therefore $A \cap A^{*b} \subseteq (A \cap A^{*b})^{*b}$.

By (6)
$$A \cap A^{*b} = \phi$$
 and this implies $A = A - A^{*b} \in I$.(Since (4) \Rightarrow (5).)

(6)
$$\Rightarrow$$
 (4). Let $A \subseteq X$.since $(A - A^{*b}) \cap (A - A^{*b})^{*b} = \phi$, we have $(A - A^{*b}) \in I$ by (6).

Theorem 5.5 Let (X, τ, I) be an ideal space. Then $I \sim \tau$ if and only if $\psi_b(A) - A \in I$ for all $A \subseteq X$.

Proof: Necessity: Assume that $I \stackrel{b}{\sim} \tau$. Let $A \subseteq X$, $x \in \psi_b(A) - A$. Then $x \notin A$, and there exists $U_x \in BN(x)$ such that $U_x - A \in I$. Therefore for each $x \in \psi_b(A) - A$ there exists $U_x \in BN(x)$ such that

$$U_r \cap (\psi_h(A) - A) \in I$$
. This implies $\psi_h(A) - A \in I$.

Sufficiency: Let $A \subseteq X$ and for each $x \in A$ there exists $U_x \in BN(x) \ni U_x \cap A \in I$. By definition of $\psi_b(A), \psi_B(X-A) = \{x \in A / \exists U_x \in BN(x) \ni U_x \cap A \in I\}$

$$\therefore A \subseteq \psi_b(X-A) - (X-A) \in I$$

Theorem 5.6 Let (X, τ, I) be *b-finitely additive ideal space with $I \sim \tau$. Then $\psi_b(\psi_b(A)) = \psi_b(A) \forall A \subseteq X$.

Proof: From theorem (4.1) $\psi_b(A) \subseteq \psi_b(\psi_b(A))$. By theorem (5.5) $\psi_b(A) - A = E$ for some $E \in I$.

Therefore $\psi_h(A) = A \cup E$.

So, $\psi_{b}(\psi_{b}(A)) = \psi_{b}(A \cup E) = \psi_{b}(A)$, by theorem (4.5).

Theorem 5.7 let (X, τ, I) be a*b-finitely additive ideal space with $I \stackrel{b}{\sim} \tau$. If $U, V \in BO(x)$, and $\psi_b(U) = \psi_b(V)$ then $U \equiv V \mod I$.

Proof: By theorem (4.5) $U \subseteq \psi_h(U)$

$$\therefore U \setminus V \subseteq \psi_h(U) - V = \psi_h(V) - V \in I$$

Therefore $U \equiv V \mod I$

REFERENCES

- [1] M.E. Abd EI Mosef, E.F. Lashien and A.A.Nasef, some topological operators via ideals, kyungpook Mathematical Journal, vol.32 (1992)
- [2] D. Andrijevic, On b-open sets, Mathe. Bechnk, 48(1996), 59-64.
- [3] N. Levine, Semiopen sets and semi continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [4] K.Kuratowski, Topologie, I.Warszawa, 1933
- [5] A.S. Mashhour, I.A. Hasanein and S.N.EI Deeb, A note on semi continuity and precontinuity, Indian J. Pure. Appl. Math. 13 (1982) no. 10, 1119-1123.
- [6] Sukalyan Mistry and Shyamapada Modak, ()* p and ψ_p operator, International Mathematical Forum, Vol 7, (2012) No.2, 89-96.
- [7] R. Vaidyanathasamy, The localization theory in set-topology, Proc. Indian Acad. Sci., 20 (1945)51-61.

Source of support: Nil, Conflict of interest: None Declared