International Journal of Mathematical Archive-3(7), 2012, 2524-2529

Anti Fuzzy Ideals of CI- algebras and its lower level cuts

¹T. Priya* & ²T. Ramachandran

¹Department of Mathematics, PSNA College of Engineering and Technology, Dindigul-624 622, TN, India

²Department of Mathematics, Govt. Arts College, Karur, Tamilnadu, India

(Received on: 22-06-12; Accepted on: 10-07-12)

ABSTRACT

In this paper, we introduce the concept of Anti fuzzy ideals of CI-algebras, lower level cuts of a fuzzy set and prove some results. We show that a fuzzy set of a CI-algebra is a fuzzy ideal if and only if the complement of this fuzzy set is an anti fuzzy ideal. We discussed few results of antifuzzy ideal of CI-algebra under transitive and self-distributive. Also we discussed few results of antifuzzy ideal with lower level cuts.

Keywords: CI-algebra, Transitive, Self-Distributive, fuzzy ideal, Anti fuzzy ideal, lower level cuts.

AMS Subject Classification (2000): 20N25, 03E72, 03F055,06F35, 03G25.

1. INTRODUCTION

Y.Imai and K.Iseki introduced two classes of abstract algebras: BCK-algebras and BCI –algebras [6,7]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [4,5]Q.P.Hu and X .Li introduced a wide class of abstract BCH-algebras. They have shown that the class of BCI-algebras. J.Neggers, S.S.Ahn and H.S.Kim introduced Q-algebras which is generalization of BCK / BCI algebras and obtained several results. In [9] K.Megalai and A.Tamilarasi introduced a class of abstract algebras: TM-algebras , which is a generalisation of Q / BCK / BCI / BCH algebras. In [10] B.L.Meng introduced the notion of a CI-algebra as a generation of a BE-algebra. The concept of fuzzification of ideals in CI-algebra have introduced by Samy.M.Mostafa[13].R.Biswas introduced the concept of Anti fuzzy subgroups of groups[2]. Modifying his idea, in this paper we apply the idea of CI-algebras . We introduce the notion of Anti fuzzy ideals of CI-algebras and investigate some of its properties.

2. PRELIMINARIES

In this section we site the fundamental definitions that will be used in the sequel.

Definition 2.1: [10] An algebraic system (X,*,1) of type (2,0) is called a CI -algebra if it satisfies the following axioms.

1. $x * x = 1$	(2.1)

2.
$$1 * x = x$$
, (2.2)

3.
$$x * (y * z) = y * (x * z)$$
, for all $x, y, z \in X$ (2.3)

In X we can define a binary operation \leq by $x \leq y$ if and only if x * y = 1 for all $x, y \in X$. (2.4)

Example 2.1: Let $X = \{1, 2, 3, 4\}$ be a set with a binary operation * defined by the following table

*	1	2	3	4
1	1	2	3	4
2	1	1	2	4
3	1	1	1	4
4	1	2	3	1

Then (X, *, 1) is a CI-algebra.

Corresponding author: ¹T. Priya* ¹Department of Mathematics, PSNA College of Engineering and Technology, Dindigul-624 622, TN, India International Journal of Mathematical Archive- 3 (7), July – 2012 2:

Definition 2.2:[8] A CI - algebra (X, *, 1) is said to be transitive if it satisfies: $(\mathbf{y} * \mathbf{z}) * ((\mathbf{x} * \mathbf{y}) * (\mathbf{x} * \mathbf{z})) = \mathbf{1}$ for all x, y, $z \in X$ (2.5)

Definition 2.3: [8] A CI - algebra (X, *, 1) is said to be self- distributive if it satisfies: $\mathbf{x} * (\mathbf{y} * \mathbf{z}) = (\mathbf{x} * \mathbf{y}) * (\mathbf{x} * \mathbf{z})$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{X}$ (2.6)

Note that every self-distributive is transitive.

In an CI- algebra, the following identities are true:

4.
$$y * ((y * x) * x) = 1.$$
 (2.7)

$$5. (x * 1) * (y * 1) = (x * y) * 1.$$
(2.8)

Definition 2.4: [14] Let (X, *, 1) be a CI -algebra. A non empty subset I of X is called an ideal of X if it satisfies the following conditions

(i) If
$$x \in X$$
 and $a \in I$, then $x * a \in I$, (i.e) $X * I \subseteq I$,
(ii) (2.9)

(iii) If $x \in X$ and $a, b \in I$, then $(a * (b * x)) * x \in I$. (2.10)

Let X be a CI –algebra. Then (i) Every ideal of X contains 1.(ii) If I is an ideal of X, then $(a * x) * x \in I$ for all $a \in I$ and $x \in X$.

Definition 2.5: Let X be a non-empty set. A fuzzy subset μ of the set X is a mapping $\mu : X \rightarrow [0, 1]$.

Definition 2.6: [14]Let X be a CI -algebra. A fuzzy set μ in X is called a fuzzy ideal of X if

(i) μ (x * y) $\geq \mu$ (y), for all x, y $\in X$.	(2.11)
--	--------

(ii) $\mu((x * (y * z)) * z) \ge \min\{\mu(x), \mu(y)\}, \text{ for all } x, y, z \in X.$ (2.12)

Definition 2.7: A fuzzy set μ of a CI-algebra X is called an anti fuzzy ideal of X, if

(i)
$$\mu$$
 (x * y) $\leq \mu$ (y), for all x, y \in X. (2.13)

(ii) $\mu((x * (y * z) * z) \le \max{\{\mu(x), \mu(y)\}}, \text{ for all } x, y, z \in X.$ (2.14)

Theorem 2.1: Every anti fuzzy ideal μ of a CI-algebra X satisfies the inequality $\mu(1) \le \mu(x)$, for any $x \in X$. (2.15)

Proof: Using (2.1) and (2.13), we have

 $\mu(1) = \mu (x * x)$ $\leq \mu (x).$

Theorem 2.2: If μ is an anti fuzzy ideal of a CI – algebra X, then for all $x, y \in X$, μ ((x * y) * y) $\leq \mu$ (x) (2.16)

Proof: Taking y = 1 and z = y in (2.14) and Using (2.2) and (2.15), we have

$\mu ((x * y) * y) = \mu [(x * (1 * y)) * y]$	[by (2.2)]
\leq Max { μ (x) , μ (1) }	[by (2.14)]
$= \mu (\mathbf{x})$	[by (2.15)]

Theorem 2.3: Every Anti fuzzy ideal μ of a CI- algebra X is order reversing. That is , If $x \le y$, then $\mu(x) \ge \mu(y)$, for all x, $y \in X$. (2.17)

Proof: Let μ be an anti fuzzy ideal of a CI- algebra X and let $x, y \in X$ be such that $x \leq y$, then x * y = 1

Now $\mu(y) = \mu(1*y)$ [by (2.2)] = $\mu((x*y)*y)$ $\leq \mu(x)$ [by (2.16)]

Hence $\mu(x) \ge \mu(y)$.

© 2012, IJMA. All Rights Reserved

Theorem 2.4: Let μ be a fuzzy set of a CI- algebra X which satisfies

 $\mu(1) \le \mu(x) \text{ and } \mu(x^*z) \le Max \{\mu(x^*(y^*z)), \mu(y)\},$ (2.18)

for all x , $y,z \in X.$ Then μ is order reversing.

Proof: Let $x, y \in X$ be such that $x \le y$, then x * y = 1.

Using (2.2),(2.18) and (2.15),we get

Now $\mu(y) = \mu(1 * y)$ $\leq Max \{\mu(1 * (x * y)), \mu(x)\}$ $= Max \{\mu(1 * 1), \mu(x)\}$ $= Max \{\mu(1), \mu(x)\}$ $= \mu(x)$

Therefore $\mu(x) \ge \mu(y)$.

Hence μ is order reversing.

Theorem 2.5: Let X be a transitive CI- algebra. If a fuzzy set μ in X is an antifuzzy ideal of X then it satisfies condition (2.15) and (2.18).

Proof : Let μ be an antifuzzy ideal of X. By theorem 2.2 $\mu(1) \le \mu(x)$. Since X is transitive, We have

$$((y * z) * z) * ((x * (y * z)) * (x * z)) = 1 \text{ for all } x, y, z \in X$$
(2.19)

It follows from (2.2),(2.19),(2.14) and (2.16) that

$$\begin{split} \mu (x * z) &= \mu (1 * (x * z)) \\ &= \mu (\{(y * z) * z) * ((x * (y * z)) * (x * z))\} * (x * z)) \\ &\leq Max \{ \mu ((y * z) * z)), \mu (x * (y * z)) \} \\ &\leq Max \{ \mu (y), \mu (x * (y * z)) \} \end{split}$$

Hence μ satisfies (2.18).

Theorem 2.6: Let X be a self-distributive CI- algebra. If a fuzzy set μ in X is an antifuzzy ideal of X then it satisfies condition (2.15) and (2.18).

Proof: Straightforward.

Theorem 2.7: μ is a fuzzy ideal of a CI-algebra X if and only if μ^{c} is an anti fuzzy ideal of X.

Proof: Let μ be a fuzzy ideal of X. Let $x,y,z \in X$.

Then (i) $\mu^{c}(x * y) = 1 - \mu(x * y)$ $\leq 1 - \mu(y)$ [by (2.11)] $= \mu^{c}(y)$ (i.e) $\mu^{c}(x * y) \leq \mu^{c}(y)$ (ii) $\mu^{c}((x * (y * z)) * z) = 1 - \mu((x * (y * z)) * z)$ $\leq 1 - \min \{\mu(x), \mu(y)\}$ [by (2.12)]

That is, $\mu^{c}((x * (y * z)) * z) \le \max \{\mu^{c}(x), \mu^{c}(y)\}$

Thus, μ^c is an anti fuzzy ideal of X. The converse also can be proved similarly.

= $1 - \min \{1 - \mu^{c}(x), 1 - \mu^{c}(y)\}$ = $\max \{\mu^{c}(x), \mu^{c}(y)\}$

Definition 2.8: [13] Let μ be a fuzzy set of X. For a fixed $t \in [0, 1]$, the set $\mu^t = \{x \in X \mid \mu(x) \le t\}$ is called the lower level subset of μ .

Clearly $\mu^t \cup \mu_t = X$ for $t \in [0,1]$ if $t_1 < t_2$, then $\mu^{t_1} \subseteq \mu^{t_2}$.

Theorem 2.8: If μ is an antifuzzy ideal of CI-algebra X, then μ^t is an ideal of X for every $t \in [0,1]$

Proof: Let μ be an antifuzzy ideal of CI-algebra X.

(i) Let $x \in X$ and $y \in \mu^t \implies \mu(y) \le t$. $\mu(x * y) \le \mu(y) \le t$. $\implies x * y \in \mu^t$.

(ii) Let $x \in X$ and $a, b \in \mu^t$. $\Rightarrow \mu (a) \le t$ and $\mu (b) \le t$. $\mu ((a * (b * x)) * x) \le Max \{ \mu (a), \mu (b) \} \le Max \{t,t\} = t$. $\Rightarrow (a * (b * x)) * x \in \mu^t$.

Hence μ^t is an ideal of X.

Theorem 2.9: Let μ be a fuzzy set of CI- algebra X.If for each $t \in [0,1]$, the lower level cut μ^t is an ideal of X, then μ is an antifuzzy ideal of X.

Proof: Let μ^t be an idea l of X.

If $\mu(x * y) > \mu(y)$ for some $x, y \in X$. Then

 $\mu(x * y) > t_0 > \mu(y)$ by taking $t_0 = \frac{1}{2} \{ \mu(x * y) + \mu(y) \}$

Hence $x * y \notin \mu^{t0}$ and $y \in \mu^{t0}$, which is a contradiction.

Therefore, $\mu(x * y) \le \mu(y)$.

Let $x,y,z \in X$ be such that $\mu((x * (y * z)) * z)) > Max\{\mu(x),\mu(y)\}$

Taking $t_1 = \frac{1}{2} \{ \mu((x * (y * z)) * z)) + Max\{ \mu(x), \mu(y)\} \}$ and $\mu((x * (y * z)) * z)) > t_1 > Max\{\mu(x), \mu(y)\}$.

It follows that $x, y \in \mu^{t1}$ and $(x^*(y^*z))^* z \notin \mu^{t1}$. This is a contradiction.

Hence $\mu((x * (y * z)) * z)) \le Max \{\mu(x), \mu(y)\}$

Therefore μ is an antifuzzy ideal of X.

Theorem 2.10 [14]: A nonempty subset I of a CI – algebra X is an ideal of X if it satisfies

(i)
$$1 \in I$$
 (2.20)

(ii) $x * (y * z) \in I \implies x * z \in I$, for all $x, z \in X$ and $y \in I$

Definition 2.9[8]: Let X be an CI- algebra and $a, b \in X$. We can define an upper set A(a,b) by A(a,b) = { $x \in X / a * (b * x) = 1$ }. It is easy to see that 1,a,b \in A(a,b) for all a,b $\in X$.

Theorem 2.11: Let μ be a fuzzy set in CI-algebra X.Then μ is an antifuzzy ideal of X iff μ satisfies the following condition.

$$(\forall a, b \in X), (\forall t \in [0,1]) (a, b) \in \mu^t \Rightarrow A(a, b) \subseteq \mu^t$$

$$(2.22)$$

Proof: Assume that μ is an antifuzzy ideal of X.

Let $a, b \in \mu^t$. Then $\mu(a) \le t$ and $\mu(b) \le t$.

Let $x \in A$ (a,b). Then a * (b * x) = 1.

© 2012, IJMA. All Rights Reserved

(2.21)

Now,

 $\begin{array}{l} \mu (x) = \mu (1 * x) \\ = \mu ((a * (b * x)) * x) \\ \leq Max \{ \mu (a), \mu (b) \} \\ \leq Max \{ t, t \} \\ = t \\ \Rightarrow \mu (x) \leq t . \\ \Rightarrow x \in \mu^{t}. \end{array}$

Therefore $A(a,b) \subseteq \mu^t$.

Conversely suppose that $A(a,b) \subseteq \mu^t$.

Obviously $1 \in A(a,b) \subseteq \mu^t$ for all $a,b \in X$.

Let $x, y, z \in X$ be such that $x * (y * z) \in \mu^t$ and $y \in \mu^t$.

Since (x * (y * z)) * (y * (x * z)) = (x * (y * z)) * (x * (y * z)) = 1. [By (2.1) and (2.3)], We have $x * z \in A(x * (y * z), y) \subseteq \mu^t$. It follows from theorem 2.10 that μ^t is an ideal of X.

Hence, by theorem 2.9, μ is an antifuzzy ideal of X.

Theorem 2.12: Let μ be a fuzzy set in CI-algebra X.If μ is an antifuzzy ideal of X then

$$(\forall t \in [0,1]) \ \mu^t \neq \emptyset \Rightarrow \mu^t = \bigcup_{a,b \in \mu^t} A(a,b).$$

$$(2.23)$$

Proof: Let $t \in [0,1]$ be such that $\mu^t \neq \emptyset$. Since $1 \in \mu^t$, we have $\mu^t \subseteq \bigcup_{a \in \mu^t} A(a,1) \subseteq \bigcup_{a,b \in \mu^t} A(a,b)$.

Now, let $x \in \bigcup_{a,b \in \mu^t} A(a, b)$.

Then there exists $u, v \in \mu^t$ such that $x \in A(u, v) \subseteq \mu^t$ by theorem 2.11. Thus $\bigcup_{a,b \in \mu^t} A(a, b) \subseteq \mu^t$.

This completes the proof.

CONCLUSION

In this article we have discussed anti fuzzy ideal of CI-algebras and its lower level cuts in detail. It has been observed that the CI-algebra as a generation of BE-algebras. These concepts can further be generalized.

REFERENCES :

[1] Ahn S.S,Kim Y.H and Keum Sook So,Fuzzy BE-algebras, Journal of applied mathematics and informatics, 29(2011), 1049-1057.

- [2] Biswas R., Fuzzy subgroups and Anti Fuzzy subgroups, Fuzzy sets and systems, 35 (1990),121-124.
- [3] Dudek W.A and Y.B.Jun, Fuzzification of ideals in BCC- algebras, Glasnik Matematicki, 36, (2001), 127-138.
- [4] Hu Q.P. and X.Li , On BCH-algebras, Mathematics Seminar notes11 (1983) , 313-320.
- [5] Hu Q.P. and X.Li, On Proper BCH-algebras, Mathe Japonica 30(1985),659 661.
- [6] Iseki K. and S.Tanaka, An introduction to the theory of BCK algebras, Math Japonica 23 (1978), 1-20.
- [7] Iseki K., On BCI-algebras, Math.Seminar Notes 8 (1980), 125-130.
- [8] Kyung Ho Kim, A Note on CI- algebras, International Mathematical Forum, 6 (1), 2011,1-5.

[9] Megalai . K and A.Tamilarasi , Fuzzy Subalgebras and Fuzzy T-ideals in TM-algebra ,Journal of Mathematics and Statistics 7(2), 2011, 107-111.

[10] Meng B.L., CI-algebras, Sci. Math. Japo. Online,e-2009, 695-701.© 2012, IJMA. All Rights Reserved

[11] Muthuraj .R , P.M. Sitharselvam, M.S. Muthuraman, Anti Q – fuzzy group and its lower level subgroups, IJCA, 3(2010), 16-20.

[12] Muthuraj .R, M.Sridharan, P.M.Sitharselvam, M.S.Muthuraman, Anti Q-Fuzzy BG-ideals in BG-algebra, IJCA, 4 (2010), 27-31.

[13] Ramachandran T., Priya T., Parimala M., Anti fuzzy T ideals of TM-algebras and its lower level cuts, International Journal of Computer Applications , volume 43(22),(2012),17-22.

[14] Samy M.Mostafa, Mokthar A.Abdel Naby and Osama R.Elgendy, Fuzzy ideals in CI- algebras, Journal of American Science, 7(8), (2011), 485-488.

[15] Zadeh.L.A., Fuzzy sets, Inform.control,8 (1965), 338-353.

Source of support: Nil, Conflict of interest: None Declared