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ABSTRACT 
In this paper, the thermal effects on MHD stokes’s second problem for couple stress fluid through a porous medium is 
investigated. The effects ofvarious emerging parameters on the velocity field and temperature field arediscussed in 
detail through graphs. 
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1. INTRODUCTION  
 
The flow induced by a suddenly accelerating plate on the fluid above it, usually referred to as Stokes’ first problem 
(Stokes, 1851), and the flow due to an oscillating flat plate, usually referred to as Stokes’ second problem (see Raleigh, 
1911) are amongst a handful of unsteady flows of a Navier–Stokes fluid for which one can obtain an exact solution. 
Such exact solutions serve a dual purpose, that of providing an explicit solution to a problem that has physical 
relevance and as a means for testing the efficiency of complex numerical schemes for flows in complicated flow 
domains. The Stokes’ second problem describes the oscillatory flat plate in a semi-infinite flow domain with a specific 
frequency. Tanner (1962) has investigated the exact solution to this Stokes’ first problem for a Maxwell fluid. The 
impulsive motion of a flat plate in a viscoelastic fluid was analyzed by Taipel (1981). Exact solution for unsteady flow 
of non-Newtonian fluid due to an oscillating wall was presented by Rajagopal (1982). Prezoisi and Joseph (1987) have 
discussed the Stokes first problem for viscoelastic fluids.  Erdogan (1995) has investigated the unsteady flow of viscous 
fluid due to an oscillating plane wall by using Laplace transform technique. Puri and Kythe (1998) have discussed an 
unsteady flow problem which deals with non-classical heat conduction effects and the structure of waves in Stokes’ 
second problem. Much work has been published on the flow of fluid over an oscillating plate for different constitutive 
models (Zeng and Weinbaum, 1995; Asghar et al., 2002; Ibrahem et al., 2006). The theory of couple stresses in fluids, 
developed by Stokes (1966), represents the simplest generalization of the classical theory and allows for polar effects 
such as the presence of couple stresses and body couples.  Stokes’ first and second problems for an incompressible 
couple stress fluid under isothermal conditions were studied by Devakar and Iyengar (2008).  
 
There has been an increase in interest in the effect of porous media, because of their extensive practical applications in 
geophysics, thermal insulation in buildings, petroleum resources, packed-bed reactors and sensible heat-storage beds. 
Many studies related to non-Newtonian fluids saturated in a porous medium have been carried out. Dharmadhikari and 
Kale (1985) studied experimentally the effect of non-Newtonian fluids in a porous medium. Chen and Chen (1988) 
investigated the free convection flow along a vertical plate embedded in a porous medium. Rees (1996) analyzed the 
effect of inertia on free convection over a horizontal surface embedded in a porous medium. Nakayama (1991) 
investigated the effect of buoyancy-induced flow over a non-isothermal body of arbitrary shape in a fluid-saturated 
porous medium. A ray-tracing method for evaluating the radiative heat transfer in a porous medium was examined by 
Argento (1996). 
 
Past few decades the study of magnetohydrodynamics flow of electrically conducting fluids in electric and magnetic 
fields are of considerable interest in modern metallurgical and metal working process. The Hartmann flow is a classical 
problem that has important applications in MHD power generators and pumps, accelerators, aerodynamic heating, 
electrostatic precipitation, polymer technology, the petroleum industry, purification of crude oil and design of various 
heat exchangers. Ramachandra Rao and Deshikachar (1986) have investigated the MHD oscillatory flow of blood 
through channels of variable cross section. The effect of transverse magnetic field in physiological type of flow, 
through a uniform circular pipe was studied by Ramachandra Rao and Deshikachar (1988). It has been established that 
the biological systems in general are greatly affected by the application of external magnetic field. Vajravelu and  
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Rivera (2003) have analyzed the hydromagnetic flow at an oscillating plate. The pulsatile flow of couple stress fluid 
through a porous medium with periodic body acceleration and magnetic field was investigated by Rathod and Tanveer 
(2009).  Reddappa et al. (2009) have investigated the non-classical heat conduction effects in Stokes’ second problem 
of a micropolar fluid under the influence of a magnetic field.   
 
In view of these, we investigated the magnetic field and thermal effects on Stoke’s second problem for couple stress 
fluid through a porous medium. The expressions for the velocity field and the temperature field are obtained 
analytically. The effects of various emerging parameters on the velocity field and temperature field are studied in detail 
with the help of graphs.      
 
2. FORMULATION OF THE PROBLEM  
 
The equations of motion that characterize couple stress fluid flow are similar to the Navier- Stokes equations and are 
given by:  

 ( )div 0d q
dt
ρ ρ+ =                     (2.1) 

( ) ( )( )
( )( )

( ) 1

1 curl c
2 1

1 curl div
2

s

i

divdq f J B q g
dt kM

ρ τ
µρ ρ ρ α θ θ δ∞

 + 
 = + + × − − − −    +  

            (2.2) 

 
where ρ  is the density of the fluid, α  - the co-efficient of thermal expansion, g - the acceleration due to gravity, 

( )0 1B B B= +  - total magnetic field, 1B is the induced magnetic field assumed negligible, ( )sτ  is the symmetric 

part of the force stress diad, µ  is the viscosity of the fluid, k  is the permeability of the porous medium, M is the 
couple stress diad and ,f c  are the body force per unit mass and body couple per unit mass respectively.  
 
The constitutive equations concerning the force stress ijt , and the rate of deformation tensor dij are given by: 

( ) , ,
1div 2 4
2ij ij ij ij ijk k k rr kt p q d m cδ λ δ µ ε ηω ρ = − + + − + +                 (2.3) 

 
The couple stress tensor ijm that arises in the theory has the linear constitutive relation 

'
, .

1 4 4
3ij ij j i i jm mδ ηω ηω= + +                    (2.4) 

In the above 
1 curl
2

qω =   is the spin vector, ,i jω is the spin tensor, m is the trace of couple stress tensor ,ijm p is the 

fluid pressure and kcρ is the body couple vector. Comma in the suffixes denotes covenant differentiation and ,k rrω  

stands for ,11 ,22 ,33k k kω ω ω+ + . The quantities λ  and µ , are the viscosity coefficients and η , 'η  are the couple 
stress viscosity coefficients. These material constants are constrained by the inequalities 

'0,        3 2 0,        0,        µ λ µ η η η≥ + ≥ ≥ ≤               (2.5) 

 

There is a length parameter /l η µ= , which is a characteristic measure of the polarity of the fluid model and this 
parameter is identically zero in the case of non-polar fluids. 
 
After neglecting body forces and body couples, the equations governing the couple stress fluid dynamics as given by 
Stokes (1966) are  

div 0q =                                           (2.6) 

( )
( )( )

( )( )( )( ) ( )
curl curl

.
curl curl curl curl

qq q q p J B q g
t kq

µ µρ α θ θ∞

 −∂   + ∇ = −∇ − + × − + −   ∂   
            (2.7) 
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Neglecting the displacement currents, the Maxwell equations and the Ohm’s law are: 

 div 0B = ,  curl mB Jµ= ,  curl BE
t

∂
= −

∂
, ( )J E q Bσ= + ×               (2.8) 

where σ is the electrical conductivity, mµ  is the magnetic permeability and E  is the electric field. The imposed and 
induced electrical fields are assumed to be negligible. Under the assumption of low magnetic Reynolds number, 

J B×  reduces to 
 
 2 2

0eJ B B qσµ× = −                     (2.9) 
 
We consider the unsteady flow of an incompressible, couple stress fluid through a porous medium which fills the half 
space 0y >  above a flat (solid) plate occupying xz-plane. Initially, we assume (has both fluid and plate are at rest. A 
uniform magnetic field B0 is applied transverse direction to the flow. It is assumed that the transversely applied 
magnetic field and magnetic Reynolds number are very small and hence the induced magnetic field is negligible as in 
Cowling (1971). At time 0t = + , whether we allow the plate to start with a constant velocity U along x-axis or 
oscillate with velocity cosU tω the flow occurs only in x - direction. Therefore, the velocity is expected to be in the 
form ( )( ), ,0,0q u y t=  and it automatically satisfies the continuity Eq. (2.6).  
 

Under these assumptions the Eq. (2.7) becomes  

( )
2 4

2 2
02 4 e

u u u B u u g
t y y k

µρ µ η σµ α θ θ∞

∂ ∂ ∂
= − − − + −

∂ ∂ ∂
              (2.10)  

 
The energy equation (MCF model) is given by (Ibrahem et al., 2006)       

tt t yy
pc

χτθ θ θ
ρ

+ =                   (2.11) 

where ijω  is the vorticity, χ  the thermal conductivity, θ  the temperature, and τ  the thermal relaxation time. 
 

Introducing the non-dimensional variables  

, , ,u y Uu y t t
U l l

= = = 0

0w

θ θθ
θ θ
−

=
−

 , 2 , Ull Rη ρ
µ µ

= =              (2.12) 

 
into Equations (2.10) and (2.11), we get (after dropping bars)  

 
2 4

2
2 4

1u u uR H u G
t y y Da

θ∂ ∂ ∂  = − − + + ∂ ∂ ∂  
               (2.13) 

 

tt t zzp pλ θ θ θ+ =                    (2.14) 
 

here pv c
p

ρ
χ

= , 
2
0

p
U C
v

τλ = = .  

 
The non-dimensional boundary conditions are 

( ), i ty t e ωθ =   at 0y =  

( , ) 0y tθ →   as  y →∞  

( , ) i tu y t e ω=     at  0y =  
2

2 0u
y
∂

=
∂

      at 0y =    

( , ) 0u y t →   as  y →∞                (2.15) 
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3. SOLUTION   
 
To solve the nonlinear system (2.13) and (2.14) with the boundary conditions (2.15), we assume that 
 
 ( , ) ( ) ,  ( , ) ( )i t i tu y t U y e y t y eω ωθ= = Θ                           (3.1) 
 
If we substitute by Eq. (3.1) in Equations (2.13) and (2.14) and the boundary conditions (2.15), we get 
 

 
4 2

2
4 2

1U UR iR H U G
y y Da

ω∂ ∂  − + + + = Θ ∂ ∂  
                 (3.2) 

 
 2'' ( ) 0p i pλ ω ωΘ + − Θ =                                  (3.3) 
 
The corresponding boundary conditions are 
 

(0 ) 1,  ( ) 0,  (0 ) 1,  ''(0 ) 0,   ( ) 0U U UΘ = Θ ∞ = = = ∞ =                   (3.4) 
 
Solving the Equations (3.2) and (3.3) using the boundary conditions Eq. (3.4), we get  
 

( ) myy e−Θ =                       (3.5) 
 
( ) 1 2

1 2
m y m yU y c e c e− −= +                     (3.6) 

where 2m p i pλ ω ω= − + , 
2

2
1 2 2

2 1

mc
m m

=
−

,   
2

1
2 2 2

2 1

,mc
m m

= −
− 1

1
2

rm −
= ,  2

1
2

rm +
=   

and 
2

2 11 4 4r H iR
Da

ω = − + − 
 

 .  

 
The solution of Equations (2.13) and (2.14) are given by 

( )( , ) my i ty t e ωθ − −=                     (3.7) 
 

1 2( ) ( )
1 2( , ) m y i t m y i tU y t c e c eω ω− − − −= +                              (3.8)                                                                                                                                                                                                                        

 
4. DISCUSSION OF THE RESULTS 
 
Fig. 1 depicts the variation of velocity Reu  with y  for different values of Darcy number Da with 0.005λ = ,  

1p = , 1H = 10ω = , R 0.5= , 0.1t =   and 5G = . It is found that, the  velocity Reu  osscilates with y . 
Further it is found that, the  velocity Reu  initially  increases and then decreases with increasing Da . 
 
The variation of velocity u  with y  for different values of Darcy number Da  with  0.005λ = , 1p = , 

1H = 10ω = , R 0.5= , 0.1t =  and 5G =  is shown in Fig. 2. It is noted that, the velocity u  increases with 

an increase in Da .  
 
Fig. 3 shows the variation of velocity Reu  with y  for different values of Hartmann number H with 0.005λ = , 

1p = , 10ω = , 0.1Da = , R 0.5= , 0.1t =  and 5G = .  It is observed that, the velocity Reu  first decreases 
and then increases with increasing M .  
 
The variation of velocity u  with y  for different values of Hartmann number H with 0.005λ = , 1p = , 

10ω = , R 0.5= , 0.1Da = , 0.1t =  and 5G =  is shown in Fig. 4. It is found that, the absolute velocity u  

decreases with an increase in M . 
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Fig. 5 depicts the variation of velocity Reu  with y  for different values of Grshof number G with 0.005λ = , 

1p = , 10ω = , R 0.5= , 0.1Da = , 0.1t =  and 1H = . It is noted that, the Reu  initially decreases and 
thwen increases with increasing G . 
 
The variation of velocity u  with y  for different values of Grshof  number G  with 0.005λ = , 1p = , 10ω = , 

R 0.5= , 0.1Da = , 0.1t =  and 1H =  is depicted in Fig. 6. It observed that, the absolute velocity u  first 

increases and then decreases with an increase in G .  
 
Fig. 7 illustrates the variation of velocity Reu  with y  for different values of couple stress Reynolds number R  with 

0.005λ = , 1p = , 10ω = , 5G = , 0.1t =  and 1M = . As R  increases, it is seen that the velocity Reu  
first decreases and then increases.  
 
The variation of velocity u  with y  for different values of couple stress Reynolds number R  with 0.005λ = , 

1p = , 10ω = , 0.1Da = , 5G = , 0.1t =  and 1H =  is illustrated in Fig. 8. It is noted that, the absolute 

velocity u  decreases with increasing R .  
 
Fig. 9 shows the variation of velocity Reu  with y  for different values of p  with 0.005λ = , 0.5R = , 

10ω = , 5G = , 0.1Da = , 0.1t =  and 1H = . It is observed that, the the velocity Reu  first increases and 
then decreases with an increase in p .  
 
The variation of velocity u  with y  for different values of p with 0.005λ = , 0.5R = , 10ω = , 0.1Da = , 

5G = , 0.1t =  and 1H =  is shown in Fig. 10. It is found that, the absolute velocity u  initially increases and 
then decreases with increasing p . 
 
Fig. 11 depicts the variation of velocity Reu  with y  for different values of λ with 1λ = , 0.5R = , 10ω = , 

0.1Da = , 5G = , 0.1t =  and 1H = . It is noted that, the velocity Reu  fisrt increases and then decreases with 
an increase in λ . 
 
The variation of velocity u  with y  for different values of λ  with 1λ = , 0.5R = , 10ω = , 0.1Da = , 

5G = , 0.1t =  and 1H =  is depicted in Fig. 12. It is observed that, the absolute velocity u  increases with 

increasing λ .  
 
Fig. 13 illustrates the variation of temperature Reθ  with y  for different values of p  with 0.005λ =   and 

10ω = . It is found that, the temperature Reθ  initially increases and then decreases with increase in p . 
 
 
The variation of temperature θ  with y  for different values of p with 0.005λ =   and 10ω =  is shown in Fig. 

14. It is noted that,  the absolute temperature θ  decreases with increasing p .   
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Fig. 1 The variation of velocity Reu  with y  for different values of Darcy  number Da with 0.005λ = , 1p = , 

1H = 10ω = , R 0.5= , 0.1t =  and 5G = .  
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Fig. 2  The variation of velocity u  with y  for different values of Darcy number Da with 0.005λ = , 1p = , 

1H = 10ω = , R 0.5= , 0.1t =  and 5G = .  
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Fig. 3   The variation of velocity Reu  with y  for different values of Hartmann number H with 0.005λ = , 

1p = , 0.1Da = , 10ω = , R 0.5= , 0.1t = and 5G = .  
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Fig. 4    The variation of velocity u  with y  for different values of Hartmann  number H with 0.005λ = , 1p = , 

0.1Da = , 10ω = , R 0.5= , 0.1t =  and 5G = .  
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Fig. 5  The variation of velocity Reu  with y  for different values of Grshof  number G with 0.005λ = , 1p = , 

10ω = , R 0.5= , 0.1Da = , 0.1t = and 1H = .  
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Fig. 6   The variation of velocity u  with y  for different values of Grshof  number G  with 0.005λ = , 1p = , 

10ω = , R 0.5= , 0.1Da = , 0.1t = and 1H = .  
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Fig. 7  The variation of velocity Reu  with y  for different values of Reynolds  number R  with 0.005λ = , 
1p = , 10ω = , 5G = , 0.1Da = , 0.1t = and 1H = . 
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Fig. 8  The variation of velocity u  with y  for different values of Reynolds number R  with 0.005λ = , 1p = , 

10ω = , 5G = , 0.1Da = , 0.1t = and 1H = . 
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Fig. 9  The variation of velocity Reu  with y  for different values of p with 0.005λ = , 0.5R = , 

10ω = , 0.1Da = , 5G = , 0.1t =  and 1H = . 
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Fig. 10   The variation of velocity u  with y  for different values of p with 0.005λ = , 0.5R = , 10ω = , 

0.1Da = , 5G = , 0.1t =  and 1H = . 
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Fig. 11   The variation of velocity Reu  with y  for different values of λ with 1λ = , 0.5R = , 10ω = , 

0.1Da = , 5G = , 0.1t =  and 1M = . 
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Fig. 12  The variation of velocity u  with y  for different values of λ with 1λ = , 0.5R = , 10ω = , 

0.1Da = , 5G = , 0.1t =  and 1M = . 
 

Reu  

y  

0.02,0.01,0.005,0λ =  

u  

y  

0.02,0.01,0.005,0λ =  



K. Kavita1*, K. Ramakrishna Prasad2 and B. Aruna Kumari3 / Thermal effects on MHD Stokes’ Second problem for couple stress 
fluid through a porous medium / IJMA- 3(7), July-2012, Page: 2530-2542 

© 2012, IJMA. All Rights Reserved                                                                                                                                                   2541 

0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

 
Fig. 13  The variation of temperature Reθ  with y  for different values of p  with 0.005λ =  and 10ω = . 
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Fig. 14  The variation of temperature θ  with y  for different values of p  with 0.005λ =  and 10ω = .  
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