International Journal of Mathematical Archive-3(7), 2012, 2575-2582

A NEW CLASS OF NEARLY OPEN SETS

A. Robert^{1*} & S. Pious Missier²

¹Deparment of Mathematics, Aditanar College, Tiruchendur, India ²Deparment of Mathematics, V.O. Chidambaram College, Thoothukudi, India

(Received on: 23-06-12; Accepted on: 15-07-12)

ABSTRACT

In this paper we introduce a new class of sets, namely semi*-open sets, using the generalized closure operator due to Dunham. We give a characterization of semi*-open sets. We also define semi*-interior point and the semi*-interior of a subset. Further we investigate fundamental properties of semi*-open sets.

Mathematics Subject Classification: 54A05.

Keywords and phrases: semi-open set, semi-interior, generalized closure, semi*-open set, semi*-interior point, semi*-interior.

1. INTRODUCTION

In 1963 Levine [5] introduced semi-open sets in topological spaces. After Levine's work, many mathematicians turned their attention to generalizing various concepts in topology by considering semi-open sets instead of open sets. Levine [6] defined and studied generalized closed sets in 1970. Das [2] defined semi-interior point and semi-limit point of a subset. Dunham [3] introduced the concept of generalized closure using Levine's generalized closed sets and defined a new topology τ^* and studied some of their properties.

In this paper, in line with Levine's semi-open sets, we define a new class of sets, namely semi*-open sets, using the generalized closure operator Cl^* due to Dunham. We further show that the class of semi*-open sets is placed between the class of semi-open sets due to Levine and the class of open sets. We give a characterization of semi*-open sets. We investigate fundamental properties of semi*-open sets. We also define semi*- interior point and semi*-interior of a subset. We also study some properties of semi*-interior.

2. PRELIMINARIES

Throughout this paper, (X, τ) will always denote a topological space on which no separation axioms are assumed, unless explicitly stated. If A is a subset of the space (X, τ) , Cl(A) and Int(A) denote the closure and the interior of A respectively.

Definition 2.1: A subset A of a topological space (X, τ) is *semi-open* [5] if there is an open set U in X such that $U \subseteq A \subseteq Cl$ (U) or equivalently if $A \subseteq Cl(Int(A))$.

The class of all semi-open sets in (X, τ) is denoted by SO(X, τ).

Definition 2.2: A subset A of a topological space (X, τ) is *pre-open* [7] (resp. *a-open* [8]) if A \subseteq *Int*(*Cl*(A)) (resp. A \subseteq *Int*(*Cl*(*Int*(A)))).

Definition 2.3: If A is a subset of a space X, the *semi-interior* of A is defined as the union of all semi-open sets of X contained in A. It is denoted by sInt(A).

Definition 2.4: A set A is called *pointwise dense* if $A = \bigcup \{Cl(\{x\}) : x \in A \text{ and } \{x\} \text{ is open}\}.$

Definition 2.5: A subset A of a space X is *generalized closed* (briefly g-closed) [6] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 2.6: If A is a subset of a space X, the *generalized closure* [3] of A is defined as the intersection of all g-closed sets in X containing A and is denoted by $Cl^*(A)$.

Definition 2.7: A topological space X is $T_{1/2}$ [6] if every g-closed set in X is closed.

Theorem 2.8[3]: *Cl** is a Kuratowski closure operator in X.

Definition 2.9[3]: If (X, τ) is a topological space, let τ^* be the topology on X defined by the closure operator Cl^* . That is, $\tau^{*=} \{U \subseteq X: Cl^*(X \setminus U) = X \setminus U\}$.

Theorem 2.10[3]: If (X, τ) is a topological space, then (X, τ^*) is $T_{1/2}$.

Definition 2.11: A space X is *locally indiscrete* [9] if every open set in X is closed.

Definition 2.12: The topology on the set of integers generated by the set S of all triplets of the form $\{2n-1, 2n, 2n+1\}$ as sub base is called the *Khalimsky topology* [4] or *digital topology* and it is denoted by κ . The collection $S \cup \{\{2n+1\}: n \in \mathbb{Z}\}$ is a base for the topology κ . The digital line equipped with the Khalimsky topology is called the *Khalimsky line or digital line*. The topological product of two Khalimsky lines (\mathbb{Z} , κ) is called the Khalimsky *plane* or *digital plane* and is denoted by (\mathbb{Z}^2 , κ^2).

3. SEMI*-OPEN SETS

Definition 3.1: A subset A of a topological space (X, τ) is called a *semi*-open set* if there is an open set U in X such that $U \subseteq A \subseteq Cl^*(U)$.

Notation: The set of all semi*-open sets in (X, τ) is denoted by $S^*O(X, \tau)$ or simply $S^*O(X)$.

Definition 3.2: The *semi*-interior* of A is defined as the union of all semi*-open sets of X contained in A. It is denoted by *s*Int*(A).

Definition 3.3: Let A be a subset of X. A point x in X is called a *semi*-interior point* of A if A contains a semi*-open set containing x.

Theorem 3.4: A subset A of X is semi*-open if and only if $A \subseteq Cl^*(Int(A))$.

Proof: Necessity. If A is semi*-open, then there is an open set U such that $U \subseteq A \subseteq Cl^*(U)$. Now $U \subseteq A \Rightarrow U = Int(U) \subseteq Int(A) \Rightarrow A \subseteq Cl^*(U) \subseteq Cl^*(Int(A))$.

Sufficiency. Assume that $A \subseteq Cl^*(Int(A))$. Take U = Int(A). Then U is an open set in X such that $U \subseteq A \subseteq Cl^*(U)$. Therefore A is semi*-open.

Remark 3.5:

(i) In any space (X, τ) , ϕ and X are semi*-open sets. Every nonempty semi*-open set must contain at least one nonempty open set and hence cannot be nowhere dense.

(ii) In any topological space, a singleton set is semi*-open if and only if it is open and hence a subset A of X is pointwise dense if and only if $A = \bigcup \{Cl(\{x\}) : x \in A \text{ and } \{x\} \text{ is semi*-open}\}.$

Theorem 3.6: If $\{A_{\alpha}\}$ is a collection of semi*-open sets in X, then $\cup A_{\alpha}$ is also semi*-open in X.

Proof: Since A_{α} is semi*-open for each α , there is an open set U_{α} in X such that $U_{\alpha} \subseteq A_{\alpha} \subseteq Cl^*(U_{\alpha})$. Then $\bigcup U_{\alpha} \subseteq \bigcup A_{\alpha} \subseteq \bigcup Cl^*(\bigcup U_{\alpha}) \subseteq Cl^*(\bigcup U_{\alpha})$. Since $\bigcup U_{\alpha}$ is open, $\bigcup A_{\alpha}$ is semi*-open.

Remark 3.7: The intersection of two semi*-open sets need not be semi*-open as seen from the following examples. But the intersection of a semi*-open set and an open set is semi*-open as shown in Theorem 3.10.

Example 3.8: Let $X = \{a, b, c, d\}$ and $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. In the space (X, τ) , the subsets $A = \{a, d\}$ and $B = \{b, d\}$ are semi*-open but $A \cap B = \{d\}$ is not semi*-open.

Example 3.9: Consider the subspace (X, τ) of the digital plane where $X = \{1, 2\} \times \{1, 2, 3\}$. In (X, τ) , the subsets $A = \{(1,1), (2,2)\}$ and $B = \{(1,3), (2,2)\}$ are semi*-open but $A \cap B = \{(2,2)\}$ is not semi*-open.

Theorem 3.10: If A is semi*-open in X and B is open in X, then $A \cap B$ is semi*-open in X.

Proof: Since A is semi*-open in X, there is an open set U such that $U \subseteq A \subseteq Cl^*(U)$. Since B is open, we have $U \cap B \subseteq A \cap B \subseteq Cl^*(U) \cap B \subseteq Cl^*(U \cap B)$. Hence $A \cap B$ is semi*-open in X.

Theorem 3.11: A subset A of X is semi*-open if and only if A contains a semi*-open set about each of its points.

Proof: Necessity: Obvious.

Sufficiency: Let $x \in A$. Then by assumption, there is a semi*-open set U_x containing x such that $U_x \subseteq A$. Then we have $\cup \{U_x: x \in A\} = A$. By using Theorem 3.6,

A is semi*-open.

Theorem 3.12: $S^*O(X, \tau)$ forms a topology on X if and only if it is closed under finite intersection.

Proof: Follows from Remark 3.5(i) and Theorem 3.6.

Theorem 3.13: If A is any subset of X, s*Int(A) is semi*-open. In fact s*Int(A) is the largest semi*-open set contained in A.

Proof: Follows from Definition 3.2 and Theorem 3.6.

Theorem 3.14: A subset A of X is semi*-open if and only if *s***int*(A)=A.

Proof: A is semi*-open implies *s***Int*(A)=A is obvious. On the other hand let *s***Int*(A)=A.

By Theorem 3.13, *s*Int*(A) is semi*-open and hence A is semi*-open.

Theorem 3.15: If A is a subset of X, then s*Int(A) is the set of all semi*-interior points of A.

Proof: $x \in s^*Int(A)$ if and only if x belongs to some semi*-open subset U of A. That is, if and only if x is a semi*-interior point of A.

Corollary 3.16: A subset A of X is semi*-open if and only if every point of A is a semi*-interior point of A.

Proof: Follows from Theorem 3.14 and Theorem 3.15.

Theorem 3.17: Every open set is semi*-open.

Proof: Let U be open in X. Then Int(U)=U. Therefore $U \subseteq Cl^*(U)=Cl^*(Int(U))$. Hence by Theorem 3.4, U is semi*-open.

Corollary 3.18: If a subset A is semi*-open and U is open, then $A \cup U$ is semi*-open.

Proof: Follows from Theorem 3.17 and Theorem 3.6.

Remark 3.19: The converse of Theorem 3.17 is not true as shown in the following examples.

Example 3.20: Consider the topological space (X, τ) in Example 3.8. The subsets $\{a, d\}$, $\{b, d\}$ and $\{a, b, d\}$ are semi*-open in X but not open.

Example 3.21: Consider the subspace (X, τ) of the digital plane given in Example 3.9. In (X, τ) , the subsets $\{(1,1),(1,3),(2,2)\},\{(1,1),(1,3),(2,1),(2,2)\}$ and $\{(1,1),(1,2),(1,3),(2,2),(2,3)\}$ are semi*-open but not open.

Definition 3.22: For a topological space (X, τ) , let $\tau_{s^*} = \{U \in S^*O(X, \tau) : U \cap A \in S^*O(X, \tau) \text{ for all } A \in S^*O(X, \tau)\}.$

Theorem 3.23: If (X, τ) is a topological space, then τ_{s^*} is a topology on X finer than τ .

Proof: Clearly ϕ , $X \in \tau_{s^*}$. Let $U_{\alpha} \in \tau_{s^*}$ and $U = \bigcup U_{\alpha}$. Since $U_{\alpha} \in S^*O(X, \tau)$, by using Theorem 3.6, $U \in S^*O(X, \tau)$.

Let $A \in S^*O(X, \tau)$. Then $U_{\alpha} \cap A \in S^*O(X, \tau)$, for each α and hence by Theorem3.6, $U \cap A = (\cup U_{\alpha}) \cap A = (\cup U_{\alpha}) \cap A = (\cup U_{\alpha} \cap A) \in S^*O(X, \tau)$. Therefore $U \in \tau_{s^*}$. Now let $U_1, U_2, ..., U_n \in \tau_{s^*}$. Then $U_1, U_2, ..., U_n \in S^*O(X, \tau)$ and by definition

of τ_{s^*} , we get $\bigcap_{i=1}^{n} U_i \in S^*O(X, \tau)$. If $A \in S^*O(X, \tau)$, then by repeated application of the condition, we

have $(\bigcap_{i=1}^{n} U_i) \cap A \in S^*O(X, \tau).$

Hence $\bigcap_{i=1}^{\infty} U_i \in \tau_{s^*}$. This shows that τ_{s^*} is a topology on X. Let $V \in \tau$. By using Theorem 3.17, $V \in S^*O(X, \tau)$. Also by

Theorem 3.10, $V \cap A \in S^*O(X, \tau)$ for all $A \in S^*O(X, \tau)$. Hence $V \in \tau_{s^*}$. Thus τ_{s^*} is finer than τ .

Theorem 3.24: Every semi*-open set is semi-open.

Proof: Let A be a semi*-open set. Then there is an open set U in X such that $U \subseteq A \subseteq Cl^*(U)$.

Note that $Cl^*(U) \subseteq Cl(U)$. Therefore $U \subseteq A \subseteq Cl(U)$. Hence A is semi-open.

Remark 3.25: The converse of Theorem 3.24 is not true as shown in the following examples.

Example 3.26: Consider the topological space (X, τ) given in Example 3.8. The subsets $\{a, c, d\}$ and $\{b, c, d\}$ are semi-open in X but not semi*-open.

Example 3.27: Consider the subspace (X, τ) of the digital plane where $X = \{0, 1\} \times \{1, 2, 3\}$.

In (X, τ) , the subsets $\{(1,1),(1,2)\}$, $\{(0,2),(1,1),(1,2)\}$ and $\{(0,3),(1,2),(1,3)\}$ are semi-open but not semi*-open.

Theorem 3.28: In any topological space $(X, \tau), \tau \subseteq S^*O(X, \tau) \subseteq SO(X, \tau)$. That is, the class of semi*-open sets is placed between the class of open sets and the class of semi-open sets.

Proof: Follows from Theorem 3.17 and Theorem 3.24.

Remark 3.29:

(i) If (X, τ) is a locally indiscrete space, then $\tau = S^*O(X, \tau) = SO(X, \tau)$.

(ii) In the Sierpinski space (X, τ) , where $X = \{0, 1\}$ and $\tau = \{\phi, \{1\}, X\}$, $\tau = S*O(X, \tau) = SO(X, \tau)$.

(iii) The inclusions in Theorem 3.28 may be strict and equality may also hold. This can be seen from the following examples.

Example 3.30: In the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b, c, d\}, X\}$

 $SO(X, \tau) = S*O(X, \tau) = \{\varphi, \{a\}, \{b, c, d\}, X\}.$

Here $\tau = S * O(X, \tau) = SO(X, \tau)$.

Example3.31: In the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$,

 $SO(X, \tau) = S*O(X, \tau) = \{\varphi, \{a\}, \{b\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}.$

Here $\tau \subsetneq S^*O(X, \tau) = SO(X, \tau)$.

Example 3.32: In the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\varphi, \{a, b\}, X\}$,

 $SO(X, \tau) = \{ \phi, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X \}; S*O(X, \tau) = \{ \phi, \{a, b\}, X \}.$

Here $\tau = S * O(X, \tau) \subsetneq SO(X, \tau)$.

Example 3.33: Consider the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{a, b, c\}, X\}$.

SO(X, τ) = { ϕ , {a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, X. S*O(X, τ) = { ϕ , {a}, {a, d}, {a, b, c}, X}. Here $\tau \subsetneq$ S*O(X, τ) \subsetneq SO(X, τ).

Example 3.34: Consider the subspace (X, τ) of the digital plane where $X = \{1, 2, 3\} \times \{0, 1\}$.

If a, b, c, d, e, f denote the points (1,0), (1,1), (2, 0), (2,1), (3,0), (3,1) respectively, then

 $\tau = \{ \varphi, \{b\}, \{f\}, \{a,b\}, \{b,f\}, \{e,f\}, \{a,b,f\}, \{b,d,f\}, \{b,e,f\}, \{a,b,d,f\}, \{a,b,e,f\}, \{b,d,e,f\}, \{a,b,d,e,f\}, X \}.$

 $SO(X) = \{ \phi, \{b\}, \{f\}, \{a,b\}, \{b,c\}, \{b,d\}, \{c,f\}, \{d,f\}, \{e,f\}, \{a,b,c\}, \{a,b,d\}, \{b,c,d\}, \{b,c,f\}, \{b,d,f\}, \{b,e,f\}, \{c,d,f\}, \{c,d,f\}, \{a,b,c,d\}, \{a,b$

 $S*O(X) = \{ \phi, \{b\}, \{f\}, \{a,b\}, \{b,c\}, \{b,f\}, \{c,f\}, \{a,b,c\}, \{a,b,c\}, \{b,c,f\}, \{b,d,f\}, \{b,e,f\}, \{c,e,f\}, \{a,b,d,f\}, \{a,b,d,f\}, \{a,b,d,e,f\}, \{b,c,d,f\}, \{b,c,e,f\}, \{b,c,d,f\}, \{a,b,c,d,f\}, \{a,b,c,d,f\}, \{a,b,c,d,f\}, \{b,c,d,f\}, \{b,c,$

Here $\tau \subsetneq S^*O(X, \tau) \subsetneq SO(X, \tau)$.

Example 3.35: Consider the subspace (X, τ) of the digital plane where $X = \{0, 1, 2\} \times \{1, 2\}$.

If a, b, c, d, e, f denote the points (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2) respectively, then

 $\tau = \{ \phi, \{c\}, \{a,c\}, \{c,d\}, \{c,e\}, \{a,c,d\}, \{a,c,e\}, \{c,d,e\}, \{a,b,c,d\}, \{a,c,d,e\}, \{c,d,e,f\}, \{a,b,c,d,e\}, \{a,c,d,e,f\}, X \}.$

 $\begin{aligned} &SO(X) = S^*O(X) = \{ \varphi, \{c\}, \{a,c\}, \{b,c\}, \{c,d\}, \{c,e\}, \{c,f\}, \{a,b,c\}, \{a,c,d\}, \{a,c,e\}, \{a,c,f\}, \{b,c,d\}, \{b,c,e\}, \{b,c,e\}, \{c,d,e\}, \{c,d,e\}, \{a,b,c,d\}, \{a,b,c,e\}, \{a,c,d,e\}, \{a,c,$

Remark 3.36: If X is a $T_{1/2}$ space, the g-closed sets and the closed sets coincide and hence $Cl^*(U) = Cl(U)$. Therefore the class of semi*-open sets and the class of semi-open sets coincide. In particular, in the Khalimsky line and in the real line with usual topology, the semi*-open sets and the semi-open sets coincide. But the converse is not true. That is, a space, in which the class of semi*-open sets and the class of semi-open sets coincide, need not be $T_{1/2}$ and this can be seen from the Example 3.31 and Example 3.35. In these spaces the class of semi*-open sets and the class of semi-open sets and the class of s

Theorem 3.37: If (X, τ) is any topological space, then $S^*O(X, \tau^*) = SO(X, \tau^*)$.

Proof: Follows from the fact that the space (X, τ^*) is $T_{1/2}$ [Theorem 2.10] and Remark 3.36.

Lemma 3.38: If A be semi*-open, then $Cl^*(A) = Cl^*(Int(A))$.

Proof: Since A is semi*-open, $A \subseteq Cl^*(Int(A))$. Hence $Cl^*(A) \subseteq Cl^*(Int(A))$ which proves the lemma.

Theorem 3.39: Let A be semi*-open and B \subseteq X such that A \subseteq B \subseteq Cl*(A).Then B is semi*-open.

Proof: Since A is semi*-open, $A \subseteq Cl^*(Int(A))$. Since $Int(A) \subseteq Int(B)$, $Cl^*(Int(A)) \subseteq Cl^*(Int(B))$. Therefore by the above lemma, $B \subseteq Cl^*(Int(B))$. Hence by Theorem 3.4, B is semi*-open.

Theorem 3.40: Let β be a collection of subsets in (X, τ) satisfying (i) $\tau \subseteq \beta$ (ii) If $B \in \beta$ and $D \subseteq X$ such that $B \subseteq D \subseteq Cl^*(B)$ implies $D \in \beta$. Then $S^*O(X, \tau) \subseteq \beta$. Thus $S^*O(X, \tau)$ is the smallest collection satisfying the conditions (i) and (ii).

Proof: Let $A \in S^*O(X, \tau)$. Then there is an open set U in X such that $U \subseteq A \subseteq Cl^*(U)$. By (i), $U \in \beta$. By (ii), $A \in \beta$. Thus $S^*O(X, \tau) \subseteq \beta$. Also by Theorem 3.17 and Theorem 3.39, $S^*O(X, \tau)$ satisfies (i) and (ii). Thus $S^*O(X, \tau)$ is the smallest collection satisfying (i) and (ii).

Theorem 3.41: If (X, τ) is a topological space, then $S^*O(X, \tau) \subseteq SO(X, \tau^*)$

That is, every semi*-open set in (X, τ) is semi-open in (X, τ^*) .

Proof: If A is a semi*-open set in (X, τ) , then there is an open set U in (X, τ) such that $U \subseteq A \subseteq Cl^*(U)$. Since U is open in (X, τ) , U is open in (X, τ^*) . Thus A is semi-open in (X, τ^*) .

Remark 3.42: The inclusion in Theorem 3.41 can be strict and equality also holds as seen from the following examples:

Example 3.43: Consider the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a, b\}, \{a, b, c\}, X\}$

 $S*O(X, \tau) = \{ \varphi, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X \}. \ GC(X, \tau) = \{ \varphi, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X \}.$

 $\tau *= \{ \varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X \}.$

 $SO(X, \tau^*) = \{ \phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X \} = \wp(X) \setminus \{ \{d\} \}.$

Here $S*O(X, \tau) \subsetneq SO(X, \tau^*)$.

Example 3.44: Consider the space (X, τ) where $X=\{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b\}, \{c\}, \{a, b\}, \{c\}, \{a, b\}, \{c\}, \{a, c\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$; GC(X, τ) = { $\phi, \{d\}, \{a, d\}, \{c, d\}, \{c, d\}, \{a, c, d\}, \{b, c\}, \{a, c, d\}, \{b, c\}, \{a, b, d\}, \{c, d\}, \{a, c, d\}, \{b, c\}, \{a, b, d\}, \{c, d\}, \{a, b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$.

 $\tau *= \{ \varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X \}.$

Here SO(X, τ^*) = S*O(X, τ) = $\wp(X) \setminus \{ \{ d \} \}$.

Remark 3.45: The concepts of semi*-open sets and α-open sets are independent as seen from the following examples:

Example 3.46: In the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\varphi, \{a\}, \{a, b, c\}, X\}$, the subsets $\{a, b\}, \{a, c\}, \{a, b, d\}$ and $\{a, c, d\}$ are α -open but not semi*-open.

Example 3.47: In the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$, the subsets $\{a, d\}$ and $\{b, d\}$ are semi*-open but not α -open.

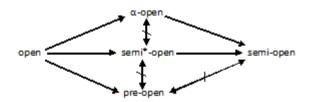
Remark 3.48: The concepts of semi*-open sets and pre-open sets are independent as seen from the following examples:

Example 3.49: In the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, X\}$, the subsets $\{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}$ and $\{a, c, d\}$ are pre-open but not semi*-open.

Example 3.50: In the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$, the subsets $\{a, d\}, \{b, d\}$ and $\{b, c, d\}$ are semi*-open but not pre-open.

From the above discussions we have the following diagram:

Diagram 3.51:



Theorem 3.52: In any topological space (X, τ) the following hold: (i) $s*Int(\phi)=\phi$. (ii) s*Int(X)=X.

If A and B are subsets of X,

(iii) $s*Int(A) \subseteq A$. (iv) $A \subseteq B \Longrightarrow s*Int(A) \subseteq s*Int(B)$. (v) s*Int(s*Int(A)) = s*Int(A). That is, the operator s*Int is idempotent. (vi) $Int(A) \subseteq s*Int(A) \subseteq sInt(A) \subseteq A$. (vii) $s*Int(A \cup B) \supseteq s*Int(A) \cup s*Int(B)$. (viii) $s*Int(A \cap B) \subseteq s*Int(A) \cap s*Int(B)$. (ix) Int(s*Int(A)) = Int(A). (x) s*Int(Int(A)) = Int(A).

© 2012, IJMA. All Rights Reserved

Proof: (i), (ii), (iii) and (iv) follow from Definition 3.2. (v) follows from Theorem 3.13 and Theorem 3.14. (vi) follows from Theorem 3.17 and Theorem 3.24. (vii) and (viii) follow from (iv) above. Since $s*Int(A) \subseteq A$, $Int(s*Int(A)) \subseteq Int(A)$.

Also from (vi), $Int(A) \subseteq s*Int(A)$ and so $Int(A) \subseteq Int(s*Int(A))$. Therefore Int(s*Int(A))=Int(A). This proves (ix). (x) follows from the fact that Int(A) is open and hence semi*-open and by invoking Theorem 3.14, s*Int(Int(A))=Int(A).

Remark 3.53: In (vi) of Theorem 3.52, each of the inclusions may be strict and equality may also hold. This can be seen from the following examples:

Example 3.54: In the space (X, τ) where $X = \{a, b, c, d, e, f, g\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, e\}, \{a, c, d\}, \{b, f, g\}, \{a, b, c, d\}, \{a, b, c, d, f, g\}, \{a, b, c, d, f, g\}, \{a, b, c, d\}, \{a, b,$

Then $Int(A)=s*Int(A)=sInt(A)=\{a, b, c, d\}=A$.

Let $B = \{a, e\}$. Then $Int(B) = \{a\}$; $s*Int(B) = sInt(B) = \{a, e\}$.

Here $Int(B) \subsetneq s*Int(B) = sInt(B) = B$.

Let $C = \{a, b, c, d, e, f\}$. Then $Int(C) = s*Int(C) = \{a, b, c, d, e\}$; $sInt(C) = \{a, b, c, d, e, f\}$.

Here $Int(C) = s*Int(C) \subsetneq sInt(C) = C$.

Let $D = \{b, d, f, g\}$. Then $Int(D) = s*Int(D) = sInt(D) = \{b, f, g\}$. Here $Int(D) = s*Int(D) = sInt(D) \subseteq D$.

Let $E = \{a, c, e\}$. Then $Int(E) = \{a\}$; $s*Int(E) = \{a, e\}$; $sInt(E) = \{a, c, e\}$.

Here $Int(E) \subsetneq s*Int(E) \subsetneq sInt(E) = E$.

Let $F = \{b, c, d, e\}$. Then $Int(F) = \{b\}$; $s*Int(F) = sInt(F) = \{b, e\}$.

Here $Int(F) \subsetneq s*Int(F) = sInt(F) \subsetneq F$.

Let $G = \{a, d, f\}$. Then $Int(G) = s*Int(G) = \{a\}$; $sInt(G) = \{a, d\}$.

Here $Int(G) = s*Int(G) \subsetneq sInt(G) \subsetneq G$. Let $H = \{b, c, d, e, f\}$.

Then $Int(H) = \{b\}; s*Int(H) = \{b, e\}; s*Int(H) = \{b, e, f\}.$

Here $Int(H) \subsetneq s*Int(H) \subsetneq sInt(H) \subsetneq H$.

Example 3.55: Consider the subspace (X, τ) of the digital plane where $X = \{1, 2, 3\} \times \{1, 2\}$.

If a, b, c, d, e, f denote the points (1,1),(1,2),(2,1),(2,2),(3,1),(3,2) respectively, then

 $\tau = \{ \phi, \{a\}, \{e\}, \{a, b\}, \{a, e\}, \{e, f\}, \{a, b, e\}, \{a, c, e\}, \{a, e, f\}, \{a, b, c, e\}, \{a, b, e, f\}, \{a, c, e, f\}, \{a, b, c, e, f\}, X \}.$

 $SO(X) = \{ \phi, \{a\}, \{e\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, e\}, \{c, e\}, \{d, e\}, \{e, f\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, c, e\}, \{a, d, e\}, \{a, e, f\}, \{c, d, e\}, \{a, b, c, d\}, \{a, b, c, e\}, \{a, c, d, e\}, \{a, c, d, e\}, \{a, c, d, e\}, \{a, c, d, e\}, \{a, b, c, d\}, \{a, b, c, e\}, \{a, c, d, e\}, \{a, b, c, d\}, \{a, b, c, e\}, \{a, b, c\}, \{a, c\}$

 $S*O(X) = \{ \phi, \{a\}, \{e\}, \{a,b\}, \{a,d\}, \{a,e\}, \{d,e\}, \{e,f\}, \{a,b,d\}, \{a,b,e\}, \{a,c,e\}, \{a,d,e\}, \{a,e,f\}, \{d,e,f\}, \{a,b,d,e\}, \{a,b,d,e\}, \{a,b,d,e\}, \{a,c,d,e\}, \{a,c,d,e\}, \{a,c,d,e\}, \{a,d,e,f\}, \{a,d,e$

Let $A = \{a, b, c, d, f\}$. Then $Int(A) = \{a, b\}$; $s*Int(A) = \{a, b, d\}$; $sInt(A) = \{a, b, c, d\}$.

Here $Int(A) \subsetneq s^*Int(A) \subsetneq sInt(A) \subsetneq A$.

Let $B = \{b, c, e, f\}$. Then $Int(B) = s*Int(B) = \{e, f\}$; $sInt(B) = \{c, e, f\}$.

Here $Int(B) = s*Int(B) \subsetneq sInt(B) \subsetneq B$.

Let $C = \{a, b, d, f\}$. Then $Int(C) = \{a, b\}$; $s*Int(C) = sInt(C) = \{a, b, d\}$. Here $Int(C) \subseteq s*Int(C) \subseteq sInt(C) \subseteq C$.

Let $D = \{a, c, d\}$. Then $Int(D) = \{a\}$; $s*Int(D) = \{a, d\}$; $sInt(D) = \{a, c, d\}$.

Here $Int(D) \subsetneq s*Int(D) \subsetneq sInt(D)=D$.

Let $E = \{a, b, c, d, e\}$. Then $Int(E) = \{a, b, c, e\}$; $s*Int(E) = sInt(E) = \{a, b, c, d, e\}$.

Here $Int(E) \subsetneq s*Int(E) = sInt(E) = E$.

Let $F = \{a, c\}$. Then $Int(F) = s*Int(F) = \{a\}$; $sInt(F) = \{a, c\}$. Here $Int(F) = s*Int(F) \subsetneq sInt(F) = F$.

Let $G = \{b, e, f\}$. Then $Int(G) = s*Int(G) = sInt(G) = \{e, f\}$. Here $Int(G) = s*Int(G) = sInt(G) \subseteq G$.

Let $H = \{a, b, e, f\}$. Then Int(H) = s*Int(H) = sInt(H) = H.

Remark 3.56: The inclusions in (vii) and (viii) of Theorem 3.52 may be strict and equality may also hold. This can be seen from the following examples.

Example 3.57: Consider the space (X, τ) in Example 3.54

Let A= {b, c, e, f, g} and B={a, b, c, f, g} then A \cup B={a, b, c, e, f, g} and A \cap B={b, c, f, g} s*Int(A)={b, e, f, g}; s*Int(B)={a, b, f, g}; $s*Int(A \cup B)=$ {a, b, e, f, g}; $s*Int(A \cap B)=$ {b, f, g}

Here $s*Int(A \cup B) = s*Int(A) \cup s*Int(B)$ and $s*Int(A \cap B) = s*Int(A) \cap s*Int(B)$

Let C= {a, c, d, e, g} and D={b, d, e, f, g} then C \cap D={d, e, g}

 $s*Int(C) = \{a, c, d, e\}; s*Int(D) = \{b, e, f, g\}; s*Int(C \cap D) = \phi; s*Int(C) \cap s*Int(D) = \{e\}$

Here $s*Int(C \cap D) \subsetneq s*Int(C) \cap s*Int(D)$

Let $E = \{b, c, d, f, g\}$ and $F = \{a, b, d, g\}$ then $E \cup F = \{a, b, c, d, f, g\}; s*Int(E) = \{b, f, g\};$

 $s*Int(F)=\{a, b\}; s*Int(E\cup F)=\{a, b, c, d, f, g\}; s*Int(E) \cup s*Int(F)=\{a, b, f, g\};$

Here $s*Int(E) \cup s*Int(F) \subsetneq s*Int(E \cup F)$

REFERENCES

[1] Crossley, S.G and Hildebrand, S.K, Semi-Closure, Texas J. Sci. 22 (1971), 99-112.

[2] Das, P., Note On Some Applications of Semi-Open Sets, Prog. Math. 7 (1973), 33-44.

[3] Dunham, W., A New Closure Operator for Non-T₁ Topologies, Kyungpook Math. J. 22 (1982), 55-60.

[4] Khalimsky, E.D, Applications of Connected Ordered Topological spaces in Topology, *Conference of Math.* Department of Povolsia, 1970.

[5] Levine, N., Semi-Open Sets and Semi-Continuity in Topological Space, Amer. Math. Monthly. 70 (1963), 36-41.

[6] Levine, N., Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo.19 (2) (1970), 89-96.

[7] Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N., On Precontinuous and weak precontinuous mappings. *Proc. Math. Phys. Soc. Egypt*, 53 (1982), 47-53.

[8] Njastad, O., On Some Classes of Nearly Open Sets, Pacific J. Math. 15(1965) No. (3), 961-970.

[9] Willard, S., General Topology, Addison Wesley (1970).

Source of support: Nil, Conflict of interest: None Declared