SEMI GLOBAL DOMINATION

S. V. Siva Rama Raju
Department of Mathematics, M. V. G. R. College of Engineering, Vizianagaram, India

&

S. S. V. R. Kumar Addagarla
Department of Computer Science & Engineering, VITS Group of Institutions, Visakhapatnam, India

(Received on: 25-06-12; Accepted on: 15-07-12)

ABSTRACT

A subset D of vertices of a graph connected graph G is called a semi global dominating set (sgd - set) iff D is a dominating set for both G and Gsc, where Gsc is the semi complementary graph of G. The semi global domination number (sgd - number) is the minimum cardinality of a semi global dominating set of G and is denoted by $\gamma_{sg}(G)$. In this paper sharp bounds for γ_{sg} are supplied for graphs whose girth is greater than three. Exact values of this number for paths and cycles are presented as well. The characterization result for a subset of the vertex set of G to be a semi global dominating set for G is given and also characterized the graphs of order n having sgd - numbers 2, n – 1, n.

Subject Classification: 05C69.

Keywords: semi global neighbourhood domination, semi global domination number, global domination, restrained domination, connected domination.

1. INTRODUCTION & PRELIMINARIES

Domination is an active subject in graph theory, and has numerous applications to distributed computing, the web graph and adhoc networks. For a comprehensive introduction to theoretical and applied facets of domination in graphs the reader is directed to the book [2].

A set D of vertices is called a dominating set of G if each vertex not in D is joined to some vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of the dominating set of G[2].

Many variants of the domination number have been studied. For instance a dominating set D is called a global dominating set of G if D is a dominating set of both G and its complement G^c. The global domination number of G, denoted by $\gamma_g(G)$ is the smallest cardinality of the global dominating set of G[5]. A dominating set D of connected graph G is called a connected dominating set of G if the induced sub graph $<D>$ is connected. The connected domination number of G, denoted by $\gamma_c(G)$ is the smallest cardinality of the connected dominating set of G[6]. A dominating set D of connected graph G is called a independent dominating set of G if the induced sub graph $<D>$ is a null graph[2].

G be a connected graph, then the Semi Complementary Graph of G is denoted by G^c and it has the same vertex set as that of G and edge set being $\{uv/ u, v \in V(G), uv \notin E(G), there is w \in V(G) such that uw, vw \in E(G)\}$[4].

Recently we have introduced a new type of graph known as semi complete graph. Let G be a connected graph, then G is said to be semi complete if any pair of vertices in G have a common neighbour. The necessary and sufficient condition for a connected graph to be semi complete is any pair of vertices lie on the same triangle or lie on two different triangles having a common vertex [3].

In the present paper, we introduce a new graph parameter, the semi global domination number, for a connected graph G. We call D $\subseteq V(G)$ a semi global dominating set (sgd - set) of G if D is a dominating set for both G, G^c. The semi global domination number is the minimum cardinality of a semi global dominating set of G and is denoted by $\gamma_{sg}(G)$.
All graphs considered in this paper are simple, finite, undirected and connected. For all graph theoretic terminology not defined here, the reader is referred to [1].

In this paper, sharp bounds for γ_{sg} are supplied for the graphs whose girth is greater than three. Also, we have given a characterization result for a proper subset of the vertex set of G to be a sgd - set of G and characterized the graphs whose sgd - numbers are 2, n, $n - 1$.

Note: Unless mentioned by G we mean a connected graph.

2. MAIN RESULTS

Here, we obtain some bounds for the sgd - numbers of graphs whose girth is greater than three.

Theorem 2.1: If G is a triangle free graph, then

$$2e - n(n - 3) \leq \gamma_{sg}(G) \leq n - \Delta(G) + 1.$$

Proof: Suppose that D be a minimum sgd - set of G. By our supposition each vertex in $V - D$ is non adjacent with atleast one vertex in D. Otherwise we get a contradiction to that D is a sgd - set for G.

$$\Rightarrow e \leq \frac{n(n - 1) - [n - \gamma_{sg}(G)]}{2} \Rightarrow 2e - n(n - 3) \leq \gamma_{sg}(G)$$

(1)

Suppose that $d(v) = \Delta(G)$ for some v in $V(G)$.

Let $v_1, v_2, ..., v_{\Delta(G)}$ be the neighbours of v in G. Since G is triangle free, $[V - \{v_1, v_2, ..., v_{\Delta(G)}\}] \cup \{v_i : i \text{ is one of } 1, 2, ..., \Delta(G)\}$ is a sgd – set of G and its cardinality is $n - \Delta(G) + 1$.

$$\Rightarrow \gamma_{sg}(G) \leq n - \Delta(G) + 1$$

(2)

From (1) and (2)

$$\frac{2e - n(n - 3)}{2} \leq \gamma_{sg}(G) \leq n - \Delta(G) + 1$$

Furthermore the lower bound is attained in the case of C_4 and upper bound is attained in the case of P_3. Hence the bounds are sharp.

Note: The upper bound holds good for any graph G.

Proposition 2.2:

1. $\gamma_{sg}(K_n) = n$, $n \geq 3$
2. $\gamma_{sg}(S_n) = 2$, $n \geq 3$
3. $\gamma_{sg}(K_{m,n}) = 2$, $m + n \geq 3$
4. $\gamma_{sg}(P_n) = \lfloor n/3 \rfloor$, $n = 3m + 1$
 $= \lfloor n/3 \rfloor + 2$, $n = 3m$, $3m + 2$

Here $n \geq 4$.

5. $\gamma_{sg}(C_n) = \lfloor n/3 \rfloor$, $n = 3m$
 $= \lfloor n/3 \rfloor + 1$, $n = 3m + 1$, $3m + 2$
6. $\gamma_{sg}(C_nO_K_2) = n$.

Proposition 2.3: $G = P_n(n \geq 4)$. Then there is an independent sgd – set for G iff $n = 3m + 1$.

Proposition 2.4: $G = C_n(n \geq 4)$. Then there is an independent sgd – set for G iff $n = 3m$.

Proposition 2.5: $G = P_n(n \geq 3)$. Then $\gamma_{sg}(G) = n - 2$ iff $n = 4, 5$.

Proposition 2.6: $G = C_n(n \geq 4)$. Then $\gamma_{sg}(G) = n - 2$ iff $n = 4, 5$.

© 2012, IJMA. All Rights Reserved

2590
Proposition 2.7: If \(T \) is a tree of order \(n \geq 3 \), then \(\gamma_{sg}(T) = 2 \) if and only if \(T \) is obtained from \(P_3 \) or \(P_4 \) by adding zero or more leaves to the stems of the path.

Note: \(2 \leq \gamma_{sg}(G) \leq n \).

Theorem 2.8: \(\gamma_{sg}(G) = n \) if and only if \(G \cong K_n \).

Theorem 2.9: \(\gamma_{sg}(G) = n - 1 \) if and only if \(G \cong K_n - \{e\} \), where \(e \) is any edge in \(K_n \).

Proof: Assume that \(\gamma_{sg}(G) = n - 1 \). Suppose \(\text{diam}(G) = l, l \geq 3 \). W.l.g. assume that \(d_G(u, v) = l \) for some \(u, v \) in \(G \). Clearly \(u \) or \(v \) is not a cut vertex in \(G \). Hence \(D = \{u, v\} \) is a connected dominating set in \(G \). Follows that \(D = \{u, v\} \) is a sgd - set in \(G \) of cardinality \(n - 2 \), which is a contradiction to our assumption. So \(\text{diam}(G) \leq 2 \). If \(\text{diam}(G) = 1 \), then \(G = K_1 \).

This implies \(\gamma_{sg}(G) = n \), a contrary to our assumption. Hence \(\text{diam}(G) = 2 \). This implies \(G \) has at least one pair of non adjacent vertices. If \(G \) has a pendant vertex, then \(\gamma_{sg}(G) = 2 \).

Clearly \(n \geq 4 \). Hence \(\gamma_{sg}(G) < n - 1 \), a contrary to our assumption. Let \(u_1, v_1, u_2, v_2, \ldots, u_s, v_s \) be distinct pairs of non adjacent vertices in \(G \). Since \(\text{diam}(G) = 2 \), \(<u_1, v_1>, <u_2, v_2>, \ldots, <u_s, v_s> \) are paths in \(G \) for some \(w_1, w_2, \ldots, w_s \) in \(G \). Clearly \(V - \{u_1, u_2, \ldots, u_s\} \) or \(V - \{v_1, v_2, \ldots, v_s\} \) is a sgd - set in \(G \). If \(|s| \geq 2 \), then we get a contradiction to our assumption. So \(|s| = 1 \). This implies there is exactly one pair of non adjacent vertices in \(G \).

Hence \(G \cong K_2 - \{e\} \).

The converse part is clear.

Corollary 2.10: If \(G \) is a tree, then \(\gamma_{sg}(G) = n - 1 \) if and only if \(G \cong P_3 \).

Note: By Theorem 2.9
(i) \(\gamma_{sg}(C_n) \neq n - 1 \) for any \(n \).
(ii) \(\gamma_{sg}(P_n) = n - 1 \) if and only if \(n = 3 \).

Theorem 2.11: \(\gamma_{sg}(G) = 2 \) if and only if
(i) There is an edge \(u \) in \(G \) such that each vertex in \(V - \{u, v\} \) is adjacent to \(u \) or \(v \) but not both.

or

(ii) There is a path \(P_4 \) in \(G \) with end vertices \(u \) and \(v \) such that all vertices in \(V - \{u, v\} \) are adjacent to either \(u \) or \(v \) but not both.

Proof: Suppose that \(\gamma_{sg}(G) = 2 \). W.l.g. assume that \(D = \{u, v\} \) be \(\gamma_{sg} \)-set in \(G \).

Case: 1 \(<D> \) is connected in \(G \).

Clearly \(uv \) is an edge in \(G \). If any vertex \(w \) in \(V - \{u, v\} \) is adjacent to both \(u \) and \(v \), then \(D \) is not a dominating set for \(G \).

Case: 2 \(<D> \) is not connected in \(G \).

Clearly any vertex in \(V - D \) cannot be adjacent to both \(u \) and \(v \). Hence there is a path \(P_4 \) from \(u \) to \(v \) in \(G \), say \(<uv, v_2, v> \). Let \(v_3 \in V - V(P_4) \). Since \(D \) is an sgd - set in \(G \), \(v_3 \) is adjacent to \(u \) or \(v \) (in \(G \)) but not both. W.l.g. assume that \(v_3 v_4 \) is in \(G \). For \(v_4 \) to be dominated by a vertex in \(D \), \(v_4 \) and \(v \) are to be connected by a path of length two in \(G \), say \(<v_4, v_5, v> \).

Hence \(v_4 \) lies on an edge \(v_3 v_4 \) and \(v_4, v_5 \) are totally dominated by \(u, v \) (end vertices in \(P_4 \)) respectively. Hence (ii) holds.

The converse part is clear.

Result 2.12: A sgd – set for \(G \) is a global dominating set for \(G \).

Note: \(\gamma_{g}(G) \leq \gamma_{sg}(G) \).

Result 2.13: If \(\text{diam}(G) = 2 \), then \(D \) is a sgd – set in \(G \) if and only if \(D \) is a global dominating set in \(G \).

Corollary 2.14: \(G \) be a semi complete graph \(D \subset V \). Then \(D \) is a sgd-set in \(G \) if and only if \(D \) is a global dominating set in \(G \).
Proof: By hypothesis, $diam(G) = 2$. Hence proof follows from the above result.

Now, we give the characterization result for a non empty subset of V to be sgd – set in G

Theorem 2.15: $D \subseteq V$ is a sgd – set in G if and only if each vertex in $V-D$ lies on an edge whose end points are totally dominated by distinct vertices in D.

Proof: Assume that D is a sgd–set in G. Let $v_1 \notin V-D$. By our assumption, there exists v_2, v_3 in D ($v_2 \neq v_3$) such that $v_1 v_2$ is in $E(G)$ and $v_1 v_3$ is in $E(G^c)$. Since $v_1 v_3$ is in $E(G^c)$, there is v_4 in V such that $<v_1 v_2 v_4>$ is a path in G.

Now, we have the following cases:

Case: 1 $v_4 = v_2$.

Then $<v_1 v_2 v_3>$ is a path in G, which implies v_1 lies on the edge $v_1 v_2$ and v_1, v_2 are dominated by v_2, v_3 respectively from $D - \{v_1\}$, $D - \{v_1, v_2\}$.

Case: 2 $v_4 \neq v_2$.

Then $<v_1 v_2 v_3 v_4>$ is a path in G which implies v_1 lies on the edge $v_1 v_2$ and v_1, v_4 are dominated by v_2, v_3 respectively from $D - \{v_1, v_4\}$.

Hence in either case the claimant holds.

Conversely assume that $v_1 \notin V-D$. By our assumption there is an edge $v_1 v_2$ in G such that $v_1 v_2, v_2 v_3$ are in G and v_2, v_3 are in $D (v_3 \neq v_4)$.

If $v_3 = v_2$, then $<v_1 v_2 v_4>$ is a path in G and $v_1 v_2$ is in G, $v_1 v_4$ is in G^c.

If $v_2 \neq v_3$, then $<v_4 v_1 v_2 v_4>$ is a path in G, which implies $v_1 v_3$ is in G and $v_1 v_4$ is in G^c.

Hence, in either case for v_1 in D, there are v_2, v_4 in D such that $v_1 v_3$ is in G and $v_1 v_4$ is in G^c. Hence D is a sgd – set in G.

Theorem 2.16: G be a connected graph and D be a γ_{SG} – set in G. Then $d_{D \cup \{v\}}(v) < n$ for each v in $V-D$ if and only if D is a sgd – set in G.

Proof: Assume that $d_{D \cup \{v\}}(v) < n$ for each v in $V-D$. Let $v \in V-D$.

Then by our assumption $d_{D \cup \{v\}}(v) < n$. This implies there is v_1 in D such that $d(v, v_1) \neq 1$. Since $<D \cup \{v_1\}>$ is connected, this implies there is a $v-v_1$ path in $D \cup \{v_1\}$ (say) $P = <v v_2 v_3 ... v_n>$, where $v_2, v_3, ..., v_n \in D$. Since $d_{D \cup \{v\}}(v) < n$, there is a $v_1 \in D$ such that $d_{D}(v, v_1) = 2$. This implies $vv_2 \in E(G^c)$. D is a sgd – set in G.

Conversely assume that $v \in V-D$. By our assumption, there is v_1 in D such that $d_{D}(v, v_1) = 2$. This implies $vv_1 \notin G$.

Hence $d_{D \cup \{v\}}(v) < n$.

Theorem 2.17: G be a connected graph such that $\delta(G) \geq 2$ and D is an independent sgd – set for G. If D^c is independent, then D^c is a sgd – set in G.

Proof: Assume that D^c is independent. Let $v \in V-D^c = D$. This implies there is v_1 in D^c such that vv_1 is in G (since $\delta(G) \geq 2$). Since v_1 is in D^c and D is independent sgd – set in G, there is v_2 in D, v_3 in V such that $<v_1 v_2 v_3>$ is a path in G. Clearly $v_2 \in D^c$. Since D^c is independent, $<vv_1 v_2 v_3>$ is a path in G and $v_1 v_3$ is not an edge in G. For $v \in V-D^c$, there is $v_1 \in D^c$ such that vv_1 is in G and $v_2 v_3$ is in G^c. Since v is arbitrary, D^c is a sgd – set in G.

Note: The converse is not true in view of P7.

Result 2.18: For a semi complete graph G, $\gamma_{SG}(G) \geq 3$.

Proof: Suppose claimant does not hold. Since $\gamma_{SG}(G) \neq 1, \gamma_{SG}(G) = 2$. Let $D = \{v_1, v_2\}$ be a sgd – set in G.

Case: 1 $<D>$ is connected in G.
Then \(v_1, v_2\) is an edge in \(G\). By the nature of semi complete graph there is a \(v_3\) in \(G\) such that \(<v_1, v_2, v_3>\) is a triangle in \(G\). This implies \(D\) is not a dominating set in \(G^c\), which is a contradiction to \(D\) is a \(sgd\) - set in \(G\).

Case: 2 \(<D>\) is disconnected in \(G\).

Since \(G\) is semi complete there is \(v_3\) in \(G\) such that \(<v_1, v_3, v_2>\) is a path in \(G\). Then in \(G^c\), \(v_j\) is not dominated by vertex in \(D\), a contradiction to \(D\) is a \(sgd\) - set in \(G\).

Hence in either case, we get a contradiction to \(D\) is a \(sgd\) - set in \(G\).

So, Our supposition is false. This implies \(\gamma_{sg}(G) \geq 3\).

ACKNOWLEDGEMENTS

Thanks are due to Prof. I. H. Nagaraja Rao for his valuable suggestions and encouragement given by him throughout the preparation of the paper.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared