SEMI GLOBAL DOMINATION

S. V. Siva Rama Raju

Department of Mathematics, M. V. G. R. College of Engineering, Vizianagaram, India

&

S. S. V. R. Kumar Addagarla

Department of Computer Science & Engineering, VITS Group of Institutions, Visakhapatnam, India

(Received on: 25-06-12; Accepted on: 15-07-12)

ABSTRACT

A subset D of vertices of a graph connected graph G is called a semi global dominating set(sgd - set) iff D is a dominating set for both G and G^{sc} , where G^{sc} is the semi complementary graph of G. The semi global domination number (sgd - number) is the minimum cardinality of a semi global dominating set of G and is denoted by γ_{sg} (G). In this paper sharp bounds for γ_{sg} , are supplied for graphs whose girth is greater than three. Exact values of this number for paths and cycles are presented as well. The characterization result for a subset of the vertex set of G to be a semi global dominating set for G is given and also characterized the graphs of order n having sgd - numbers 2, n - 1, n.

Subject Classification: 05C69.

Keywords: semi global neighbourhood domination, semi global domination number, global domination, restrained domination, connected domination.

1. INTRODUCTION & PRELIMINARIES

Domination is an active subject in graph theory, and has numerous applications to distributed computing, the web graph and adhoc networks. For a comprehensive introduction to theoretical and applied facets of domination in graphs the reader is directed to the book [2].

A set *D* of vertices is called a *dominating set* of *G* if each vertex not in *D* is joined to some vertex in *D*. The *domination number* $\gamma(G)$ is the minimum cardinality of the dominating set of *G*[2].

Many variants of the domination number have been studied. For instance a dominating set *D* is called a *global dominating set* of *G* if *D* is a dominating set of both *G* and its complement G^c . The *global domination number* of *G*, denoted by $\gamma_g(G)$ is the smallest cardinality of the global dominating set of *G*[5]. A dominating set *D* of connected graph *G* is called a *connected dominating set* of *G* if the induced sub graph $\langle D \rangle$ is connected. The *connected domination number* of *G*, denoted by $\gamma_c(G)$ is the smallest cardinality of the smallest cardinality of the induced sub graph $\langle D \rangle$ is connected. The *connected dominating set* of *G* is the smallest cardinality of the connected dominating set of *G*[6]. A dominating set *D* of connected graph *G* is called a *independent dominating set* of *G* if the induced sub graph $\langle D \rangle$ is a null graph[2].

G be a connected graph, then the *Semi Complementary Graph* of *G* is denoted by G^{sc} and it has the same vertex set as that of *G* and edge set being $\{uv/u, v \in V(G), uv \notin E(G), there is w \in V(G) \text{ such that } uw, wv \in E(G)\}$ [4].

Recently we have introduced a new type of graph known as *semi complete graph*. Let G be a connected graph, then G is said to be *semi complete* if any pair of vertices in G have a common neighbour. The necessary and sufficient condition for a connected graph to be semi complete is any pair of vertices lie on the same triangle or lie on two different triangles having a common vertex [3].

In the present paper, we introduce a new graph parameter, the *semi global domination number*, for a connected graph G. We call $D \subseteq V(G)$ a semi global dominating set (*sgd - set*) of G if D is a dominating set for both G, G^{sc} . The semi global domination number is the minimum cardinality of a semi global dominating set of G and is denoted by $\gamma_{sg}(G)$.

International Journal of Mathematical Archive- 3 (7), July – 2012

All graphs considered in this paper are simple, finite, undirected and connected. For all graph theoretic terminology not defined here, the reader is referred to [1].

In this paper, sharp bounds for γ_{sg} are supplied for the graphs whose girth is greater than three. Also, we have given a characterization result for a proper subset of the vertex set of *G* to be a sgd - set of *G* and characterized the graphs whose sgd - numbers are 2, n, n - 1.

Note: Unless mentioned by G we mean a connected graph.

2. MAIN RESULTS

Here, we obtain some bounds for the sgd - numbers of graphs whose girth is greater than three.

Theorem 2.1: If G is a triangle free graph, then

$$\frac{2e - n(n - 3)}{2} \le \gamma_{sg}(G) \le n - \Delta(G) + 1$$

Proof: Suppose that D be a minimum sgd - set of G. By our supposition each vertex in V - D is non adjacent with atleast one vertex in D. Otherwise we get a contradiction to that D is a sgd - set for G.

$$\Rightarrow e \leq \underline{n(n-1)}_{2} - [n - \gamma_{sg}(G)]$$

$$\Rightarrow \underline{2e - n(n-3)}_{2} \leq \gamma_{sg}(G)]$$
(1)

Suppose that $d_G(v) = \Delta(G)$ for some v in V(G).

Let $v_1, v_2, \dots, v_{\Delta(G)}$ be the neighbours of v in G. Since G is triangle free, $[V - \{v_1, v_2, \dots, v_{\Delta(G)}\}] \cup \{v_i : i \text{ is one of } 1, 2, \dots, \Delta(G)\}$ is a sgd - set of G and its cardinality is $n - \Delta(G) + 1$.

$$\Rightarrow \gamma_{sg} (G) \le n^{-} \Delta (G) + 1$$

$$\underline{n (n^{-}3)}_{2} \le \gamma_{sg} (G) \le n^{-} \Delta (G) + 1$$
(2)

From (1) and (2)

Furthermore the lower bound is attained in the case of C_4 and upper bound is attained in the case of P_3 . Hence the bounds are sharp.

Note: The upper bound holds good for any graph G.

Proposition 2.2:

$$\begin{split} & \textbf{1. } \gamma_{Sg}\left(K_{n}\right)=n, n \geq 3 \\ & \textbf{2. } \gamma_{sg}\left(S_{n}\right)=2, n \geq 3 \\ & \textbf{3. } \gamma_{sg}(K_{m,n})=2, m+n \geq 3 \\ & \textbf{4. } \gamma_{sg}(P_{n})=\left[n/3\right], n=3m+1 \\ & =\left[n/3\right]+2, n=3m, 3m+2 \\ & \text{Here } n \geq 4. \end{split}$$

5.
$$\gamma_{sg}(C_n) = [n/3]$$
, n = 3m
= [n/3]+1, n=3m+1, 3m+2
6. $\gamma_{sg}(C_nOK_2) = n$.

Proposition 2.3: $G = P_n (n \ge 4)$. Then there is an independent sgd – set for Giff n = 3m+1.

Proposition 2.4: $G = C_n (n \ge 4)$. Then there is an independent sgd – set for G iff n = 3m.

Proposition 2.5: G = P_n(n \geq 3). Then $\gamma_{s\sigma}(G) = n - 2$ iff n = 4, 5.

Proposition 2.6: $G = C_n (n \ge 4)$. Then $\gamma_{s\sigma}(G) = n - 2$ iff n = 4, 5.

Proposition 2.7: If T is a tree of order $n \ge 3$, then $\gamma_{sg}(T) = 2$ iff T is obtained from P_3 or P_4 by adding zero or more leaves to the stems of the path.

Note: $2 \le \gamma_{sg}(G) \le n$.

Theorem 2.8: $\gamma_{sg}(G) = n$ if and only if $G \cong K_n$.

Theorem 2.9: $\gamma_{sg}(G) = n - 1$ if and only if $G \cong K_n - \{e\}$, where e is any edge in K_n .

Proof: Assume that $\gamma_{sg}(G) = n - 1$. Suppose diam(G) = $l, l \ge 3$. W.l.g. assume that $d_G(u, v) = l$ for some u, v in G. Clearly u or v is not a cut vertex in G. Hence $D - \{u, v\}$ is a connected dominating set in G. Follows that $D - \{u, v\}$ is a sgd - set in G of cardinality n - 2, which is a contradiction to our assumption. So diam(G) ≤ 2 . If diam (G) = 1, then G = K_n .

This implies $\gamma_{sg}(G) = n$, a contrary to our assumption. Hence *diam* (*G*) = 2. This implies G has atleast one pair of non adjacent vertices. If G has a pendant vertex, then $\gamma_{sg}(G) = 2$.

Clearly $n \ge 4$. Hence $\gamma_{sg}(G) < n-1$, a contrary to our assumption. Let $u_1 v_1$, $u_2 v_2$, ..., $u_s v_s$ be distinct pairs of non adjacent vertices in G. Since diam (G) = 2, $\langle u_1 w_1 v_1 \rangle$, $\langle u_2 w_2 v_2 \rangle$, ..., $\langle u_s w_s v_s \rangle$ are paths in G for some w_1 , w_2 , ..., w_s in G. Clearly V- { $u_1, u_2..., u_s$ } or V- { $v_1, v_2..., v_s$ } is a *sgd* - *set* in G. If $|s| \ge 2$, then we get a contradiction to our assumption. So |s| = 1. This implies there is exactly one pair of non adjacent vertices in G.

Hence $G \cong K_n - \{e\}$.

The converse part is clear.

Corollary 2.10: If G is a tree, then $\gamma_{sg}(G) = n - 1$ if and only if $G \cong P3$.

Note: By Theorem.2.9 (i) $\gamma_{sg}(C_n) \neq n-1$ for any n. (ii) $\gamma_{sg}(P_n) = n-1$ if and only if n = 3.

Theorem 2.11: γ_{sg} (G) = 2 if and only if

(i) There is an edge uv in G such that each vertex in $V - \{u, v\}$ is adjacent to u or v but not both.

(ii) There is a path P_{4} each vertex in V– V (P_{4}) lies on an edge whose end vertices are totally dominated by end vertices of P_{4} .

Proof: Suppose that γ_{sg} (G) = 2. W.l.g assume that D = {*u*, *v*} be γ_{sg} – *set* in G.

or

Case: 1 < D > is connected in G.

Clearly uv is an edge in G. If any vertex w in V- { u, v} is adjacent to both u and v, then D is not a dominating set for G^{sc}. Hence (i) holds.

Case: 2 < D > is not connected in G.

Clearly any vertex in V - D cannot be adjacent to both u and v. Hence there is a path P_4 from u to v in G, say $\langle uv_1 v_2 v v \rangle$. \rangle . Let $v_3 \in V - V$ (P_4). Since D is a *sgd* – *set* in G, v_3 is adjacent to u or v(in G) but not both. W.l.g assume that $v_3 v_1$ is in G. For v_3 to be dominated by a vertex in D, v_3 , v are to be connected by a path of length two in G, say $\langle v_3 v_4 v \rangle$.

Hence v_3 lies on an edge $v_3 v_4$ and v_3 , v_4 are totally dominated by u, v(end vertices in P_4) respectively. Hence (ii) holds.

The converse part is clear.

Result 2.12: A sgd – set for G is a global dominating set for G.

Note: $\gamma_{g}(G) \leq \gamma_{sg}(G)$.

Result 2.13: If diam(G) = 2, then D is a sgd – set in G if and only if D is a global dominating set in G.

Corollary 2.14: G be a semi complete graph $D \subset V$. Then D is a sgd-set in G if and only if D is a global dominating set in G.

Proof: By hypothesis, diam(G) = 2. Hence proof follows from the above result.

Now, we give the characterization result for a non empty subset of V to be sgd - set in G

Theorem 2.15: $D \subset V$ is a sgd – set in G if and only if each vertex in V-D lies on an edge whose end points are totally dominated by distinct vertices in D.

Proof: Assume that D is a *sgd-set* in G. Let $v_1 \in V - D$. By our assumption, there exists v_2 , v_3 in D ($v_2 \neq v_3$) such that $v_1 v_2$ is in E (G) and $v_1 v_3$ is in E (G^{sc}). Since $v_1 v_3$ is in E (G^{sc}), there is v_4 in V such that $\langle v_1 v_4 v_3 \rangle$ is a path in G.

Now, we have the following cases:

Case: $1 v_4 = v_2$.

Then $\langle v_1 v_2 v_3 \rangle$ is a path in G, which implies v_1 lies on the edge $v_1 v_2$ and v_1 , v_2 are dominated by v_2 , v_3 respectively from D = { v_1 }, D = { v_1 , v_2 }.

Case: 2 $v_4 \neq v_2$.

Then $\langle v_2 v_1 v_4 v_3 \rangle$ is a path in G which implies v_1 lies on the edge $v_1 v_4$ and v_1 , v_4 are dominated by v_2 , v_3 respectively from D = { v_1 , v_4 }.

Hence in either case the claimant holds.

Conversely assume that $v_1 \in V - D$. By our assumption there is an edge $v_1 v_2$ in G such that $v_1 v_3$, $v_2 v_4$ are in G and v_3 , v_4 are in D ($v_3 \neq v_4$).

If $v_3 = v_2$, then $\langle v_1 v_2 v_4 \rangle$ is a path in G and $v_1 v_2$ is in G, $v_1 v_4$ is in G^{sc}.

If $v_2 \neq v_3$, then $\langle v_3 v_1 v_2 v_4 \rangle$ is a path in G, which implies $v_1 v_3$ is in G and $v_1 v_4$ is in G^{sc}.

Hence, in either case for v_1 in D, there are v_3 , v_4 in D such that $v_1 v_3$ is in G and $v_1 v_4$ is in G^{sc}. Hence D is a *sgd* – *set* in G.

Theorem 2.16: G be a connected graph and D be a γ_c – set in G. Then $d_{<D \cup \{v\}>}(v) < n$ for each v in V – D if and only if D is a sgd – set in G.

Proof: Assume that $d_{<D \cup \{v\}>}(v) < n$ for each v in V - D. Let $v \in V - D$.

Then by our assumption $d_{<D} \cup_{\{v\}>} (v) < n$. This implies there is v_1 in D such that $d(v, v_1) \neq 1$. Since $< D \cup \{v\} >$ is connected, this implies there is a $v - v_1$ path in D $\cup \{v\}$ (say) $P = < vv_2 v_3 v_4 ... v_1 >$, where $v_2, v_3... \in D$. Since $d_{<D \cup \{v\}>} (v) < n$, there is a $v_i \in D$ such that $d_G(v, v_i) = 2$. This implies $vv_i \in E(G^{sc})$. D is a sgd – set in G.

Conversely assume that $v \in V - D$. By our assumption, there is v_I in D such that $d_G(v, v_I) = 2$. This implies $vv_1 \in G$.

Hence $d_{<D \cup \{v\}>}(v) < n$.

Theorem 2.17: G be a connected graph such that $\delta(G) \ge 2$ and D is an independent sgd –set for G. If D^c is independent, then D^c is a sgd – set in G.

Proof: Assume that D^c is independent. Let $v \in V - D^c = D$. This implies there is v_1 in D^c such that vv_1 is in G (since δ $(G) \ge 2$). Since v_1 is in D^c and D is independent sgd - set in G, there is v_2 in D, v_3 in V such that $\langle v_1 v_3 v_2 \rangle$ is a path in G. Clearly $v_3 \in D^c$. Since D^c is independent, $\langle vv_1 v_3 v_2 \rangle$ is a path in G and vv_3 is not an edge in G. For $v \in V - D^c$, there is $v_1 \in D^c$ such that vv_1 is in G and vv_3 is in G^{sc} . Since v is arbitrary, D^c is a sgd - set in G.

Note: The converse is not true in view of P7.

Result 2.18: For a semi complete graph G, $\gamma_{sg}(G) \ge 3$.

Proof: Suppose claimant does not hold. Since $\gamma_{sg}(G) \neq 1$, $\gamma_{sg}(G) = 2$. Let $D = \{v_l, v_2\}$ be a sgd – set in G.

Case: 1 < D > is connected in *G*.

Then $v_1 v_2$ is an edge in *G*. By the nature of semi complete graph there is a v_3 in *G* such that $\langle v_1 v_2 v_3 \rangle$ is a triangle in *G*. This implies *D* is not a dominating set in G^{sc} , which is a contradiction to *D* is a sgd - set in G.

Case: 2 < D > is disconnected in G.

Since G is semi complete there is v3 in G such that $\langle v_1 v_3 v_2 \rangle$ is a path in G. Then in G^{sc} , v_3 is not dominated by vertex in D, a contradiction to D is a sgd - set in G.

Hence in either case, we get a contradiction to D is a sgd - set in G.

So, Our supposition is false. This implies $\gamma_{sg}(G) \ge 3$.

ACKNOWLEDGEMENTS

Thanks are due to Prof. I. H. Nagaraja Rao for his valuable suggestions and encouragement given by him throughout the preparation of the paper.

REFERENCES

[1] Bondy J.A. and Murthy, U.S.R., Graph theory with Applications, The Macmillan Press Ltd, 1976.

[2] T. W. Haynes, S. T. Hedetneimi, P.J. Slater, *Fundamentals of Dominations in Graphs*, Marcel Dekker, New York, 1988.

[3] I. H. Naga Raja Rao, S. V. Siva Rama Raju, On Semi-Complete Graphs, *International Journal Of Computational Cognition*, Vol.7 (3), (2009), 50-54.

[4] I. H. Naga Raja Rao, S. V. Siva Rama Raju, Semi Complementary Graphs, *Communicated to Thai Journal Of Mathematics*.

[5] D. F. Rall, Congr. Numer., 80 (1991), 89 - 95.

[6] E. Sampathkumar, H. B. Walikar, The connected Domination Number of a Graph, *J. Math. Phy. Sci*, **13** (1979), 607 - 613.

Source of support: Nil, Conflict of interest: None Declared