SEMI GLOBAL DOMINATION

S. V. Siva Rama Raju
Department of Mathematics, M. V. G. R. College of Engineering, Vizianagaram, India
\&
S. S. V. R. Kumar Addagarla
Department of Computer Science \& Engineering, VITS Group of Institutions, Visakhapatnam, India

(Received on: 25-06-12; Accepted on: 15-07-12)

Abstract

A subset D of vertices of a graph connected graph G is called a semi global dominating set(sgd - set) iff D is a dominating set for both G and $G^{s c}$, where $G^{s c}$ is the semi complementary graph of G. The semi global domination number (sgd - number) is the minimum cardinality of a semi global dominating set of G and is denoted by $\gamma_{s g}$ (G). In this paper sharp bounds for $\gamma_{s g}$, are supplied for graphs whose girth is greater than three. Exact values of this number for paths and cycles are presented as well. The characterization result for a subset of the vertex set of G to be a semi global dominating set for G is given and also characterized the graphs of order n having sgd - numbers $2, n-1, n$.

Subject Classification: 05C69.
Keywords: semi global neighbourhood domination, semi global domination number, global domination, restrained domination, connected domination.

1. INTRODUCTION \& PRELIMINARIES

Domination is an active subject in graph theory, and has numerous applications to distributed computing, the web graph and adhoc networks. For a comprehensive introduction to theoretical and applied facets of domination in graphs the reader is directed to the book [2].

A set D of vertices is called a dominating set of G if each vertex not in D is joined to some vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of the dominating set of $G[2]$.

Many variants of the domination number have been studied. For instance a dominating set D is called a global dominating set of G if D is a dominating set of both G and its complement G^{c}. The global domination number of G, denoted by $\gamma_{g}(G)$ is the smallest cardinality of the global dominating set of $G[5]$. A dominating set D of connected graph G is called a connected dominating set of G if the induced sub graph $<D>$ is connected. The connected domination number of G, denoted by $\gamma_{c}(G)$ is the smallest cardinality of the connected dominating set of $G[6]$. A dominating set D of connected graph G is called a independent dominating set of G if the induced sub graph $<D>$ is a null graph[2].
G be a connected graph, then the Semi Complementary Graph of G is denoted by $G^{\text {sc }}$ and it has the same vertex set as that of G and edge set being $\{u v / u, v \in V(G), u v \notin E(G)$, there is $w \in V(G)$ such that $u w, w v \in E(G)\}[4]$.

Recently we have introduced a new type of graph known as semi complete graph. Let G be a connected graph, then G is said to be semi complete if any pair of vertices in G have a common neighbour. The necessary and sufficient condition for a connected graph to be semi complete is any pair of vertices lie on the same triangle or lie on two different triangles having a common vertex [3].

In the present paper, we introduce a new graph parameter, the semi global domination number, for a connected graph G. We call $D \subseteq V(G)$ a semi global dominating set (sgd -set) of G if D is a dominating set for both $G, G^{s c}$. The semi global domination number is the minimum cardinality of a semi global dominating set of G and is denoted by $\gamma_{s g}(G)$.

All graphs considered in this paper are simple, finite, undirected and connected. For all graph theoretic terminology not defined here, the reader is referred to [1].

In this paper, sharp bounds for $\gamma_{s g}$ are supplied for the graphs whose girth is greater than three. Also, we have given a characterization result for a proper subset of the vertex set of G to be a sgd - set of G and characterized the graphs whose sgd-numbers are $2, n, n-1$.

Note: Unless mentioned by G we mean a connected graph.

2. MAIN RESULTS

Here, we obtain some bounds for the sgd - numbers of graphs whose girth is greater than three.
Theorem 2.1: If G is a triangle free graph, then

$$
\frac{2 \mathrm{e}-\mathrm{n}(\mathrm{n}-3)}{2} \leq \gamma_{\mathrm{sg}}(\mathrm{G}) \leq \mathrm{n}-\Delta(\mathrm{G})+1 .
$$

Proof: Suppose that D be a minimum sgd - set of G. By our supposition each vertex in $V-D$ is non adjacent with atleast one vertex in D. Otherwise we get a contradiction to that D is a $s g d-s e t$ for G.

$$
\begin{align*}
& \Rightarrow \mathrm{e} \leq \frac{\mathrm{n}(\mathrm{n}-1)}{2}-\left[\mathrm{n}-\gamma_{s g}(G)\right] \\
& \left.\Rightarrow \frac{2 \mathrm{e}-\mathrm{n}(\mathrm{n}-3)}{2} \leq \gamma_{s g}(G)\right] \tag{1}
\end{align*}
$$

Suppose that $\mathrm{d}_{\mathrm{G}}(v)=\Delta(\mathrm{G})$ for some v in $\mathrm{V}(\mathrm{G})$.
Let $v_{1}, v_{2}, \ldots . ., v_{\Delta(G)}$ be the neighbours of v in G. Since G is triangle free, $\left[V-\left\{v_{1}, v_{2}, \ldots v_{\Delta(G)}\right\}\right] \cup\left\{v_{i}: i\right.$ is one of 1,2 , $\ldots, \Delta(G)\}$ is a $s g d-$ set of G and its cardinality is $n-\Delta(G)+1$.

$$
\begin{equation*}
\Rightarrow \gamma_{s g}(G) \leq \mathrm{n}-\Delta(\mathrm{G})+1 \tag{2}
\end{equation*}
$$

From (1) and (2)

$$
\frac{2 \mathrm{e}-\mathrm{n}(\mathrm{n}-3)}{2} \leq \gamma_{s g}(G) \leq \mathrm{n}-\Delta(\mathrm{G})+1
$$

Furthermore the lower bound is attained in the case of C_{4} and upper bound is attained in the case of P_{3}. Hence the bounds are sharp.

Note: The upper bound holds good for any graph G.

Proposition 2.2:

1. $\gamma_{\mathrm{sg}}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}, \mathrm{n} \geq 3$
2. $\gamma_{\mathrm{sg}}\left(\mathrm{S}_{\mathrm{n}}\right)=2, \mathrm{n} \geq 3$
3. $\gamma_{\mathrm{sg}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=2, \mathrm{~m}+\mathrm{n} \geq 3$
4. $\gamma_{\mathrm{sg}}\left(\mathrm{P}_{\mathrm{n}}\right)=[\mathrm{n} / 3], \mathrm{n}=3 \mathrm{~m}+1$

$$
=[n / 3]+2, n=3 m, 3 m+2
$$

Here $\mathrm{n} \geq 4$.

$$
\text { 5. } \begin{aligned}
\gamma_{s g}\left(C_{n}\right) & =[\mathrm{n} / 3], \mathrm{n}=3 \mathrm{~m} \\
& =[\mathrm{n} / 3]+1, \mathrm{n}=3 \mathrm{~m}+1,3 \mathrm{~m}+2
\end{aligned}
$$

6. $\gamma_{s g}\left(C_{n} O K_{2}\right)=n$.

Proposition 2.3: $G=P_{n}(n \geq 4)$. Then there is an independent sgd - set for G iff $n=3 m+1$.
Proposition 2.4: $G=C_{n}(n \geq 4)$. Then there is an independent sgd - set for G iff $n=3 m$.
Proposition 2.5: $G=P_{n}(n \geq 3)$. Then $\gamma_{s g}(G)=n-2$ iff $n=4,5$.
Proposition 2.6: $G=C_{n}(n \geq 4)$. Then $\gamma_{s g}(G)=n-2$ iff $n=4,5$.

Proposition 2.7: If T is a tree of order $n \geq 3$, then $\gamma_{s g}(T)=2$ iff T is obtained from P_{3} or P_{4} by adding zero or more leaves to the stems of the path.

Note: $2 \leq \gamma_{\text {sg }}(\mathrm{G}) \leq \mathrm{n}$.
Theorem 2.8: $\gamma_{\mathrm{sg}}(\mathrm{G})=\mathrm{n}$ if and only if $\mathrm{G} \cong \mathrm{K}_{\mathrm{n}}$.
Theorem 2.9: $\gamma_{s g}(G)=n-1$ if and only if $G \cong K_{n}-\{e\}$, where e is any edge in K_{n}.
Proof: Assume that $\gamma_{s g}(G)=n-1$. Suppose $\operatorname{diam}(G)=l, l \geq 3$. W.l.g. assume that $\mathrm{d}_{\mathrm{G}}(u, v)=l$ for some u, v in G. Clearly u or v is not a cut vertex in G. Hence $\mathrm{D}-\{u, v\}$ is a connected dominating set in G. Follows that $\mathrm{D}-\{u, v\}$ is a sgd - set in G of cardinality $n-2$, which is a contradiction to our assumption. So diam $(G) \leq 2$. If $\operatorname{diam}(G)=1$, then G $=\mathrm{K}_{\mathrm{n}}$.

This implies $\gamma_{\mathrm{sg}}(G)=n$, a contrary to our assumption. Hence diam $(G)=2$. This implies G has atleast one pair of non adjacent vertices. If G has a pendant vertex, then $\gamma_{\mathrm{sg}}(G)=2$.

Clearly $\mathrm{n} \geq 4$. Hence $\gamma_{\mathrm{sg}}(\mathrm{G})<\mathrm{n}-1$, a contrary to our assumption. Let $u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{s} v_{s}$ be distinct pairs of non adjacent vertices in G. Since diam (G) $=2,\left\langle u_{1} w_{1} v_{1}\right\rangle,\left\langle u_{2} w_{2} v_{2}\right\rangle, \ldots,\left\langle u_{s} w_{s} v_{s}\right\rangle$ are paths in G for some w_{1}, w_{2}, \ldots, w_{s} in G. Clearly $\mathrm{V}-\left\{u_{1}, u_{2} \ldots u_{s}\right\}$ or $\mathrm{V}-\left\{v_{1}, v_{2} \ldots v_{s}\right\}$ is a sgd - set in G . If $|\mathrm{s}| \geq 2$, then we get a contradiction to our assumption. So $|\mathrm{s}|=1$. This implies there is exactly one pair of non adjacent vertices in G .

Hence $G \cong K_{n}-\{e\}$.
The converse part is clear.
Corollary 2.10: If G is a tree, then $\gamma_{\mathrm{sg}}(G)=n-1$ if and only if $G \cong P 3$.
Note: By Theorem.2.9
(i) $\gamma_{\mathrm{sg}}\left(\mathrm{C}_{\mathrm{n}}\right) \neq \mathrm{n}-1$ for any n .
(ii) $\gamma_{\mathrm{sg}}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}-1$ if and only if $\mathrm{n}=3$.

Theorem 2.11: $\gamma_{\mathrm{sg}}(\mathrm{G})=2$ if and only if
(i) There is an edge uv in G such that each vertex in $V-\{u, v\}$ is adjacent to u or v but not both.
or
(ii) There is a path P_{4}, each vertex in $\mathrm{V}-\mathrm{V}\left(\mathrm{P}_{4}\right)$ lies on an edge whose end vertices are totally dominated by end vertices of P_{4}.

Proof: Suppose that $\gamma_{\mathrm{sg}}(G)=2$. W.l.g assume that $\mathrm{D}=\{u, v\}$ be $\gamma_{\mathrm{sg}}-$ set in G.
Case: $\mathbf{1}<\mathrm{D}>$ is connected in G.
Clearly $u v$ is an edge in G . If any vertex w in $\mathrm{V}-\{u, v\}$ is adjacent to both u and v, then D is not a dominating set for $G^{\text {sc }}$. Hence (i) holds.

Case: $\mathbf{2}<\mathrm{D}>$ is not connected in G.
Clearly any vertex in $V-D$ cannot be adjacent to both u and v. Hence there is a path P_{4} from u to v in G , say $<u v_{1} v_{2} v$ $>$. Let $v_{3} \in \mathrm{~V}-\mathrm{V}\left(\mathrm{P}_{4}\right)$. Since D is a sgd - set in G , v_{3} is adjacent to u or $v($ in $G)$ but not both. W.l.g assume that $v_{3} v_{1}$ is in G. For v_{3} to be dominated by a vertex in D, v_{3}, v are to be connected by a path of length two in G,say $\left\langle v_{3} v_{4} v\right\rangle$.

Hence v_{3} lies on an edge $v_{3} v_{4}$ and v_{3}, v_{4} are totally dominated by u, v (end vertices in P_{4}) respectively. Hence (ii) holds.
The converse part is clear.
Result 2.12: A sgd - set for G is a global dominating set for G .
Note: $\gamma_{\mathrm{g}}(\mathrm{G}) \leq \gamma_{\mathrm{sg}}(\mathrm{G})$.
Result 2.13: If $\operatorname{diam}(G)=2$, then D is a sgd - set in G if and only if D is a global dominating set in G.
Corollary 2.14: G be a semi complete graph $D \subset V$. Then D is a sgd-set in G if and only if D is a global dominating set in G.

Proof: By hypothesis, $\operatorname{diam}(G)=2$. Hence proof follows from the above result.
Now, we give the characterization result for a non empty subset of V to be $s g d-\operatorname{set}$ in G
Theorem 2.15: $\mathrm{D} \subset \mathrm{V}$ is a sgd - set in G if and only if each vertex in V - D lies on an edge whose end points are totally dominated by distinct vertices in D .

Proof: Assume that D is a sgd $-s e t$ in G. Let $v_{1} \in V-D$. By our assumption, there exists v_{2}, v_{3} in $D\left(v_{2} \neq v_{3}\right)$ such that $v_{1} v_{2}$ is in $E(G)$ and $v_{1} v_{3}$ is in $E\left(G^{s c}\right)$. Since $v_{1} v_{3}$ is in $E\left(G^{s c}\right)$, there is v_{4} in V such that $\left\langle v_{1} v_{4} v_{3}\right\rangle$ is a path in G.

Now, we have the following cases:
Case: $1 v_{4}=v_{2}$.
Then $\left.<v_{1} v_{2} v_{3}\right\rangle$ is a path in G, which implies v_{1} lies on the edge $v_{1} v_{2}$ and v_{1}, v_{2} are dominated by v_{2}, v_{3} respectively from $\mathrm{D}-\left\{v_{1}\right\}, \mathrm{D}-\left\{v_{1}, v_{2}\right\}$.

Case: $2 v_{4} \neq v_{2}$.
Then $\left\langle v_{2} v_{1} v_{4} v_{3}\right\rangle$ is a path in G which implies v_{1} lies on the edge $v_{1} v_{4}$ and v_{1}, v_{4} are dominated by v_{2}, v_{3} respectively from $\mathrm{D}-\left\{v_{1}, v_{4}\right\}$.

Hence in either case the claimant holds.

Conversely assume that $v_{1} \in V-D$. By our assumption there is an edge $v_{1} v_{2}$ in G such that $v_{1} v_{3}, v_{2} v_{4}$ are in G and v_{3}, v_{4} are in $D\left(v_{3} \neq v_{4}\right)$.

If $v_{3}=v_{2}$, then $\left\langle v_{1} v_{2} v_{4}\right\rangle$ is a path in G and $v_{1} v_{2}$ is in G, $v_{1} v_{4}$ is in $\mathrm{G}^{\text {sc }}$.
If $v_{2} \neq v_{3}$, then $<v_{3} v_{1} v_{2} v_{4}>$ is a path in G, which implies $v_{1} v_{3}$ is in G and $v_{1} v_{4}$ is in $G^{\text {sc }}$.
Hence, in either case for v_{1} in D , there are v_{3}, v_{4} in D such that $v_{1} v_{3}$ is in G and $v_{1} v_{4}$ is in $\mathrm{G}^{\text {sc }}$. Hence D is a sgd $-\operatorname{set}$ in G.

Theorem 2.16: $\quad G$ be a connected graph and D be a $\gamma_{c}-$ set in G. Then $d_{<D u}\{v\}>(v)<n$ for each v in $V-D$ if and only if D is a sgd - set in G.

Proof: Assume that $d_{<D \cup\{v\}>}(v)<n$ for each v in $V-D$. Let $v \in V-D$.
Then by our assumption $d_{<D} \cup\{v\}>(v)<n$. This implies there is v_{1} in D such that $\mathrm{d}\left(v, v_{1}\right) \neq 1$. Since $<\mathrm{D} \cup\{\mathrm{v}\}>$ is connected, this implies there is a $v-v_{1}$ path in $\mathrm{D} \cup\{v\}$ (say) $\mathrm{P}=\left\langle v v_{2} v_{3} v_{4} \ldots v_{1}\right\rangle$, where $v_{2}, v_{3} \ldots \in D$. Since $\mathrm{d}_{<\mathrm{D}} \cup\{v\}>$ $(\mathrm{v})<n$, there is a $v_{i} \in D$ such that $\mathrm{d}_{\mathrm{G}}\left(\mathrm{v}, \mathrm{v}_{\mathrm{i}}\right)=2$.This implies $v v_{i} \in E\left(G^{s c}\right) . D$ is a sgd - set in G.

Conversely assume that $v \in V-D$. By our assumption, there is v_{1} in D such that $d_{G}\left(v, v_{1}\right)=2$. This implies $v v_{1} \in G$.
Hence $d_{<D \cup\{v\}>}(v)<n$.
Theorem 2.17: G be a connected graph such that $\delta(G) \geq 2$ and D is an independent sgd -set for G. If D^{c} is independent, then D^{c} is a sgd - set in G.

Proof: Assume that D^{c} is independent. Let $v \in V-D^{c}=D$. This implies there is v_{1} in D^{c} such that $v v_{1}$ is in G (since δ $(G) \geq 2$). Since v_{1} is in D^{c} and D is independent sgd - set in G, there is v_{2} in D, v_{3} in V such that $\left\langle v_{1} v_{3} v_{2}\right\rangle$ is a path in G. Clearly $v_{3} \in D^{c}$. Since D^{c} is independent, $\left\langle v v_{1} v_{3} v_{2}\right\rangle$ is a path in G and $v v_{3}$ is not an edge in G. For $v \in V-D^{c}$, there is $v_{1} \in D^{c}$ such that $v v_{1}$ is in G and $v v_{3}$ is in $G^{s c}$. Since v is arbitrary, D^{c} is a sgd -set in G.

Note: The converse is not true in view of $P 7$.
Result 2.18: For a semi complete graph $\mathrm{G}, \gamma_{\mathrm{sg}}(\mathrm{G}) \geq 3$.
Proof: Suppose claimant does not hold. Since $\gamma_{s g}(G) \neq 1, \gamma_{s g}(G)=2$. Let $D=\left\{v_{1}, v_{2}\right\}$ be a sgd - set in G.
Case: $\mathbf{1}<D>$ is connected in G.

Then $v_{1} v_{2}$ is an edge in G. By the nature of semi complete graph there is a v_{3} in G such that $\left.<v_{1} v_{2} v_{3}\right\rangle$ is a triangle in G. This implies D is not a dominating set in $G^{s c}$, which is a contradiction to D is a sgd - set in G.

Case: $\mathbf{2}<D>$ is disconnected in G.
Since G is semi complete there is v3 in G such that $\left\langle v_{1} v_{3} v_{2}\right\rangle$ is a path in G. Then in $G^{s c}, v_{3}$ is not dominated by vertex in D, a contradiction to D is a s $g d-\operatorname{set}$ in G.

Hence in either case, we get a contradiction to D is a sgd - set in G.
So, Our supposition is false. This implies $\gamma_{\mathrm{sg}}(\mathrm{G}) \geq 3$.

ACKNOWLEDGEMENTS

Thanks are due to Prof. I. H. Nagaraja Rao for his valuable suggestions and encouragement given by him throughout the preparation of the paper.

REFERENCES

[1] Bondy J.A. and Murthy, U.S.R., Graph theory with Applications, The Macmillan Press Ltd, 1976.
[2] T. W. Haynes, S. T. Hedetneimi, P.J. Slater, Fundamentals of Dominations in Graphs, Marcel Dekker, New York, 1988.
[3] I. H. Naga Raja Rao, S. V. Siva Rama Raju, On Semi-Complete Graphs, International Journal Of Computational Cognition, Vol. 7 (3), (2009), 50-54.
[4] I. H. Naga Raja Rao, S. V. Siva Rama Raju, Semi Complementary Graphs, Communicated to Thai Journal Of Mathematics.
[5] D. F. Rall, Congr. Numer., 80 (1991), 89 - 95.
[6] E. Sampathkumar, H. B. Walikar, The connected Domination Number of a Graph, J. Math. Phy. Sci, 13 (1979), 607 - 613.

Source of support: Nil, Conflict of interest: None Declared

