ON SOME COMMON FIXED POINT THEOREMS IN FUZZY METRIC SPACES

Rajesh Shrivastava
Head, Department of Mathematics, Govt. Science College, Benazeer Bhopal, (M. P.), India

Rajendra Kumar Dubey
Department of Mathematics, Govt. Science P. G. College, Rewa, (M. P.), India

Pankaj Tiwari*
Vidhyapeeth Instt. of Science & Technology, Bhopal (M. P.), India

(Received on: 03-07-12; Revised & Accepted on: 20-07-12)

ABSTRACT
This paper presents some common fixed point theorems for occasionally weakly compatible mappings in fuzzy metric spaces under various conditions.

Keywords: Fixed point, occasionally weakly compatible mappings, fuzzy metric space.

1. INTRODUCTION
The concept of fuzzy sets introduced by Prof. Lofti Zadeh [11] in 1965 at the University of California plays an important role in topology and analysis. Since then, there were many authors who studied the fuzzy sets with applications. Especially, Kromosil and J. Michalek [13] put forward a new concept of fuzzy metric spaces. A. George and P. Veermani [2] revised the notion of fuzzy metric spaces with the help of continuous t-norm in 1994. As a result of many fixed point theorem for various forms of mapping are obtained in fuzzy metric spaces. Recently, many researchers have proved common fixed point theorems involving fuzzy sets. Pant [15] introduced the new concept of reciprocally continuous mappings and established some common fixed point theorems. Vasuki [16] and B. Singh and et al. [4] also introduced some fixed point theorems in fuzzy metric spaces for R-weakly commuting and compatible mappings respectively.

Balasubramaniam et al. [14] proved the open problem of Rhoades [3] on the existence of a contractive definition which generates a fixed point but does not force the mapping to be continuous at the fixed point, posses an affirmative answer. Pant and Jha [17] proved an analogue of the result given by Balasubramaniam et al. [14]. Recent work on fixed point theorems in fuzzy metric space can be viewed in references [6, 18, 19, 20].

The purpose of this paper is to prove some common fixed point theorem in fuzzy metric space for more general commutative condition i.e., occasionally weakly compatible mappings.

2. PRELIMINARIES AND NOTATIONS
We recall the definitions and results that will be needed in the sequel.

Definition 2.1: A fuzzy set A in X is a function with domain X and values in [0, 1].

Definition 2.2: A triangular norm * (shortly t-norm) is a binary operation on the unit interval [0, 1] such that for all a, b, c, d ∈ [0, 1] the following conditions are satisfied:
(a) * is commutative and associative;
(b) * is continuous;
(c) a * 1 = a, ∀ a ∈ [0,1];
(d) a * b ≤ c * d whenever a ≤ c and b ≤ d.

Corresponding author: Pankaj Tiwari*
Vidhyapeeth Instt. of Science & Technology, Bhopal (M. P.) India
Example 2.3: Two typical examples of continuous t-norm are

(a) \(a \ast b = ab\), and
(b) \(a \ast b = \min(a,b)\)

Definition 2.4 [2]: A 3-tuple \((X, M, \ast)\) is said to be a fuzzy metric space, if \(X\) is an arbitrary set, \(\ast\) is a continuous t-norm and \(M\) is a fuzzy set on \(X\). A fuzzy metric space \((X, M, \ast)\) is said to be complete.

Definition 2.8: Two mappings \(f\) and \(g\) of a fuzzy metric space \((X, M, \ast)\) into itself are said to be weakly commuting if

\[
M(fgx, gfx, t) \geq M(fx, gx, t), \quad \forall x \in X \text{ and } t > 0.
\]

Definition 2.9 [8]: Two self maps \(f\) and \(g\) of a fuzzy metric space \((X, M, \ast)\) are called reciprocally continuous on \(X\) if \(\lim_{n \to \infty} fx_n = fx\) and \(\lim_{n \to \infty} gx_n = gx\), whenever \(\{x_n\}\) is a sequence in \(X\) such that

\[
\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = x \text{ for some } x \in X.
\]

Proposition 1: In a fuzzy metric space \((X, M, \ast)\), if \(a \ast a \geq a \ast r\) for \(a \in [0,1]\) then \(a \ast b = \min(a,b)\) for all \(a, b \in [0,1]\).

Definition 2.10: Two self mappings \(f\) and \(g\) of a fuzzy metric space \((X, M, \ast)\) are called compatible if

\[
\lim_{n \to \infty} M(fgx_n, gfx_n, t) = 1 \quad \text{whenever } \{x_n\} \text{ is a sequence in } X \text{ such that}
\]

\[
\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = x \text{ for some } x \in X.
\]

Definition 2.11 [9]: An element \(x \in X\) is called a common fixed point of the mappings

\[
F: X \times X \to X \text{ and } g: X \to X \text{ if } x = g(x) = F(x, x).
\]
Definition 2.12 [5]: Two self maps A and B of a fuzzy metric space \((X, M, \ast)\) are called weakly compatible (or coincidentally commuting) if they commute at their coincidence points, i.e., if \(A x = B x\) for some \(x \in X\) then \(ABx = BAx\).

Definition 2.13 [8]: A pair of maps \(S\) and \(T\) is called weakly compatible pair if they commute at coincidence points.

The concept occasionally weakly compatible is introduced by M. Al-Thagafi and Naseer Shahzad [1]. It is stated as follows.

Definition 2.14: Two self maps \(f\) and \(g\) of a set \(X\) are occasionally weakly compatible (owc) if there is a point \(x\) in \(X\) which is a coincidence point of \(f\) and \(g\) at which \(f\) and \(g\) commute.

Example 2.15: Let \(R\) is the usual metric space. Define \(f, g : R \rightarrow R\) be \(f(x) = 3x\) and \(g(x) = x^2, \forall x \in R\).

Then \(fx = gx,\) for \(x = 0, 3\) but \(f(0) = g(0),\) and \(f g(3) \neq T g(3),\) \(f\) and \(g\) are occasionally weakly compatible self maps but not weakly compatible.

Example 2.16: Let \(R\) is the usual metric space. Define \(f, g : R \rightarrow R\) be \(f(x) = 9x\) and \(g(x) = x^3, \forall x \in R\). Then \(fx = gx,\) for \(x = 0, 3\) but \(f(0) = g(0),\) and \(g f(3) \neq f g(3),\) because \(f g(3) = f(27) = 9 \times 27 = 243\) and \(g f(3) = g(3 \times 9) = g(27) = (27)^3 = 19683.\) We see that \(g f(3) \neq f g(3).\)

Thus \(f\) and \(g\) are occasionally weakly compatible self maps but not weakly compatible.

Lemma 2.17 [8]: Let \(X\) be a set, \(f, g\) owc self maps of \(X\). If \(f\) and \(g\) have a unique point of coincidence, \(w = fx = gx,\) then \(w\) is the unique common fixed point of \(f\) and \(g\).

The following theorem was proved by Balasubramaniam et al. [14]:

Theorem 1 [16]: Let \((X, M, \ast)\) be a complete fuzzy metric space and let \(f\) and \(g\) be \(R\) weakly commuting self mappings of \(X\) satisfying the conditions

\[
M(fx, fy, t) \geq r(M(gx, gy, t)),
\]

where \(r : [0, 1) \rightarrow [0, 1]\) is a continuous function such that \(r(t) > t\) for each \(0 < t < 1\) and \(r(t) = 1.\)

The sequences \(\{x_n\}\) and \(\{y_n\}\) in \(X\) are such that \(x_n \rightarrow x,\) \(y_n \rightarrow y,\) \(t > 0\) implies \(M(x_n, y_n, t) \rightarrow M(x, y, t).\) If the range of \(g\) contains the range of \(f\) and either \(f\) or \(g\) is continuous, then \(f\) and \(g\) have a unique common fixed point.

3. MAIN RESULTS

Theorem 3.1: Let \((X, M, \ast)\) be a complete fuzzy metric space and let \(A, B, S\) and \(T\) be self-mappings of \(X.\) Let the pairs \((A, S)\) and \((B, T)\) be owc. If there exists a point \(q \in (0, 1), \forall x, y \in X\) and \(t > 0.\) Such that

\[
M(Ax, By, qt) \geq \min\{M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t), M(Ax, Ty, t) + M(By, Sx, t)\} \tag{3.1}
\]

then there exists a unique point of \(w \in T,\) such that \(Aw = Sw = w\) and a unique point \(z \in X,\) such that \(Bz = Tz = z.\) Moreover, \(z = w,\) so that there is a unique common fixed point of \(A, B, S\) and \(T.\)

Proof: Let the pairs \((A, S)\) and \((B, T)\) be owc, so there are points \(x, y \in X\) such that \(Ax = Sx\) and \(By = Ty,\) we claim that \(Ax = By.\) If not, by inequality (3.1) we have

\[
M(Ax, By, qt) \geq \min\{M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t), M(Ax, Ty, t) + M(By, Sx, t)\} \tag{3.1}
\]

\[
= \min\{M(Ax, By, t), M(Ax, Ax, t), M(By, By, t), M(Ax, By, t) + M(By, Ax, t)\} \tag{3.1}
\]

\[
= M(Ax, By, t). \tag{3.1}
\]
Thus we have $Ax = By$, i.e., $Ax = Sx = By = Ty$. Suppose that there is another point z such that $Az = Sz$ then by (3.1) we have $Az = Sz = By = Ty$, so $Ax = Az$ and $w = Ax = Sx$ is the unique point of coincidence of A and S.

Similarly there is a unique point $z \in X$ such that $z = Bz = Tz$. Using lemma 2.17, we get w is the only common fixed point of A, B, S and T.

Assume that $w \neq z$. We have

$$M(w, z, qt) = M(Aw, Bw, qt) \geq \min\{M(Sw, Tz, t), M(Sw, Az, t), M(Bz, Tz, t), [M(Aw, Tz, t) + M(Bz, Sw, t)]\}$$

$$= \min\{M(w, z, t), M(w, z, t), M(z, z, t), [M(w, z, t) + M(z, w, t)]\}$$

$$= M(w, z, t).$$

Therefore, we have $z = w$ by Lemma 2.17 and z is a common fixed point of A, B, S and T.

The uniqueness of the fixed point holds from (3.1).

Theorem 3.2 Let $(X, M, *)$ be a complete fuzzy metric space and let A, B, S and T be self-mappings of X. Let the pairs (A, S) and (B, T) be owc. If there exists a point $q \in (0,1)$, such that

$$M(Ax, By, qt) \geq \delta(\min\{M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t), [M(Ax, Ty, t) + M(By, Sx, t)]\})$$

(3.2)

such that $\delta(t) > t$ for all $0 < t < 1$, and $\delta: [0,1] \rightarrow [0,1]$, then there exists a unique common fixed point of A, B, S and T.

Proof: The proof follows from Theorem 3.1.

Theorem 3.3 Let $(X, M, *)$ be a complete fuzzy metric space and let A, B, S and T be self-mappings of X. Let the pairs (A, S) and (B, T) be owc. If there exists a point $q \in (0,1)$, such that

$$M(Ax, By, qt) \geq \delta(\min\{M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t), [M(Ax, Ty, t) + M(By, Sx, t)]\})$$

(3.3)

$\forall x, y \in X$ and $\delta: [0,1]^5 \rightarrow [0,1]$ such that $\delta(t, 1, 1, t, t) > t$ for all $0 < t < 1$, then there exists a unique common fixed point of A, B, S and T.

Proof: Let the pairs (A, S) and (B, T) be owc, there are points $x, y \in X$ such that $Ax = Sx$ and $By = Ty$, we claim that $Ax = By$. If not, by inequality (3.3) we have

$$M(Ax, By, qt) \geq \delta(\min\{M(Sx, Ty, t), M(Sx, Ax, t), M(By, Ty, t), [M(Ax, Ty, t) + M(By, Sx, t)]\})$$

$$\geq \delta(M(Ax, By, t), M(Ax, Ax, t), M(By, By, t), [M(Ax, By, t) + M(By, Ax, t)])$$

$$\geq \delta(M(Ax, By, t), 1, 1, M(Ax, By, t), M(By, Ax, t))$$

$$> M(Ax, By, t).$$

A contradiction, therefore $Ax = By$, i.e., $Ax = Sx = By = Ty$. Suppose that there is a another point z such that $Az = Sz$ then by (3.3) we have $Az = Sz = By = Ty$, so $Ax = Az$ and $w = Ax = Sx$ is the unique point of coincidence of A and T. By Lemma 2.17 w is a unique common fixed point of A and S. Similarly there is a unique point $z \in X$ such that $z = Bz = Tz$. Thus z is a common fixed point of A, B, S and T, the uniqueness of the fixed point holds from (3.3).

ACKNOWLEDGEMENT

We are thankful to Prof. B. P. Gupta, Director of Vidhyapeeth Institute of Science & Technology, Bhopal (M. P.) India, for his kind cooperation and guidance to prepare this paper.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared