g** $^{* *}$-closed sets in bitopological spaces

Mrs. Veronica Vijayan, Mrs. Ponnuthai Selvarani and Sr. Pauline Mary Helen. M*
Associate Professors, Nirmala College, Coimbatore-641018. India
Dr. Punitha Tharani, Associate Professor, St. Mary's College, Tuticorin-628001, India

(Received on: 12-06-12; Accepted on: 30-06-12)

Abstract

In this paper we introduce $g^{* *}$-closed sets in bitopological spaces. Properties of this sets are investigated and we introduce three new bitopological spaces namely, (i, j)-** $T_{1 / 2}$ spaces, (i, j)- $T_{1 / 2} * *$ space and (i, j)-* $T_{1 / 2} *$ spaces.

Key words: (i, j)-g**-closed sets, (i,j)-** $T_{1 / 2}$ spaces, (i, $\left.j\right)-T_{1 / 2} * *$ spaces and $(i, j)-* T_{1 / 2} *$ spaces.

1. INTRODUCTION

A triple ($\mathrm{X}, \tau_{1}, \tau_{2}$) where X is a non-empty set and τ_{1} and τ_{2} are topologies in X is called a bitopological space and Kelly[5] initiated the study of such spaces. In 1985, Fukutake [2] introduced the concepts of g-closed sets in bitopological spaces. M.K.R.S. Veerakumar[11] introduced and studied the concepts of g^{*}-closed sets and g^{*} continuity in topological spaces. Sheik John. M and Sundaram. P [8] introduced and studied the concepts of g*-closed sets in bitopological spaces in 2002. The purpose of this paper is to introduce the concepts of $\mathrm{g}^{* *}$-closed sets, (i, j)$* * \mathrm{~T}_{1 / 2}$ spaces, ($\left.\mathrm{i}, \mathrm{j}\right)-\mathrm{T}_{1 / 2} * *$ spaces and ($\left.\mathrm{i}, \mathrm{j}\right)-* \mathrm{~T}_{1 / 2} *$ spaces in bitopological spaces and investigate some of their properties.

2. PRELIMINARIES

Definition 2.1 A subset a of a topological space (X, τ) is said to be

1. a pre-open set [7] if $\mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\mathrm{A}))$ and a preclosed set if cl(int(A)) $\subseteq \mathrm{A}$.
2. a semi-open set [6] if $A \subseteq \operatorname{cl}(\operatorname{int}(A))$ and and semi-closed set if int $(\mathrm{cl}(A)) \subseteq A$.
3. a regular open set [9] if $A=\operatorname{int}(\mathrm{cl}(\mathrm{A}))$
4. a generalized closed set [7](briefly g-closed set) if $c l(A) \subseteq U$ whenever $A \subseteq U$ and U is open $\operatorname{in}(X, \tau)$.
5. a generalized star closed set[11] (briefly g^{*}-closed set) if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is g-open in (X, τ).
6. a generalized star star closed set[10] (briefly $\mathrm{g}^{* *}$-closed set) if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is g^{*}-open in (X, τ).

If A is a subset of X with topology τ, then the closure of A is denoted by $\tau-\operatorname{cl}(\mathrm{A})$ or $\mathrm{cl}(\mathrm{A})$, the interior of A is denoted by $\tau-\operatorname{int}(\mathrm{A})$ or $\operatorname{int}(\mathrm{A})$ and the complement of A in X is denoted by A^{c}.

For a subset of (X, $\tau_{\mathrm{i}}, \tau_{\mathrm{j}}$), $\tau_{\mathrm{i}}-\mathrm{cl}(\mathrm{A})\left(\right.$ resp. $\tau_{\mathrm{i}}-\mathrm{int}(\mathrm{A})$)denote the closure (resp. interior)of A with respect to the topology τ_{i}. We denote the family of all g-open(resp.g*-open) subsets of X with respect to the topology τ_{i} by $\mathrm{GO}\left(\mathrm{X}, \tau_{\mathrm{i}}\right)$ (resp. $\mathrm{G}^{*} \mathrm{O}\left(\mathrm{X}, \tau_{\mathrm{i}}\right)$ and the family of all τ_{j} - closed sets is denoted by the symbol F_{j} we mean the pair of topologies $\left(\tau_{\mathrm{i}}, \tau_{\mathrm{j}}\right)$.

Definition 2.2 A subset A of a topology ($\mathrm{X}, \tau_{\mathrm{i}}, \tau_{\mathrm{j}}$) is called

1. (i, j)-g-closed[2] if τ_{j}-cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is open in τ_{i}.
2. (i, j)-rg-closed[1] if τ_{j}-cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in τ_{i}.
3. (i, j)-gpr-closed [4] if $\tau_{j}-\mathrm{pcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is regular open in τ_{i}.
4. (i, j)-wg-closed[3] if τ_{j} - $-\mathrm{l}\left(\tau_{\mathrm{i}}\right.$ - $\left.\mathrm{int}(\mathrm{A})\right) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in τ_{i}.

Definition 2.3 A bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) is called

1. an (i, j)- $\mathrm{T}_{1 / 2}$ space[2] if every (i, j)-g-closed set is τ_{j}-closed.
2. a strongly pairwise $T_{1 / 2}$ space[2] if it is both $(1,2) T_{1 / 2}$ and $(2,1) T_{1 / 2}$.
3. an (i, j)- $\mathrm{T}_{1 / 2} *$ space[8] if every (i, j)-g*-closed set is τ_{j}-closed.
4. a strongly pairwise $\mathrm{T}_{1 / 2} *$ space[8] if it is both $(1,2) \mathrm{T}_{1 / 2} *$ and $(2,1) \mathrm{T}_{1 / 2}$.
5. an (i, j)- $\mathrm{T}_{1 / 2}$ space[8] if every (i, j)-g-closed set is g^{*}-closed.
6. a strongly pairwise $* \mathrm{~T}_{1 / 2}$ space[8] if it is both $(1,2)-* \mathrm{~T}_{1 / 2}$ and $(2,1)-* \mathrm{~T}_{1 / 2}$.

3. (i, j) - $\mathbf{g}^{* *}$-closed sets

In this section we introduce the concept of (i, j)-g**-closed sets in bitopological spaces.
Definition 3.1: A subset A of a topological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be an $(i, j)-g^{* *}$-closed set if $\tau_{j}-c l(A) \subseteq U$ whenever $A \subseteq U$ and $U \in G * O\left(X, \tau_{i}\right)$. We denote the family of all $(i, j)-g^{* *}-$ closed sets in $\left(X, \tau_{1}, \tau_{2}\right)$ by $D^{* *}(i, j)$.

Remark 3.2: By setting $\tau_{1}=\tau_{2}$ in definition (3.1), a ($\left.i, j\right)-g^{* *}-$ closed set is a $g * *-$ closed set.

Proposition 3.3: Every $\tau_{j}-$ closed subset of $\left(X, \tau_{1}, \tau_{2}\right)$ is $(i, j)-g^{* *}-$ closed .

The converse of the above propositions is not true as seen in the following example.
Example 3.4: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{c\},\{a, c\}, X\}$ and $\tau_{2}=\{\phi,\{a\}, X\}$. Then the set $A=\{b\}$ is (1, 2) $g^{* *}-$ closed but not $\tau_{2}-$ closed in $\left(X, \tau_{1}, \tau_{2}\right)$.

Proposition 3.5: If A is both $\tau_{i}-g^{*}$-open and $(i, j)-g^{* *}-$ closed then A is $\tau_{j}-$ closed .

Proposition 3.6: In a Bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ every $(i, j)-g^{* *}$ - closed set is
(i) $(i, j)-g$-closed
(ii) $(i, j)-r g-c l o s e d ~(i i i) ~(i, j)-g p r-c l o s e d ~(i v) ~(i, j)-w g-c l o s e d$.

The following examples show that the converse of the above proposition are not true.
Example 3.7: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a, b\}, X\}$ and $\tau_{2}=\{\phi,\{a\}, X\}$. Then the set $A=\{a\}$ is (1, 2) -g-closed , $(1,2)-r g-$ closed and $(1,2)-w g$-closed but not $(1,2)-g^{* *}$-closed.

Example 3.8: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{c\},\{a, b\}, X\}$ and $\tau_{2}=\{\phi,\{a\}, X\}$. Then the subset $A=\{c\}$ is $(1,2)-g p r-$ closed but not $(1,2)-g^{* *}-$ closed .

Proposition 3.9: Every $(i, j)-g^{*}$-closed set is $(i, j)-g^{* *}$-closed .
The converse of the above need not be true.
Example 3.10: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\}, X\}$ and $\tau_{2}=\{\phi,\{a\},\{a, b\}, X\}$. Then the subset $A=\{b\}$ is (1, 2) - $g^{* *}-$ closed but not $(1,2)-g^{*}$-closed .

Proposition 3.11: If $A, B \in D^{* *}(i, j)$, then $A \cup B \in D^{* *}(i, j)$.

Remark 3.12: The intersection two $(i, j)-g^{* *}$ - closed set need not be $(i, j)-g^{* *}$ - closed as seen from the following example.

Example 3.13: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\},\{b, c\}, X\}$ and $\tau_{2}=\{\phi,\{b\},\{c\},\{b, c\},\{a, c\}, X\}$. Let $A=\{a, b\}$ and $B=\{b, c\}$. Then A and B are $(2,1)-g^{* *}$ - closed sets but $A \cap B=\{b\}$ is not a $(2,1)-g^{* *}-$ closed set.

Remark 3.14: $D^{* *}(1,2)$ is generally not equal to $D^{* *}(2,1)$.
Example 3.15: In Example (3.13), $A=\{b\} \notin D^{* *}(2,1)$ but $A \in D^{* *}(1,2)$.

Proposition 3.16: If $\tau_{1} \subseteq \tau_{2}$, in $\left(X, \tau_{1}, \tau_{2}\right)$ then $D^{* *}(2,1) \subseteq D^{* *}(1,2)$.
The converse of the above need not be true as seen in the following example.
Example 3.17: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\},\{b\},\{a, c\}, X\}$ and $\tau_{2}=\{\phi,\{a\},\{a, b\}, X\}$ where $\tau_{1} \not \subset \tau_{2}$ but $D^{* *}(2,1) \subseteq D^{* *}(1,2)$.

Proposition 3.18: For each element x of $\left(X, \tau_{1}, \tau_{2}\right),\{x\}$ is either $\tau_{i}-g^{*}$-closed or $X-\{x\}$ is (i,j)$g^{* *}$ - closed .

Proposition 3.19: If A is $(i, j)-g^{* *}-$ closed, then $\tau_{j}-\operatorname{cl}(A)-A$ contains no non-empty $\tau_{i}-g^{*}$-closed set.

Proof: Let A be $(i, j)-g^{* *}-$ closed and let F be a $\tau_{i}-g^{*}-\operatorname{closed}$ set such that $F \subseteq \tau_{j}-\operatorname{cl}(A)-A$. Since $A \in D^{* *}(i, j)$, we have $\tau_{j}-\operatorname{cl}(A) \subseteq F^{C}$.

Therefore $F \subseteq\left(\tau_{j}-\operatorname{cl}(A)\right) \bigcap\left(\tau_{j}-\operatorname{cl}(A)\right)^{C}=\phi$. Therefore $F=\phi$.

The converse of the above two propositions need not be true as it is seen in the following example.
Example 3.20: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{b\},\{c\},\{b, c\},\{a, c\}, X\}$ and $\tau_{2}=\{\phi,\{a\},\{b, c\}, X\}$.
Let $A=\{b\}$. Then $\tau_{2}-c l(A) \backslash A=\{c\}$ is not $\tau_{1}-g^{*}-$ closed. i.e. $\tau_{2}-c l(A) \backslash A$ contains no non-empty $\tau_{1}-g^{*}$-closed set but $A=\{b\}$ is not $(1,2)-g^{* *}-$ closed .

Theorem 3.22: If A is $(i, j)-g^{* *}$ - closed in $\left(X, \tau_{i}, \tau_{j}\right)$ then A is $\tau_{j}-$ closed if and only if $\tau_{j}-\operatorname{cl}(A) \backslash A$ is $\tau_{i}-g^{*}$-closed.

Proof: Necessity: If A is τ_{j}-closed then $\tau_{j}-\operatorname{cl}(A)=A$ that is $\tau_{j}-\operatorname{cl}(A) \backslash A=\phi$ and hence it is $\tau_{i}-g^{*}$-closed g^{*}-closed .

Sufficiency: If $\tau_{j}-\operatorname{cl}(A) \backslash A$ is $\tau_{i}-g^{*}$-closed then by proposition (3.19), $\tau_{j}-c l(A) \backslash A=\phi$. Therefore A is $\tau_{i}-g^{*}$-closed .

Theorem 3.23: If A is an $(i, j)-g^{* *}$ - closed set of $\left(X, \tau_{i}, \tau_{j}\right)$ such that $A \subseteq B \subseteq \tau_{j}-\operatorname{cl}(A)$ then B is also an $(i, j)-g^{* *}-$ closed set of $\left(X, \tau_{i}, \tau_{j}\right)$.

Proof: Let $B \subseteq U$ and U be $\tau_{i}-g *$-open Then $A \subseteq U$ and $\tau_{j}-c l(A) \subseteq U$. since A is $(i, j)-g^{* *}-$ closed $. B \subseteq \tau_{j}-\operatorname{cl}(A)$ implies $\tau_{j}-\operatorname{cl}(B) \subseteq \tau_{j}-\operatorname{cl}(A)$ and hence $\tau_{j}-\operatorname{cl}(B) \subseteq U$.

Therefore B is $(i, j)-g^{* *}-$ closed .

Proposition 3.24: In a Bitopological space $\left(X, \tau_{i}, \tau_{j}\right), G * O\left(X, \tau_{i}\right) \subseteq F_{j}$ if and only if every subset of X is an $(i, j)-g^{* *}-$ closed set.

Proof: Suppose $G^{*} O\left(X, \tau_{i}\right) \subseteq F_{j}$. Let A be a subset of X such that $A \subseteq U$ where $U \in G^{*} O\left(X, \tau_{i}\right)$. Then $\tau_{j}-\operatorname{cl}(A) \subseteq \tau_{j}-\operatorname{cl}(U)=U$ and hence A is $(i, j)-g^{* *}$ - closed. Conversely, suppose that every subset of X
is $(i, j)-g^{* *}$ - closed . Let $U \in G^{*} O\left(X, \tau_{i}\right)$. Since U is $(i, j)-g^{* *}$ - closed, we have $\tau_{j}-c l(U) \subseteq U$. Therefore $U=\tau_{j}-c l(U)$ and hence $U \in F_{j}$.

Therefore $G^{*} O\left(X, \tau_{i}\right) \subseteq F_{j}$.
The following figure illustrates the relationships with the other closed sets:

Where $\mathrm{A} \rightarrow$ B represents A implies B but not conversely.
4. $(i, j)-T_{1 / 2}^{* *}-\operatorname{spaces}(i, j)-{ }^{* *} T_{1 / 2}-\operatorname{spaces}(i, j)-$ and ${ }^{*} T_{1 / 2} *-$ spaces

In this section we introduce three new bitopological spaces (i, j) $-T_{1 / 2}^{* *}-$ spaces , $(i, j)-{ }^{* * *} T_{1 / 2}-$ spaces and (i,) ${ }^{*} T_{1 / 2}^{*}$ - spaces .

Definition 4.1: A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be an $(i, j)-{ }^{* *} T_{1 / 2}$-space if every (i, j)-set is $(i, j)-g^{* *}-$ closed g^{*}-closed.

Proposition 4.2: Every $(i, j)-T_{1 / 2}$ - space is a (i, $\left.j\right)-{ }^{* *} T_{1 / 2}$ - space but not conversely.
Example 4.3: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\},\{a, c\}, X\}$ and $\tau_{2}=\{\phi,\{a, b\}, X\}$. Then $\left(X, \tau_{1}, \tau_{2}\right)$ is a (1, 2) ${ }^{* *} T_{1 / 2}$ - space but nota $(1,2)-T_{1 / 2}-$ space since $A=\{b\}$ is $(1,2)-g$ - closed but not τ_{2}-closed .

Remark 4.4: A $(1,2)-T_{1 / 2}^{*}$ - space need not be a $(1,2)-{ }^{* *} T_{1 / 2}$ - space true as it is seen in the following example. Example 4.5: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\}, X\}$ and $\tau_{2}=\{\phi,\{a\},\{b, c\}, X\}$. Then $\left(X, \tau_{1}, \tau_{2}\right)$ is a (1, 2)$T_{1 / 2}^{*}-$ space but not a $(1,2)-{ }^{* *} T_{1 / 2}-$ space since $A=\{b\}$ is $(1,2)-g^{* *}-$ closed but not $(1,2)-g^{*}-$ closed

Definition 4.6: A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be a $(i, j)-T_{1 / 2}^{* *}$-space if every (i, j) $g^{* *}-$ closed set is τ_{j}-closed .

Proposition 4.7: If $\left(X, \tau_{1}, \tau_{2}\right)$ is a $(i, j)-T_{1 / 2}^{* *}-$ space then it is a $(i, j)-T_{1 / 2}^{*}-$ space.
The converse of the above is not be true as seen in the following example.
Example 4.8: In example (4.5), $\left(X, \tau_{1}, \tau_{2}\right)$ is $(1,2)-T_{1 / 2}^{*}-$ space but not a $(1,2)-T_{1 / 2}^{* *}-$ space. Since $A=\{b\}$ is $(1,2)-g^{* *}$ - closed but not τ_{2} - closed .

Proposition 4.9: If a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is a (1, 2) - $T_{1 / 2}-$ space then it is both (1, 2) - ${ }^{* *} T_{1 / 2}-$ space and $(1,2)-T_{1 / 2}^{* *}-$ space .

Proof follows from propositions (4.2) and (4.7).
Proposition 4.10: Every $(i, j)-T_{1 / 2}^{* *}$ - space is $(i, j)-{ }^{* *} T_{1 / 2}$ - space but not conversely.
Example 4.11: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\},\{a, c\}, X\}$ and $\tau_{2}=\{\phi,\{a, b\}, X\}$. Then $\left(X, \tau_{1}, \tau_{2}\right)$ is a (i, j) ${ }^{* *} T_{1 / 2}$ - space but not a $(i, j)-T_{1 / 2}^{* *}-$ space since $A=\{a, b\}$ is $(1,2)-g^{* *}-$ closed but not $\tau_{2}-$ closed .

Definition 4.12: A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be a strongly pairwise ${ }^{* *} T_{1 / 2}-$ space if it is both (1, 2) ${ }^{* *} T_{1 / 2}$ - space and $(2,1)-{ }^{* *} T_{1 / 2}-$ space .

Definition 4.13: A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be a strongly pairwise $T_{1 / 2}^{* *}-$ space If it is both (1, 2) $T_{1 / 2}^{* *}$ - space and (2,1)- $T_{1 / 2}^{* *}$ - space .

Proposition 4.14: If $\left(X, \tau_{1}, \tau_{2}\right)$ is a strongly pairwise $T_{1 / 2}$ - space then it is a strongly pairwise ${ }^{* *} T_{1 / 2}$ - space but not conversely.

Example 4.15: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\},\{b, c\}, X\}$ and $\tau_{2}=\{\phi,\{b\},\{c\},\{a, c\},\{b, c\}, X\}$.
Then $\left(X, \tau_{1}, \tau_{2}\right)$ is a strongly pairwise ${ }^{* *} T_{1 / 2}-$ space but not a strongly pairwise $T_{1 / 2}$-space
since $A=\{c\}$ is $(1,2)-g-$ closed but not $\tau_{2}-$ closed .
Proposition 4.16: If $\left(X, \tau_{1}, \tau_{2}\right)$ is a strongly pairwise $T_{1 / 2}^{* *}-$ space then it is a strongly pairwise $T_{1 / 2}^{*}-$ space but not conversely.

Example 4.17: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\},\{a, b\}, X\}$ and $\tau_{2}=\{\phi,\{a\},\{b\},\{a, b\}, X\}$.
Then $\left(X, \tau_{1}, \tau_{2}\right)$ is a strongly pairwise $T_{1 / 2}^{*}$ space but not a strongly pairwise $T_{1 / 2}^{* *}$ - space since $A=\{a, c\}$ is $(2,1)-g * *-$ closed but not τ_{1}-closed. Therefore $\left(X, \tau_{1}, \tau_{2}\right)$ is not a $(2,1)-T_{1 / 2}^{* *}$-space and hence it is not a strongly pairwise $T_{1 / 2}^{* *}$ - space .

Proposition 4.18: The following conditions are equivalent in a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$
(i) $\left(X, \tau_{1}, \tau_{2}\right)$ is a $(i, j)-T_{1 / 2}^{* *}$-space .
(ii) Every singleton of X is either $\tau_{i}-g^{*}$ closed or τ_{j}-open .

Proof: (i) \rightarrow (ii), Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an (i, j) - $T_{1 / 2}^{* *}$-space. Let $x \in X$ and suppose $\{x\}$ is not $\tau_{i}-g *$ closed. Then $X-\{x\}$ is not $\tau_{i}-g^{*}$ open. Therefore $X-\{x\}$ is a $(i, j)-g^{* *}$ - closed set of $\left(X, \tau_{1}, \tau_{2}\right)$ since $\left(X, \tau_{1}, \tau_{2}\right)$ is a $(i, j)-T_{1 / 2}^{* *}$-space, $X-\{x\}$ is τ_{j}-closed. Therefore $\{x\}$ is τ_{j} - open.
(ii) \rightarrow (i), Let A be a $(i, j)-g^{* *}-\operatorname{closed}$ set of $\left(X, \tau_{1}, \tau_{2}\right) . A \subseteq \tau_{j}-\operatorname{cl}(A)$. Let $x \in \tau_{j}-\operatorname{cl}(A)$. By (ii), $\{x\}$ is either $\tau_{i}-g *$ closed or τ_{j}-open ..

Case (i): Let $\{x\}$ be $\tau_{i}-g *$ closed, Suppose $x \notin A$, then $\tau_{j}-c l(A)-A$ contains a non-empty $\tau_{j}-g^{*}$ closed set $\{x\}$, which is a contradiction to propositions (3.22). Therefore $x \in A$.

Case (ii), Suppose $\{x\}$ is τ_{j}-open. Since $x \in \tau_{j}-\operatorname{cl}(A),\{x\} \cap A \neq 0$. Therefore we have $x \in A$. This in both cases, we conclude that A is $\tau_{j}-$ closed . Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is an $(i, j)-T_{1 / 2}^{* *}-$ closed .

Definition 4.19: A space (X, τ_{1}, τ_{2}) is called a $(i, j)-{ }^{*} T_{1 / 2}^{*}-$ space if every $(i, j)-g-$ closed set of $\left(X, \tau_{1}, \tau_{2}\right)$ is $(i, j)-g^{* *}$-closed .

Definition 4.20: A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be a strongly pairwise ${ }^{*} T_{1 / 2}^{*}-$ space if it is both (1, 2) ${ }^{*} T_{1 / 2}^{*}-$ spaces and (2, 1) - ${ }^{*} T_{1 / 2}^{*}-$ spaces .

Proposition 4.21: Every $(i, j)-T_{1 / 2}-$ space is an $(i, j)-{ }^{*} T_{1 / 2}^{*}-$ space but not conversely.
Example 4.22: In example (4.3), $\left(X, \tau_{1}, \tau_{2}\right)$ is (1, 2) - ${ }^{*} T_{1 / 2}^{*}-$ space but not a (1, 2) - $T_{1 / 2}$-space since $A=\{b\}$ is $(1,2)-g$-closed but not τ_{2}-closed .

Remark 4.23: $(i, j)-T_{1 / 2}^{* *}-$ space and $(i, j)-{ }^{*} T_{1 / 2}^{*}$ - spaces are independent as seen in the following example.
Example 4.24: In example (4.5), $\left(X, \tau_{1}, \tau_{2}\right)$ is $(i, j)-{ }^{*} T_{1 / 2}^{*}-$ spaces but not a ($\left.i, j\right)-T_{1 / 2}^{* *}-$ space since $A=\{b\}$ is $(1,2)-g^{* *}-$ closed but not $\tau_{2}-$ closed .

Example 4.25: Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\},\{b\},\{a, b\}, X\}$ and $\tau_{2}=\{\phi,\{a\},\{a, b\}, X\}$. Then $\left(X, \tau_{1}, \tau_{2}\right)$ is $(1,2)-{ }^{*} T_{1 / 2}^{*}$ - space but not a $T_{1 / 2}^{* *}-$ space since $A=\{a, c\}$ is $(1,2)-g^{* *}-$ closed but not $\tau_{2}-$ closed .

Proposition 4.26: A space $\left(X, \tau_{1}, \tau_{2}\right)$ is a $(i, j)-{ }^{*} T_{1 / 2}-$ space if and only if it is both $(i, j)-{ }^{*} T_{1 / 2}^{*}-$ space and (i,j) - ${ }^{* *} T_{1 / 2}$-space.

Proof: Let A be an $(i, j)-g$-closed set in X . Since $\left(X, \tau_{1}, \tau_{2}\right)$ is a $(i, j)-{ }^{*} T_{1 / 2}^{*}-$ spaces, A is an (i, j) $g^{* *}$ - closed set in X . Again since $\left(X, \tau_{1}, \tau_{2}\right)$ is a $(\mathrm{i}, \mathrm{j}){ }^{* *} T_{1 / 2}-$ space, A is $(\mathrm{i}, \mathrm{j}) g^{*}$-closed .

Therefore every $(i, j)-g$-closed set of $\left(X, \tau_{1}, \tau_{2}\right)$ is $(i, j)-g^{*}$-closed. Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is an (i, j) ${ }^{*} T_{1 / 2}$ - space.

Conversely suppose $\left(X, \tau_{1}, \tau_{2}\right)$ be an ($\left.i, j\right)-{ }^{*} T_{1 / 2}$-space. Let A be an $(i, j)-g^{* *}$-closed set of (X, τ_{1}, τ_{2}). Then from (i) of proposition (3.6), A is (i,j)-g-closed. Since (X, τ_{1}, τ_{2}) is ${ }^{*} T_{1 / 2}$-space, A is (i, j) g^{*}-closed and hence (X, τ_{1}, τ_{2}) is (i, j) - ${ }^{* *} T_{1 / 2}$-space .Let A be an $(i, j)-g$-closed set. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is ${ }^{*} T_{1 / 2}$-space, A is $(\mathrm{i}, \mathrm{j})-g^{*}$-closed. Then by

Proposition (3.9), A is (i,j)- $g^{* *}$ - closed . Therefore $\left(X, \tau_{1}, \tau_{2}\right)$ is (i, j) ${ }^{*} T_{1 / 2}^{*}-$ space .
Proposition 4.27: A space (X, τ_{1}, τ_{2}) is strongly pairwise ${ }^{*} T_{1 / 2}$-space if and only if it is both strongly pairwise ${ }^{*} T_{1 / 2}^{*}$ - space and strongly pairwise ${ }^{* *} T_{1 / 2}$ - space. Proof follows from proposition 4.26.

Proposition 4.28: Every strongly pairwise $T_{1 / 2}$ - space is strongly pairwise ${ }^{*} T_{1 / 2}^{*}$ - spaces but not conversely. Proof follows from proposition 4.21.

Example 4.29: In example (4.22), (X, τ_{1}, τ_{2}) is strongly pairwise ${ }^{*} T_{1 / 2}^{*}$ - space but not a strongly pairwise $T_{1 / 2}$ - space since $A=\{b\}$ is $(1,2)-g$-closed but not τ_{2}-closed .

The results in this section can be represented in the following figure:

Where A \rightarrow B represents A implies B but not conversely and A \qquad B represents A and B are independent.

REFERENCES

[1] I. Arockiarani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D. Thesis, Bharathiar Univ., Coimbatore, 1997.
[2] T. Fukutake, Bull, Fukuoka Univ. Ed. Part III, 35(1985), 19 - 28.
[3] T. Fukutake, P. Sundaram and N. Nagaveni, Bull, Fukuoka Univ. Ed. Part III, 48(1999), 33 - 40.
[4] T. Fukutake, P. Sundaram, M. Sheik John, Bull, Fukuoka Univ. Ed. Part III, 51(2002), 1 - 9.
[5] J. C.Kelley, Proc., London Math. Sci. 13(1963), 71 - 89.
[6] N. Levine, Amer. Math. Monthly, 70 (1963), 36 - 41.
[7] N. Levine, Rend. Cire. Math. Palermo, 19 (1970), 89 - 96.
[8] M. Sheik John and P. Sundaram, Indian J. Pure Appl. Math. 35(1) (2004), 71 - 80.
[9] M. Stone, Trans. Amer. Math. Soc. 41 (1937) 374 - 481.
[10] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, g**-closed sets in topological spaces (accepted).
[11] M.K.R.S. Veera Kumar, Mem. Fac. Sci. Kochi Univ. (Math.), 21 (2000), 1 - 19.

