International Journal of Mathematical Archive-3(7), 2012, 2728-2734 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

g** -closed sets in bitopological spaces

Mrs. Veronica Vijayan, Mrs. Ponnuthai Selvarani and Sr. Pauline Mary Helen. M*

Associate Professors, Nirmala College, Coimbatore-641018. India Dr. Punitha Tharani, Associate Professor, St. Mary's College, Tuticorin-628001, India

(Received on: 12-06-12; Accepted on: 30-06-12)

ABSTRACT

In this paper we introduce g**-closed sets in bitopological spaces. Properties of this sets are investigated and we introduce three new bitopological spaces namely, (i, j)-** $T_{\frac{1}{2}}$ spaces, (i, j)- $T_{\frac{1}{2}}$ **space and (i, j)-* $T_{\frac{1}{2}}$ *spaces.

Key words: (i, j)-g**-closed sets, (i, j)-** $T_{\frac{1}{2}}$ spaces, (i, j)- $T_{\frac{1}{2}}$ *spaces and (i, j)-* $T_{\frac{1}{2}}$ *spaces.

1. INTRODUCTION

A triple (X,τ_1, τ_2) where X is a non-empty set and τ_1 and τ_2 are topologies in X is called a bitopological space and Kelly[5] initiated the study of such spaces. In 1985, Fukutake [2] introduced the concepts of g-closed sets in bitopological spaces. M.K.R.S. Veerakumar[11] introduced and studied the concepts of g*-closed sets and g*continuity in topological spaces. Sheik John. M and Sundaram. P [8] introduced and studied the concepts of g*-closed sets in bitopological spaces in 2002. The purpose of this paper is to introduce the concepts of g**-closed sets, (i, j)-** $T_{1/2}$ spaces, (i, j)- $T_{1/2}$ **spaces and (i, j)- $T_{1/2}$ *spaces in bitopological spaces and investigate some of their properties.

2. PRELIMINARIES

Definition 2.1 A subset a of a topological space (X, τ) is said to be

- 1. a pre-open set [7] if $A \subset int(cl(A))$ and a preclosed set if $cl(int(A)) \subset A$.
- 2. a semi-open set [6] if $A \subseteq cl(int(A))$ and and semi-closed set if int $(cl(A)) \subseteq A$.
- 3. a regular open set [9] if A = int (cl(A))
- 4. a generalized closed set [7] (briefly g-closed set) if $cl(A) \subset U$ whenever $A \subset U$ and U is open in(X, τ).
- 5. a generalized star closed set[11] (briefly g*-closed set) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .
- 6. a generalized star star closed set[10] (briefly g**-closed set) if $cl(A) \subset U$ whenever $A \subset U$ and U is g*-open in (X, τ) .

If A is a subset of X with topology τ , then the closure of A is denoted by $\tau - cl(A)$ or cl(A), the interior of A is denoted by $\tau - int(A)$ or int(A) and the complement of A in X is denoted by A^c .

For a subset of $(X, \tau_i, \tau_i), \tau_i$ -cl(A) (resp. τ_i -int(A))denote the closure (resp. interior) of A with respect to the topology τ_i . We denote the family of all g-open(resp.g*-open) subsets of X with respect to the topology τ_i by GO(X, τ_i) (resp. $G^{*}O(X, \tau_{i})$ and the family of all τ_{i} - closed sets is denoted by the symbol F_{i} we mean the pair of topologies (τ_{i}, τ_{i}).

Definition 2.2 A subset A of a topology (X, τ_i, τ_j) is called

- 1. (i, j)-g-closed[2] if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is open in τ_i .
- 2. (i, j)-rg-closed[1] if τ_i -cl(A) \subset U whenever A \subset U and U is regular open in τ_i .
- 3. (i, j)-gpr-closed [4] if τ_i -pcl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i .
- 4. (i, j)-wg-closed[3] if τ_i -cl(τ_i -int(A)) \subseteq U whenever A \subseteq U and U is open in τ_i .

Definition 2.3 A bitopological space (X, τ_1, τ_2) is called

- 1. an (i, j)-T_{1/2} space[2] if every (i, j)-g-closed set is τ_i -closed.
- 2. a strongly pairwise $T_{\frac{1}{2}}$ space[2] if it is both (1, 2) $T_{\frac{1}{2}}$ and (2, 1) $T_{\frac{1}{2}}$.
- 3. an (i, j)- $T_{\frac{1}{2}}$ * space[8] if every (i, j)-g*-closed set is τ_i -closed.
- 4. a strongly pairwise $T_{\frac{1}{2}}$ *space[8] if it is both (1, 2) $T_{\frac{1}{2}}$ * and (2, 1) $T_{\frac{1}{2}}$ *.
- 5. an (i, j)- ${}^{*}T_{\frac{1}{2}}$ space[8] if every (i, j)-g-closed set is g*-closed. 6. a strongly pairwise ${}^{*}T_{\frac{1}{2}}$ space[8] if it is both (1, 2) - ${}^{*}T_{\frac{1}{2}}$ and (2, 1) - ${}^{*}T_{\frac{1}{2}}$.

Corresponding author: Sr. Pauline Mary Helen. M* Associate Professors, Nirmala College, Coimbatore-641018. India

3. (i, j) – g**-closed sets

In this section we introduce the concept of (i, j)-g**-closed sets in bitopological spaces.

Definition 3.1: A subset A of a topological space (X, τ_1, τ_2) is said to be an $(i, j) - g^{**} - closed$ set if $\tau_j - cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in G^*O(X, \tau_i)$. We denote the family of all $(i, j) - g^{**} - closed$ sets in (X, τ_1, τ_2) by $D^{**}(i, j)$.

Remark 3.2: By setting $\tau_1 = \tau_2$ in definition (3.1), a $(i, j) - g^{**} - closed$ set is a $g^{**} - closed$ set.

Proposition 3.3: Every $\tau_j - closed$ subset of (X, τ_1, τ_2) is $(i, j) - g^{**} - closed$.

The converse of the above propositions is not true as seen in the following example.

Example 3.4: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{c\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the set $A = \{b\}$ is (1, 2) - $g^{**} - closed$ but not $\tau_2 - closed$ in (X, τ_1, τ_2) .

Proposition 3.5: If A is both $\tau_i - g^* - open$ and $(i, j) - g^{**} - closed$ then A is $\tau_j - closed$.

Proposition 3.6: In a Bitopological space (X, τ_1, τ_2) every $(i, j) - g^{**} - closed$ set is (i) (i, j) - g - closed(ii) (i, j) - rg - closed (iii) (i, j) - gpr - closed (iv) (i, j) - wg - closed.

The following examples show that the converse of the above proposition are not true.

Example 3.7: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the set $A = \{a\}$ is (1, 2) - g - closed, (1, 2) - rg - closed and (1, 2) - wg - closed but not $(1, 2) - g^{**} - closed$.

Example 3.8: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{c\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the subset $A = \{c\}$ is (1, 2) - gpr - closed but not (1, 2) - $g^{**} - closed$.

Proposition 3.9: Every $(i, j) - g^* - closed$ set is $(i, j) - g^{**} - closed$.

The converse of the above need not be true.

Example 3.10: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. Then the subset $A = \{b\}$ is (1, 2) - g^{**} - closed but not (1, 2) - g^{*} - closed.

Proposition 3.11: If $A, B \in D^{**}(i, j)$, then $A \cup B \in D^{**}(i, j)$.

Remark 3.12: The intersection two $(i, j) - g^{**} - closed$ set need not be $(i, j) - g^{**} - closed$ as seen from the following example.

Example 3.13: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{a, b\}$ and $B = \{b, c\}$. Then A and B are (2,1) - g^{**} - closed sets but $A \cap B = \{b\}$ is not a (2,1) - g^{**} - closed set.

Remark 3.14: $D^{**}(1,2)$ is generally not equal to $D^{**}(2,1)$.

Example 3.15: In Example (3.13), $A = \{b\} \notin D^{**}(2,1)$ but $A \in D^{**}(1,2)$.

Proposition 3.16: If $\tau_1 \subseteq \tau_2$, in (X, τ_1, τ_2) then $D^{**}(2,1) \subseteq D^{**}(1,2)$.

The converse of the above need not be true as seen in the following example.

Example 3.17: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$ where $\tau_1 \not\subset \tau_2$ but $D^{**}(2,1) \subseteq D^{**}(1,2)$.

Proposition 3.18: For each element x of (X, τ_1, τ_2) , $\{x\}$ is either $\tau_i - g^* - closed$ or $X - \{x\}$ is $(i, j) - g^{**} - closed$.

Proposition 3.19: If A is $(i, j) - g^{**} - closed$, then $\tau_j - cl(A) - A$ contains no non-empty $\tau_i - g^* - closed$ set.

Proof: Let A be $(i, j) - g^{**} - closed$ and let F be a $\tau_i - g^* - closed$ set such that $F \subseteq \tau_j - cl(A) - A$. Since $A \in D^{**}(i, j)$, we have $\tau_j - cl(A) \subseteq F^C$.

Therefore $F \subseteq (\tau_j - cl(A)) \cap (\tau_j - cl(A))^C = \phi$. Therefore $F = \phi$.

The converse of the above two propositions need not be true as it is seen in the following example.

Example 3.20: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b, c\}, X\}$.

Let $A = \{b\}$. Then $\tau_2 - cl(A) \setminus A = \{c\}$ is not $\tau_1 - g * -closed$. i.e. $\tau_2 - cl(A) \setminus A$ contains no non-empty $\tau_1 - g * -closed$ set but $A = \{b\}$ is not (1, 2) - g * * -closed.

Theorem 3.22: If A is $(i, j) - g^{**} - closed$ in (X, τ_i, τ_j) then A is $\tau_j - closed$ if and only if $\tau_j - cl(A) \setminus A$ is $\tau_i - g^* - closed$.

Proof: Necessity: If A is $\tau_j - closed$ then $\tau_j - cl(A) = A$ that is $\tau_j - cl(A) \setminus A = \phi$ and hence it is $\tau_j - g^* - closed g^* - closed$.

Sufficiency: If $\tau_j - cl(A) \setminus A$ is $\tau_i - g * -closed$ then by proposition (3.19), $\tau_j - cl(A) \setminus A = \phi$. Therefore A is $\tau_i - g * -closed$.

Theorem 3.23: If A is an (i, j) - g^{**} - closed set of (X, τ_i, τ_j) such that $A \subseteq B \subseteq \tau_j - cl(A)$ then B is also an (i, j) - g^{**} - closed set of (X, τ_i, τ_j) .

Proof: Let $B \subseteq U$ and U be $\tau_i - g^* - open$ Then $A \subseteq U$ and $\tau_j - cl(A) \subseteq U$. since A is $(i, j) - g^{**} - closed$. $B \subseteq \tau_j - cl(A)$ implies $\tau_j - cl(B) \subseteq \tau_j - cl(A)$ and hence $\tau_j - cl(B) \subseteq U$.

Therefore B is (i, j) - g ** - closed.

Proposition 3.24: In a Bitopological space (X, τ_i, τ_j) , $G^*O(X, \tau_i) \subseteq F_j$ if and only if every subset of X is an $(i, j) - g^{**} - closed$ set.

Proof: Suppose $G * O(X, \tau_i) \subseteq F_j$. Let A be a subset of X such that $A \subseteq U$ where $U \in G * O(X, \tau_i)$. Then $\tau_j - cl(A) \subseteq \tau_j - cl(U) = U$ and hence A is (i, j) - g * - closed. Conversely, suppose that every subset of X © 2012, IJMA. All Rights Reserved 2730 is $(i, j) - g^{**} - closed$. Let $U \in G^*O(X, \tau_i)$. Since U is $(i, j) - g^{**} - closed$, we have $\tau_j - cl(U) \subseteq U$. Therefore $U = \tau_j - cl(U)$ and hence $U \in F_j$.

Therefore $G^*O(X, \tau_i) \subseteq F_i$.

The following figure illustrates the relationships with the other closed sets:

Where A B represents A implies B but not conversely.

4. $(i, j) - T_{1/2}^{**} - spaces (i, j) - {}^{**}T_{1/2} - spaces (i, j) - and {}^{*}T_{1/2} + spaces$

In this section we introduce three new bitopological spaces $(i, j) - T_{1/2}^{**} - spaces$, $(i, j) - {}^{**}T_{1/2} - spaces$ and $(i, j) + {}^{*}T_{1/2}^{*} - spaces$.

Definition 4.1: A bitopological space (X, τ_1, τ_2) is said to be an $(i, j) - {}^{**}T_{1/2} - space$ if every (i, j)-set is (i, j) - g ** - closed g * -closed.

Proposition 4.2: Every $(i, j) - T_{1/2} - space$ is a $(i, j) - {}^{**}T_{1/2} - space$ but not conversely.

Example 4.3: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then (X, τ_1, τ_2) is a $(1, 2) - {}^{**}T_{1/2} - space$ but not a $(1, 2) - T_{1/2} - space$ since $A = \{b\}$ is (1, 2) - g - closed but not $\tau_2 - closed$.

Remark 4.4: A (1, 2) - $T_{1/2}^* - space$ need not be a (1, 2) - ${}^{**}T_{1/2} - space$ true as it is seen in the following example.

Example 4.5: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b, c\}, X\}$. Then (X, τ_1, τ_2) is a $(1, 2) - T_{1/2}^* - space$ but not a $(1, 2) - T_{1/2}^* - space$ since $A = \{b\}$ is (1, 2) - g * - closed but not (1, 2) - g * - closed

Definition 4.6: A bitopological space (X, τ_1, τ_2) is said to be a $(i, j) - T_{1/2}^{**} - space$ if every $(i, j) - g^{**} - closed$ set is $\tau_j - closed$.

Proposition 4.7: If (X, τ_1, τ_2) is a $(i, j) - T_{1/2}^{**} - space$ then it is a $(i, j) - T_{1/2}^* - space$.

The converse of the above is not be true as seen in the following example.

Example 4.8: In example (4.5), (X, τ_1, τ_2) is $(1, 2) - T_{1/2}^* - space$ but not a $(1, 2) - T_{1/2}^{**} - space$. Since $A = \{b\}$ is $(1, 2) - g^{**} - closed$ but not $\tau_2 - closed$.

Proposition 4.9: If a bitopological space (X, τ_1, τ_2) is a $(1, 2) - T_{1/2} - space$ then it is both $(1, 2) - {}^{**}T_{1/2} - space$ and $(1, 2) - T_{1/2}^{**} - space$.

Proof follows from propositions (4.2) and (4.7).

Proposition 4.10: Every $(i, j) - T_{1/2}^{**} - space$ is $(i, j) - T_{1/2}^{**} - space$ but not conversely.

Example 4.11: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then (X, τ_1, τ_2) is a $(i, j) - {}^{**}T_{1/2} - space$ but not a $(i, j) - T_{1/2}^{**} - space$ since $A = \{a, b\}$ is (1, 2) - g ** - closed but not $\tau_2 - closed$.

Definition 4.12: A bitopological space (X, τ_1, τ_2) is said to be a strongly pairwise ${}^{**}T_{1/2} - space$ if it is both (1, 2) - ${}^{**}T_{1/2} - space$ and (2, 1) - ${}^{**}T_{1/2} - space$.

Definition 4.13: A bitopological space (X, τ_1, τ_2) is said to be a strongly pairwise $T_{1/2}^{**} - space$ If it is both (1, 2) - $T_{1/2}^{**} - space$ and (2, 1) - $T_{1/2}^{**} - space$.

Proposition 4.14: If (X, τ_1, τ_2) is a strongly pairwise $T_{1/2}$ – *space* then it is a strongly pairwise ${}^{**}T_{1/2}$ – *space* but not conversely.

Example 4.15: Let
$$X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b, c\}, X\}$$
 and $\tau_2 = \{\phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}.$

Then (X, τ_1, τ_2) is a strongly pairwise ${}^{**}T_{1/2}$ – space but not a strongly pairwise $T_{1/2}$ – space

since $A = \{c\}$ is (1, 2) - g - closed but not $\tau_2 - closed$.

Proposition 4.16: If (X, τ_1, τ_2) is a strongly pairwise $T_{1/2}^{**} - space$ then it is a strongly pairwise $T_{1/2}^* - space$ but not conversely.

Example 4.17: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}.$

Then (X, τ_1, τ_2) is a strongly pairwise $T_{1/2}^* - space$ but not a strongly pairwise $T_{1/2}^{**} - space$ since $A = \{a, c\}$ is $(2,1) - g^{**} - closed$ but not $\tau_1 - closed$. Therefore (X, τ_1, τ_2) is not a $(2, 1) - T_{1/2}^{**} - space$ and hence it is not a strongly pairwise $T_{1/2}^{**} - space$.

Proposition 4.18: The following conditions are equivalent in a bitopological space (X, τ₁, τ₂)
(i) (X, τ₁, τ₂) is a (i, j) - T^{**}_{1/2} - space.
(ii) Every singleton of X is either τ_i - g * closed or τ_i - open.

Proof: (i) \rightarrow (ii), Let (X, τ_1, τ_2) be an $(i, j) - T_{1/2}^{**} - space$. Let $x \in X$ and suppose $\{x\}$ is not $\tau_i - g * closed$. Then $X - \{x\}$ is not $\tau_i - g * open$. Therefore $X - \{x\}$ is a (i, j) - g ** - closed set of (X, τ_1, τ_2) since (X, τ_1, τ_2) is a $(i, j) - T_{1/2}^{**} - space$, $X - \{x\}$ is $\tau_j - closed$. Therefore $\{x\}$ is $\tau_j - open$.

(ii) \rightarrow (i), Let A be a (i, j) - g^{**} - closed set of (X, τ_1, τ_2) . $A \subseteq \tau_j - cl(A)$. Let $x \in \tau_j - cl(A)$. By (ii), $\{x\}$ is either $\tau_i - g^*$ closed or $\tau_j - open$..

Mrs. Veronica Vijayan, Mrs. Ponnuthai Selvarani and Sr. Pauline Mary Helen. M*/ g** -closed sets in bitopological spaces / IJMA- 3(7), July-2012, Page: 2728-2734

Case (i): Let $\{x\}$ be $\tau_i - g * closed$, Suppose $x \notin A$, then $\tau_j - cl(A) - A$ contains a non-empty $\tau_j - g * closed$ set $\{x\}$, which is a contradiction to propositions (3.22). Therefore $x \in A$.

Case (ii), Suppose $\{x\}$ is $\tau_j - open$. Since $x \in \tau_j - cl(A)$, $\{x\} \cap A \neq 0$. Therefore we have $x \in A$. This in both cases, we conclude that A is $\tau_j - closed$. Hence (X, τ_1, τ_2) is an $(i, j) - T_{1/2}^{**} - closed$.

Definition 4.19: A space (X, τ_1, τ_2) is called a $(i, j) - {}^*T_{1/2}^* - space$ if every (i, j) - g - closed set of (X, τ_1, τ_2) is (i, j) - g ** - closed.

Definition 4.20: A bitopological space (X, τ_1, τ_2) is said to be a strongly pairwise ${}^*T_{1/2}^* - space$ if it is both $(1, 2) - {}^*T_{1/2}^* - spaces$ and $(2, 1) - {}^*T_{1/2}^* - spaces$.

Proposition 4.21: Every $(i, j) - T_{1/2} - space$ is an $(i, j) - {}^*T_{1/2}^* - space$ but not conversely.

Example 4.22: In example (4.3), (X, τ_1, τ_2) is $(1, 2) - {}^*T_{1/2}^* - space$ but not a $(1, 2) - T_{1/2} - space$ since $A = \{b\}$ is (1, 2) - g - closed but not $\tau_2 - closed$.

Remark 4.23: $(i, j) - T_{1/2}^{**} - space$ and $(i, j) - T_{1/2}^{*} - spaces$ are independent as seen in the following example.

Example 4.24: In example (4.5), (X, τ_1, τ_2) is $(i, j) - {}^*T_{1/2}^* - spaces$ but not a $(i, j) - T_{1/2}^{**} - space$ since $A = \{b\}$ is $(1, 2) - g^{**} - closed$ but not $\tau_2 - closed$.

Example 4.25: Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. Then (X, τ_1, τ_2) is $(1, 2) - {}^*T^*_{1/2} - space$ but not a $T^{**}_{1/2} - space$ since $A = \{a, c\}$ is (1, 2) - g ** - closed but not $\tau_2 - closed$.

Proposition 4.26: A space (X, τ_1, τ_2) is a $(i, j) - {}^*T_{1/2} - space$ if and only if it is both $(i, j) - {}^*T_{1/2}^* - space$ and $(i, j) - {}^{**}T_{1/2} - space$.

Proof: Let A be an (i, j) - g - closed set in X. Since (X, τ_1, τ_2) is a $(i, j) - {}^*T^*_{1/2} - spaces$, A is an (i, j) - g ** - closed set in X. Again since (X, τ_1, τ_2) is a $(i, j) {}^{**}T_{1/2} - space$, A is (i, j) g * -closed.

Therefore every (i, j) - g - closed set of (X, τ_1, τ_2) is $(i, j) - g^* - closed$. Hence (X, τ_1, τ_2) is an $(i, j) - {}^*T_{1/2} - space$.

Conversely suppose (X, τ_1, τ_2) be an $(i, j) - {}^*T_{1/2} - space$. Let A be an (i, j) - g ** - closed set of (X, τ_1, τ_2) . Then from (i) of proposition (3.6), A is (i, j) - g - closed. Since (X, τ_1, τ_2) is ${}^*T_{1/2} - space$, A is (i, j) g * -closed and hence (X, τ_1, τ_2) is $(i, j) - {}^{**}T_{1/2} - space$. Let A be an (i, j) - g - closed set. Since (X, τ_1, τ_2) is ${}^*T_{1/2} - space$, A is (i, j) - g * -closed. Then by

Proposition (3.9), A is $(i, j) - g^{**} - closed$. Therefore (X, τ_1, τ_2) is $(i, j)^* T_{1/2}^* - space$.

Proposition 4.27: A space (X, τ_1, τ_2) is strongly pairwise ${}^*T_{1/2} - space$ if and only if it is both strongly pairwise ${}^*T_{1/2}^* - space$ and strongly pairwise ${}^{**}T_{1/2} - space$. Proof follows from proposition 4.26.

Mrs. Veronica Vijayan, Mrs. Ponnuthai Selvarani and Sr. Pauline Mary Helen. M*/ g** -closed sets in bitopological spaces / IJMA- 3(7), July-2012, Page: 2728-2734

Proposition 4.28: Every strongly pairwise $T_{1/2} - space$ is strongly pairwise ${}^*T_{1/2}^* - spaces$ but not conversely. Proof follows from proposition 4.21.

Example 4.29: In example (4.22), (X, τ_1, τ_2) is strongly pairwise ${}^*T_{1/2}^* - space$ but not a strongly pairwise $T_{1/2} - space$ since $A = \{b\}$ is (1, 2) - g - closed but not $\tau_2 - closed$.

The results in this section can be represented in the following figure:

Where A \rightarrow B represents A implies B but not conversely and A \leftarrow B represents A and B are independent.

REFERENCES

[1] I. Arockiarani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D. Thesis, Bharathiar Univ., Coimbatore, 1997.

- [2] T. Fukutake, Bull, Fukuoka Univ. Ed. Part III, 35(1985), 19 28.
- [3] T. Fukutake, P. Sundaram and N. Nagaveni, Bull, Fukuoka Univ. Ed. Part III, 48(1999), 33 40.
- [4] T. Fukutake, P. Sundaram, M. Sheik John, Bull, Fukuoka Univ. Ed. Part III, 51(2002), 1 9.
- [5] J. C.Kelley, Proc., London Math. Sci. 13(1963), 71 89.
- [6] N. Levine, Amer. Math. Monthly, 70 (1963), 36 41.
- [7] N. Levine, Rend. Cire. Math. Palermo, 19 (1970), 89 96.
- [8] M. Sheik John and P. Sundaram, Indian J. Pure Appl. Math. 35(1) (2004), 71 80.
- [9] M. Stone, Trans. Amer. Math. Soc. 41 (1937) 374 481.
- [10] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, g**-closed sets in topological spaces (accepted).
- [11] M.K.R.S. Veera Kumar, Mem. Fac. Sci. Kochi Univ. (Math.), 21 (2000), 1-19.

Source of support: Nil, Conflict of interest: None Declared