ON SET-VALUED SOLUTION OF THE FEIGENBAUM TYPE FUNCTIONAL EQUATION*

Xiaopei Li and Yuzhen Mi†

Department of Mathematics, Zhanjiang Normal University Zhanjiang,
Guangdong, 524048, P. R. China
Email: miyuzhen2009@126.com

(Received on: 31-12-10; Accepted on: 08-01-11)

ABSTRACT

Extended Feigenbaum functional equation is considered for multivalued functions in Banach space. The existence of its solution is obtained by Banach's fixed point theorem; Furthermore continuous dependence of the solution upon the given function is obtained.

AMS2000 MSC codes: 39B12, 37E05, 54C60.

Keywords and phrases: Feigenbaum type set-valued functional equation, Banach's fixed point theorem, the existence of solution, continuous dependence.

1. INTRODUCTION:

The second kind of Feigenbaum functional equation

\[
\begin{align*}
 f(x) &= \frac{1}{\lambda} f(f(\lambda x)), 0 < \lambda < 1; \\
 f(0) &= 1; \\
 0 &\leq f(x) \leq 1, x \in [0,1]
\end{align*}
\]

(1.1)

is considered by many authors [1-6], where they discussed its single peak continuous solutions in the interval [0,1] with the initial value condition, also considered the precise solution in some special functional space. Of course, from the view of dynamics system, it is a very important field. Considering it contains iteration, one is also interesting in studying its continuous solution in high dimensional space and abstract space such as Banach space. Especially to study the iterative equation (1.1) for set-valued functions. The existence and uniqueness of upper semicontinuous set-valued solutions of iterative equation

\[
\lambda_1 f(x) + \lambda_2 f^2(x) = g(x)
\]

(1.2)

are studied in [9] for a class of set-valued functions on a compact real interval \([a,b]\) and the end-points a and b are

Corresponding author: Yuzhen Mi†, *E-mail: miyuzhen2009@126.com*
fixed, i.e., \(f(a) = a \) and \(f(b) = b \). In comparison with those known results in single-valued sense, more difficulties are encountered in [9], because the properties of set-valued functions are different from that of single-valued functions, such as monotonicity, differentiability, invertibility and so on.

In this paper, by constructing a structure operator and using Banach’s fixed point theorem, an extended Feigenbaum type functional equation

\[
f(x) = \frac{1}{\lambda} f(f(\lambda x)) + \lambda g(x),
\]

is studied in a Banach space \((X, \| \cdot \|) \), where \(f(x) \) and \(g(x) \) are multi-valued functions on Banach space \((X, \| \cdot \|) \). The existence and uniqueness of continuous set-valued solutions to equation (1.3) are obtained without monotonicity. Furthermore, conditions dependence of the solution on the given function is also presented.

2. PRELIMINARIES:

Let \((X, \| \cdot \|) \) be a Banach space, \(t \) a real number and \(A, B \) be subsets of \(X \). We define

\[
A + B := \{ a + b : a \in A, b \in B \},
\]

\[
tA := \{ ta : a \in A \}.
\]

Let \(D \subset X \) be a given nonempty convex compact subset and \(cc(D) \) denote the family of all nonempty convex compact subsets of \(D \). The family endowed with the Hausdorff distance defined by

\[
h(A, B) = \max\{ \sup\{ d(a, B) : a \in A \}, \sup\{ d(b, A) : b \in B \} \},
\]

where

\[
d(a, B) = \inf\{ \| a - b \| : b \in B \},
\]

is a complete metric space (cf. e.g. [7], Theorem 10.1.6), especially,

\[
h(x, y) = \| x - y \| , \forall x, y \in D.
\]

Let \(F(D) \) be a family of all set-valued functions \(f : D \rightarrow cc(D) \) and for some constant \(M \), let \(\phi(D, M) \) be its subfamily defined by

\[
\phi(D, M) = \{ f \in F(D) : h(f(x), f(y)) \leq M h(x, y) \text{ for any } x, y \in D \},
\]

i.e. \(\phi(D, M) \) is all the Lipschitz multi-valued function and \(M \) is a Lipschitz constant.

We endow \(\phi(D, M) \) with the metric

\[
H(f_1, f_2) = \sup\{ h(f_1(x), f_2(x)) : x \in D \}, \forall f_1, f_2 \in \phi(D, M).
\]
Lemma 2.1 Let $A, B, C \in cc(D)$. Then

$$h(A - C, B - C) \leq h(A, B)$$

and

$$h(A + C, B + C) \leq h(A, B)$$

Proof: For any $r \in (A - C)$ and $s \in (B - C)$, there exist $a \in A, b \in B$, and $c_1, c_2 \in C$ such that $r = a - c_1, s = b - c_2$. Since

$$\|r - s\| = \|(a - c_1) - (b - c_2)\|$$

$$\leq \|a - b\| + c_1 - c_2$$

So we have

$$\inf_{s \in B - C} \|r - s\| \leq \inf_{s \in B - C} (\|a - b\| + c_1 - c_2)$$

$$= \inf_{b - c_2 \in B - C} \|a - b\| + \inf_{b - c_2 \in B - C} c_1 - c_2$$

$$= \inf_{b - c_2 \in B} \|a - b\| + \inf_{c_1 \in C} c_1 - c_2$$

$$= \inf_{b \in B} \|a - b\|.$$

By (2.1) we have

$$\sup\{d(r, B - C) : r \in A - C\} = \sup_{r \in A - C} \{\inf_{s \in A - C} \|r - s\|\}$$

$$\leq \sup_{a - c_1 \in A - C} \|a - b\|$$

$$= \sup_{a - c_1 \in A - C} \inf_{b \in B} \|a - b\|$$

$$= \inf_{b \in B} \|a - b\|.$$

Similarly, we can prove that

$$\sup\{d(s, A - C) : s \in B - C\} = \sup_{s \in B - C} \{\inf_{r \in A - C} \|r - s\|\} \leq h(A, B).$$

Hence, by (2.1), we have

$$h(A - C, B - C) \leq h(A, B)$$

Similarly, we can get

$$h(A + C, B + C) \leq h(A, B).$$

Lemma 2.2. The metric space $(\phi(D, M), H)$ is complete.

Proof: Let f_n be a Cauchy sequence in $\phi(D, M)$. Then for every fixed $x \in D$, $f_n(x)$ is a Cauchy sequence in...
\((cc(D), h)\), since \((cc(D), h)\) is completed.

(1) We will show that \(f \in \Phi(D, M)\)

Obviously, we only prove that for any \(x, y \in D\)

\[h(f(x), f(y)) \leq Mh(x, y).\]

In fact, for any \(\varepsilon > 0\), there exists a \(n_0 \in \mathbb{N}\) such that \(h(f_n(x), f(x)) \leq \varepsilon\) and \(h(f_n(y), f(y)) \leq \varepsilon\) for all \(n > n_0\). Hence

\[h(f(x), f(y)) \leq h(f_n(x), f(x)) + h(f_n(x), f_n(y)) + h(f_n(y), f(y))\]

\[\leq 2\varepsilon + Mh(x, y).\]

Form that the \(\varepsilon\) is arbitrary, we get that

\[h(f(x), f(y)) \leq Mh(x, y)\]

(2) We will prove that \(f_n \to f\) in the sense of the metric \(H\)

In fact, for arbitrary \(\varepsilon > 0\), since \(f_n\) is a Cauchy sequence, there exists a \(n_0 \in \mathbb{N}\) such that \(H(f_n(x), f_k(x)) \leq \varepsilon\) for all \(n, k \geq n_0\). Hence

\[h(f_n(x), f_k(x)) \leq \varepsilon, \quad \forall x \in D\]

Let \(k \to \infty\), then we have

\[h(f_n(x), f(x)) \leq \varepsilon, \quad \forall x \in D\]

Which means that

\[H(f_n, f) \leq \varepsilon\]

Form (1) and (2), we obtain that \((\Phi(D, M), H)\) is completed metric space.

Lemma 2.3 Let \(f \in \Phi(D, M)\). Then for any \(K \in cc(D)\),

\[f(K) \in cc(D)\]

Where \(f(K) = \bigcup_{x \in K} f(x)\).

Proof: See, for instance, Lemma 10.4.2 in [7].

Lemma 2.4 Let \(A, B \in cc(D)\) and \(f \in \Phi(D, M)\). Then
Xiaopei Li and Yuzhen Mi † / On set-valued solution of the feigenbaum type functional equation* / IUMA- 2(3), Mar.-2011,
Page: 302-309

\[h(f(A), f(B)) \leq Mh(A, B). \]

Proof: See, for instance, Lemma 10.4.3 in [7].

3. EXISTENCE OF SOLUTIONS:

Theorem: 1 Suppose that \(g \in \phi(D, m) \) and there exists a constant \(M \) satisfies that \(m \leq \frac{1}{\lambda}(M - M^2) \) and \(\lambda > 1 + M \). Then the equation (1.3) has a solution \(f \in \phi(D, M) \).

Proof Define the mapping \(\tau : \phi(D, M) \rightarrow F(D) \) by

\[\tau(f)x = \frac{1}{\lambda} f(f(\lambda x)) + \lambda g(x), \forall f \in \phi(D, M), \quad x \in D \quad (3.1) \]

By Lemma 2.3, we know \(\tau(f) \in F(D) \), and we will prove the theorem in following two steps.

(1) We will show that \(\tau : \phi(D, M) \rightarrow \phi(D, M) \).

At first, we will show that

\[h(\tau(f)x, \tau(f)y) \leq Mh(x, y), \quad \forall x, y \in D \quad (3.2) \]

In fact, for any \(x, y \in D \), by Lemma 2.1 and Lemma 2.4 we have

\[
\begin{align*}
 h(\tau(f)x, \tau(f)y) &= h\left(\frac{1}{\lambda} f(f(\lambda x)) + \lambda g(x), \frac{1}{\lambda} f(f(\lambda y)) + \lambda g(y)\right) \\
 &\leq h\left(\frac{1}{\lambda} f(f(\lambda x)) + \lambda g(x), \frac{1}{\lambda} f(f(\lambda y)) + \lambda g(y)\right) \\
 &+ h\left(\frac{1}{\lambda} f(f(\lambda x)) + \lambda g(y), \frac{1}{\lambda} f(f(\lambda y)) + \lambda g(y)\right) \\
 &\leq \frac{1}{\lambda} h(f(f(\lambda x)), f(f(\lambda y))) + \lambda h(g(x), g(y)) \\
 &\leq \frac{1}{\lambda} M^2 \lambda h(x, y) + \lambda m h(x, y) \\
 &= (M^2 + \lambda m) h(x, y).
\end{align*}
\]

Form \(m \leq \frac{1}{\lambda}(M - M^2) \), it can be deduced that \(M^2 + \lambda m \leq M \). So we obtain

\[\tau f \in \phi(D, M). \]

(2) We will prove that \(\tau \) is contraction mapping.

For any \(f_1, f_2 \in \phi(D, M) \), \(x \in D \), by Lemma 2.1, 2.3 and 2.4 we have
\[h(\tau(f_1), \tau(f_2)) = h(\frac{1}{\lambda} f_1(f_1(\lambda x)) + \lambda g(x), \frac{1}{\lambda} f_2(f_2(\lambda x)) + \lambda g(x))\]

\[\leq \frac{1}{\lambda} h(f_1^2(\lambda x), f_2^2(\lambda x))\]

\[\leq \frac{1}{\lambda} [h(f_1^2(\lambda x), f_1(\lambda x) + f_2(\lambda x)) + h(f_1(\lambda x), f_2^2(\lambda x))]\]

\[\leq \frac{1}{\lambda} (Mh(f_1(\lambda x), f_2(\lambda x)) + h(f_1(\lambda x), f_2^2(\lambda x)))\]

\[\leq \frac{1}{\lambda} (M + 1)H(f_1, f_2).\]

By (2.2) and that \(x \in D\) is arbitrary, we get

\[H(\tau(f_1), \tau(f_2)) \leq \frac{1}{\lambda} (M + 1)H(f_1, f_2).\]

From \(\lambda > 1 + M\), it is follows that \(\frac{1}{\lambda} (1 + M) < 1\). Therefore, by Lemma 2.2 and Banach’s fixed point theorem, \(\tau\) has a fixed point \(f \in \phi(D, M)\), i.e.

\[\tau(f)x = f(x), \forall x \in D\]

Hence we obtain

\[\frac{1}{\lambda} f(f(\lambda x)) + \lambda g(x) = f(x), \forall x \in D\]

This completes the proof.

4. CONTINUOUS DEPENDENCE:

Theorem: 2 Under condition of Theorem 1, the solution of equation (1.3) depends upon \(g\) continuously in the space \((\phi(D, M), H)\).

Proof: For arbitrary \(g_1, g_2 \in \phi(D, M)\), let \(f_1, f_2\) be the corresponding solutions of equation (1.3), that is,

\[f_1(x) = \frac{1}{\lambda} f_1(f_1(\lambda x)) + \lambda g_1(x), f_2(x) = \frac{1}{\lambda} f_2(f_2(\lambda x)) + \lambda g_2(x).\]

Hence by Lemma 2.1 and Lemma 2.4, for arbitrary \(x \in D\) we get

\[h(f_1(x), f_2(x)) = h(\frac{1}{\lambda} f_1(f_1(\lambda x)) + \lambda g_1(x), \frac{1}{\lambda} f_2(f_2(\lambda x)) + \lambda g_2(x))\]

\[\leq h(\frac{1}{\lambda} f_1(f_1(\lambda x)) + \lambda g_1(x), \frac{1}{\lambda} f_1(f_1(\lambda x)) + \lambda g_2(x)) + h(\frac{1}{\lambda} f_1(f_1(\lambda x)) + \lambda g_2(x))\]

\[+ \lambda g_2(x), \frac{1}{\lambda} f_2(f_2(\lambda x)) + \lambda g_2(x)).\]
\[\leq \frac{1}{\lambda} h(f_1(x), f_2(x)) + \frac{1}{\lambda} h(g_1(x), g_2(x)) \]

By (2.2) and the assumption of the Theorem 1, it follows that

\[H(f_1, f_2) \leq \frac{\lambda^2}{\lambda - M - 1} H(g_1, g_2). \]

Which implies the conditions dependence of the solution \(f \) of (1.3) upon the given \(g \).

5. EXAMPLE:

Let \(I = [0, 1] \) and the multifunction

\[g(x) = \left[\frac{x^3}{36}, \frac{x^2}{36} \right], \forall x \in I. \]

For any \(y \in I \) and \(y \neq x \).

\[h(g(x), g(y)) = \max \left\{ \frac{x^3 - y^3}{36}, \frac{x^2 - y^2}{36} \right\} = \frac{1}{36} \max \left\{ |x - y|(x^2 + xy + y^2), |x - y|(x + y) \right\} \]

\[\leq \frac{1}{12} |x - y| = \frac{1}{12} h(x, y). \]

So \(g \in \phi(I, \frac{1}{12}) \). By the Theorem 1 the equation

\[f(x) = \frac{2}{3} f(\frac{3}{2} x) + \frac{3}{2} g(x) \]

has a solution in \(\Phi(I, \frac{1}{4}) \), because \(\frac{1}{12} < \frac{2}{3} \left(\frac{1}{4} - \frac{1}{4} \right) = \frac{1}{8} \) and \(\frac{3}{2} > 1 + \frac{1}{4} \).

REFERENCE:

* Supported by Guangdong Provincial natural science Foundation (07301595) and Zhanjiang Normal University Science Research Project (L0804).