# ON 4-PRODUCT CORDIAL GRAPHS

R. Ponraj<sup>1\*</sup>, M. Sivakumar<sup>2</sup>, and M. Sundaram<sup>3</sup>

<sup>1</sup>Department of Mathematics, Sri Paramakalyani College, Alwarkurchi-627412, India

<sup>2</sup>Department of Mathematics, Unnamalai Institute of Technology, Kovilpatti-628502, India

<sup>3</sup>Associate Professor (Rtd.), Department of Mathematics, Sri Paramakalyani College, Alwarkurchi-627412, India

(Received on: 02-07-12; Accepted on: 20-07-12)

Let f be a map from V(G) to {0,1,...k-1} where k is an integer,  $2 \le k \le |V(G|)|$ .

For each edge uv assign the label  $f(u)f(v) \pmod{k}$ . f is called a k-Product cordial labeling if  $|v_f(i) - v_f(j)| \le 1$  and  $|e_f(i) - e_f(j)| \le 1$ ,  $i, j \in \{0, 1, ..., k-1\}$ ,

where  $v_f(x)$  and  $e_f(x)$  denote the number of vertices and edges respectively labelled with x (x=0,1,2,3...k-1). We investigate the 4-Product cordial labeling behaviour of some standard graphs.

Keywords: Complete bipartite graph, Star, Wheel.

## **1. INTRODUTION**

The graphs considered here are finite, undirected and simple. The vertex set and edge set of a graph *G* are denoted by V(G) and E(G) respectively. Let join of two graphs  $G_1$  and  $G_2$  is a graph  $G_1+G_2$  with  $V(G_1+G_2)=V(G_1) \cup V(G_2)$  and  $E(G_{1+}G_2)=E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1)and v \in V(G_2)\}$ . The graph obtained subdividing each edge of a graph G by a new vertex is denoted by S(G). Product cordial and EP-cordial behaviour of graphs were studied extensively in [1] and [2]. The notion of k-Product cordial labeling of graphs has been introduced in [3]. In this paper we investigate the 4- Product cordial labeling behaviour of Subdivision star  $s(K_{1,n})$ , wheel  $W_n = C_n + K_1$ ,  $K_2 + mK_1$ ,  $K_{2,n}$  etc. Terms not defined here are used in the sense of Harary [4].

## 2. K-PRODUCT CORDIAL LABELLING

**Definition 2.1:** Let *f* be a map from *V* (G) to  $\{0,1...,k-1\}$  where *k* is an integer,  $1 \le k \le |V(G|)|$ . For each edge uv, assign the label  $f(u)f(v) \pmod{k}$ . *f* is called a *k*-Product cordial labeling of G if

 $|v_{f}(i) - v_{f}(j)| \le 1 \text{ and } |e_{f}(i) - e_{f}(j)| \le 1 \text{ , i,j} \in \{0,1,..k-1\}$ 

where  $v_f(x)$  and  $e_f(x)$  respectively denote the number of vertices and edges respectively labelled with x(x=0,1,2...k-1).

## 3. ON STANDARD GRAPHS

**Theorem 3.1**:  $K_{2,n}$  is 4-Product cordial iff  $n \equiv 0,3 \pmod{4}$ .

**Proof:** Let  $V(K_{2,n}) = \{u, v, u_i; 1 \le i \le n\}$  and  $E(K_{2,n}) = \{uv, uu_i, vv_i; 1 \le i \le n\}$ 

Clearly  $f(u) \neq f(v) \neq 0$ 

**Case** (i):  $n \equiv 0 \pmod{4}$ .

Let n=4t.Here  $|V(K_{2,n})| = 4t+2$  and  $|E(K_{2,n})| = 8t$ . Define f(u)=1; f(v)=3  $f(u_i) = 0$ ,  $1 \le i \le t$   $f(u_{t+i}) = 1$ ,  $1 \le i \le t$   $f(u_{2t+i}) = 2$ ,  $1 \le i \le t$  $f(u_{3t+i}) = 3$ ,  $1 \le i \le t$ . Here  $e_f(0)=2t$ ,  $e_f(1)=2t$ ,  $e_f(2)=2t$  and  $e_f(3)=2t$ .

Case (ii) :  $n \equiv 1 \pmod{4}$ .

If possible let there be a 4-Product cordial labeling *f*. Let n=4t+1. So that  $|V(K_{2,n})|=4t+3$  and  $|E(K_{2,n})|=8t+2$ .

Clearly  $v_f(0)$ =t and  $f(u)\neq 0$  and  $f(v)\neq 0$ 

**Subcase (i):** f(u) = f(v) = 1. Then  $e_f(1) = 2t-2$ . So that  $e_f(2) = 2t+2$ ,  $e_f(2) - e_f(1) = 4$ , an impossibility.

Subcase (ii): f(u)=1; f(v)=2. Then  $e_f(1) = t$ ,  $e_f(2)=3t+1$ ,  $e_f(2) - e_f(1) = t+1 \ge 2$ , an impossibility.

Subcase (iii): f(u)=1; f(v)=3. Then  $e_f(1) = 2t$ ,  $e_f(2) = 2t+2$ ,  $e_f(2) - e_f(1) = 2$ , an impossibility.

**Subcase (iv):** f(u) = f(v) = 2. Then  $e_f(1) = 0$ ,  $e_f(2) = 4t+4$ . So that  $e_f(2) - e_f(1) = 4t+4$ , an impossibility.

**Subcase (v):** f(u)=2; f(v)=3. Then  $e_f(1) = t$ ,  $e_f(2)=2t+1$ ,  $e_f(2)-e_f(1)=t+1$ , an impossibility.

Subc ase (vi): f(u)=f(v)=3. Then  $e_f(1)=2t-2$ ,  $e_f(2)=2t+2$ . Here  $e_f(2)-e_f(1)=4$ , an impossibility. Thus there can not exists a 4-Product cordial labeling f.

Case (iii):  $n \equiv 2 \pmod{4}$ . Let n=4t+2. Here  $|V(K_{2,n})|=4t+4$  and  $|E(K_{2,n})|=8t+4$ .either f(u) nor f(v) is 0.Therefore  $v_f(0)=t+1$ ,  $e_f(0)=2t+2$ , a contradiction, since the size of  $K_{2,n}$  is 8t+4.

Case (iv):  $n \equiv 3 \pmod{4}$ .

Let n=4t+3.Sothat  $|V(K_{2,n})| = 4t+5$ ,  $|E(K_{2,n})| = 8t+6$ . Define f(u)=1, f(v)=3 label the vertices  $u_{i}, 1 \le i \le n-3$  as in case (i). Then label the vertices  $u_{n-2}, u_{n-1}, u_n$  by 2,0,1 respectively to get a 4-Product cordial labeling.

Illustration 3.2: 4-Product cordial labels' of K<sub>2,7</sub> is



**Theorem 3.3:**  $S(K_{1,n})$  is 4- Product cordial.

**Proof:** Let 
$$V(K_{1,n}) = \{u, u_i : 1 \le i \le n\}$$
 and  $E(K_{1,n}) = \{uu_i : 1 \le i \le n\}$ 

Let the edge  $uu_i$  be subdivided by the vertex  $v_i$ .

Case (i):  $n \equiv 0 \pmod{4}$ .

Let n=4t.  $f(u_i) = 0, \ 0 \le i \le 2t$   $f(u_{2t+i}) = 2, \ 1 \le i \le 2t$   $f(v_{2i}) = 3, \ 1 \le i \le 2t$  $f(v_{2i+1}) = 1, \ 0 \le i \le 2t - 1$ 

Define f(u) = 3. Clearly f is a 4-Product cordial labeling since  $v_f(0) = v_f(1) = v_f(2) = 2t$  and

$$v_{f}(3) = 2t + 1, e_{f}(0) = e_{f}(1) = e_{f}(2) = e_{f}(3) = 2t.$$

Case (ii):  $n \equiv 1 \pmod{4}$ .

Assign the label  $v_i$  and  $u_i$  ( $1 \le i \le n-1$ ) as in case(i) and then assign1 and 0 to  $v_n$  and  $u_n$  respectively.

Case (iii):  $n \equiv 2 \pmod{4}$ .

Assign the label  $v_i$  and  $u_i(1 \le i \le n-1)$  as in case(ii) and then assign 3 and 2 to  $v_n$  and  $u_n$  respectively.

**Case (iv):**  $n \equiv 3 \pmod{4}$ .

Assign the label  $v_i$  and  $u_i$  (1 $\leq i \leq n-1$ ) as in case(iii) and then assign1 and 0 to  $v_n$  and  $u_n$  respectively. Hence  $S(K_{l,n})$  is 4-Product cordial.

## 4. ON JOIN OF GRAPHS

**Theorem4.1:**  $K_2 + mK_1$  is 4-Product cordial iff m= 0,3(mod4).

**Proof:** Let 
$$V(K_2+mK_1) = \{u, v, u_i : 1 \le i \le n\}$$
 and  
 $E(K_2+mK_1) = \{uv, uu_i, vu_i : 1 \le i \le n\}$ 

Case (i):  $m \equiv 0 \pmod{4}$ .

Let m=4t, Define f(u) = 1 and f(v) = 3  $f(u_i) = 0$ ,  $1 \le i \le t$   $f(u_{t+i}) = 1$ ,  $1 \le i \le t$   $f(u_{2t+i}) = 2$ ,  $1 \le i \le t$  $f(u_{3t+i}) = 3$ ,  $1 \le i \le t$ . Here  $e_f(0) = 2t$ ,  $e_f(1) = 2t$ ,  $e_f(2) = 2t$  and  $e_f(3) = 2t + 1$ . Therefore f is a 4-Product cordial labeling.

Case (ii):  $m \equiv 3 \pmod{4}$ .

Let m=4t+3, Define f(u)=1, f(v)=3 label the vertices  $u_i$ ,  $1 \le i \le m-3$  as in case(i). Then label the vertices  $u_{m-2}, u_{m-1}, u_m$  by 0, 2, 1 respectively, Clearly *f* is a 4-Product cordial labeling.

Case (iii) :  $m \equiv 1 \pmod{4}$ .

If possible let there be a 4-Product cordial labeling. Let m=4t+1, Clearly  $f(u) \neq 0$ ,  $f(v)\neq 0$ . Also  $v_f(0)=t$ Therefore  $e_f(0)=2t$ .

#### © 2012, IJMA. All Rights Reserved

#### R. Ponraj<sup>1\*</sup>, M. Sivakumar<sup>2</sup>, and M. Sundaram<sup>3</sup> / On 4-Product cordial graphs/ IJMA- 3(7), July-2012, Page: 2809-2814

**Sub case (i):** f(u)=f(v)=1 .Then  $e_f(1) = 2t-1$ ,  $e_f(2)=2t+2$ ,  $e_f(2)-e_f(1)=3$ , an impossibility.

**Sub case (ii):** f(u)=1; f(v)=3. Then  $e_f(1)=2t$ ,  $e_f(2)=2t+2$ ,  $e_f(2)-e_f(1)=2$ , an impossibility.

**Sub case (iii):** f(u) = f(v) = 3. Then  $e_f(1) = 2t-1$ ,  $e_f(2) = 2t+2$ ,  $e_f(2)-e_f(1)=3$ , an impossibility.

**Sub case (iv):** f(u)=2; f(v)=3. Then  $e_f(1) = t$ ,  $e_f(2)=3t+1$ ,  $e_f(2)-e_f(1)=2t+1$ , an impossibility.

**Sub case** (v): f(u) = f(v) = 2. Then  $e_f(1) = 0$ ,  $e_f(2) = 4t + 4$ ,  $e_f(2) - e_f(1) = 4t + 4$ , an impossibility.

**Sub case (vi):** f(u)=1; f(v)=2. Then  $e_f(1) = t$ ,  $e_f(2)=3t+1$ ,  $e_f(2)-e_f(1)=2t+1$ , an impossibility.

Case (iv):  $m \equiv 2 \pmod{4}$ .

Let m=4t+2, Clearly  $f(u) \neq 0$ ,  $f(v)\neq 0$ . Clearly  $v_f(0)=t$  or t+1. Here  $e_f(0)=2t$  or 2t+2, a contradiction Since the size of  $K_2+mK_1$  is 8t+4.

**Illustration4.2:** 4-Product cordial labels of  $K_2+8K_1$  is



**Theorem4.3:** Wheel  $W_n = C_n + K_1$  is 4-Product Cordial iff n=5 or 9.

**Proof:** Let  $C_n$  be the cycle  $u_1, u_2, \dots, u_n, u_1$  and  $V(W_n) = V(C_n) \cup \{u\}$  and  $E(W_n) = E(C_n) \cup \{uu_i : 1 \le i \le n\}$ 

Case (i): n=5 or 9

A 4-Product cordial labeling of  $W_5$  and  $W_9$  are given below.



© 2012, IJMA. All Rights Reserved

## Case (ii): $n \equiv 0 \pmod{4}$ .

Clearly  $f(u)\neq 0$ ,  $f(v)\neq 2$ . If possible let there be a 4-product cordial labeling. Let n=4t, Hence  $|V(W_n)|=4t+1$ ,  $|E(W_n)|=8t$ . Then  $e_f(0)\geq 2t+1$ . This is not possible.

### Case (iii): $n \equiv 1 \pmod{4}$ .

Let n=4t+1, Hence  $|V(W_n)|=4t+2$ ,  $|E(W_n)|=8t+2$ . To get the edge label 3,1and3should be the labels of adjacent vertices.

## **Sub case** (i): *f*(u)=1

Sub case(i)a:  $v_f(3) = t$  and  $v_f(1) = t + 1$ . From the spokes we get t edges with label 3. Then when t is odd to get the edges with label 3 from the rim, at least  $\frac{t+1}{2}$  3's and  $\frac{t+1}{2}$  1's are used alternatively as vertex labels. Therefore remaining  $t - \left(\frac{t+1}{2}\right)$  3's are labelled consecutively. Similarly remaining  $t - \left(\frac{t+1}{2}\right)$  1's are labelled consecutively.  $e_f(1) \le \left(\frac{t-1}{2}-1\right) + \left(\frac{t-1}{2}-1\right) + t \le 2\left(\frac{t-1}{2}\right) - 2 + t \le t - 3 + t \le 2t - 3$ , a contradiction. Similarly when t is even  $a(1) \le 2t - 3$  a contradiction

when t is even  $e_f(1) \le 2t - 3$ , a contradiction.

**Sub case(ii)b:**  $v_f(3)=t+1$  and  $v_f(1)=t+1$ . From the spokes we get t+1 edges with label 3. Then when t is odd to get the edges with label 3 from the rim, at least  $\frac{t}{2}$  3's and  $\frac{t}{2}$  1's are used alternatively as vertex labels. Therefore remaining 3's are  $t+1-\left(\frac{t}{2}\right)=\left(\frac{t+2}{2}\right)$ . Similarly remaining 1's are  $\left(\frac{t}{2}\right)$ ,  $e_f(1) \le \left(\frac{t+2}{2}-1\right)+\left(\frac{t}{2}-1\right)+t+1 \le 2t$ . Then some 0 appears as a vertex label consecutively. Then a(0) > 2t+2 an impossibility. Similarly we get a contradiction when t is

0 appears as a vertex label consecutively. Then  $e_f(0) \ge 2t+2$ , an impossibility. Similarly we get a contradiction, when t is even also.

## Sub case (iii)c: $v_f(1)$ =t and $v_f(3)$ =t.

From the spokes we get t edges with label 3. Then when t is odd to get the edges with label 3 from the rim, at least  $\frac{t+1}{2}$  3's and  $\frac{t+1}{2}$  1's are used alternatively as vertex labels. Remaining 3's  $t - \left(\frac{t+1}{2}\right)$  are labelled consecutively.

Similarly remaining  $t - 1 - \left(\frac{t+1}{2}\right)$  1's are labelled consecutively.

$$e_{f}(1) \leq \left(\frac{t-1}{2} - 1\right) + \left(\frac{t-3}{2} - 1\right) + t \leq \frac{2t-4}{2} - 2 + t \leq 2t - 4, \text{ an impossibility. Similarly when t is even we get a contradiction}$$

contradiction.

#### **Sub case (ii):** *f*(u)=3.

Similar to subcase(i), we get a contradiction.

**Case (iv):**  $n \equiv 2 \pmod{4}$ . Let n=4t+2, Hence  $|V(W_n)|=4t+3$ ,  $|E(W_n)|=8t+4$ .Clearly  $v_f(0)=t$ .

**Sub case (i):** *f*(u)=1.

Clearly  $v_f(1)=t+1$ ,  $v_f(3)=t+1$ , as in subcase (i)b,  $e_f(0)\geq 2t+2$ , again an impossibility.

Case (v):  $n \equiv 3 \pmod{4}$ . Let n=4t+3, Hence  $|V(W_n)|=4t+4$ ,  $|E(W_n)|=8t+6$ .Similar to case(ii) an impossibility.

#### © 2012, IJMA. All Rights Reserved

**Theorem4.2:**  $K_n^c + 2K_2$  is 4-Product Cordial iff n  $\leq 2$ .

**Proof:** Let V(
$$K_n^c + 2K_2$$
) = {u<sub>i</sub>,u,v,w,z ;1 \le i \le n} and E( $K_n^c + 2K_2$ ) = { $uu_b vu_b wu_b zu_i, uv, wz$  ; 1 ≤ i ≤ n}.

Case (i): n=1 or 2.

A 4-Product cordial labeling of  $K_1^c + 2K_2$  and  $K_2^c + 2K_2$  are given below



## Case (ii): $n \equiv 0 \pmod{4}$ .

Let n=4t (t≥1),  $|E(K_n^c + 2K_2)| = 4(4t)+2=16t+2$ . Clearly f(u), f(v), f(w) and f(z) are not equal to zero, Without loss of generality assume that f(u<sub>i</sub>)=0, 1≤ i ≤ t + 1. Then  $e_f(0)=4(t+1)=4t+4$ , a contradiction.

Case (iii):  $n \equiv 1 \pmod{4}$ .

Let n=4t+1(t≥1),  $|E(K_n^c + 2K_2)| = 4(4t+1)+2=16t+6$ . Here also  $e_f(0) \ge 4t+4$ , an impossibility.

Case (iv):  $n \equiv 2 \pmod{4}$ . Let  $n = 4t + 2(t \ge 1)$ ,  $|E(K_n^c + 2K_2)| = 4(4t+2) + 2 = 16t + 10$ . Here also  $e_f(0) \ge 4t+4$ , an impossibility.

Case (v):  $n \equiv 3 \pmod{4}$ .

Let n= 4t+3(t≥1),  $|E(K_n^c + 2K_2)| = 4(4t+3)+2=16t+14$ . Here clearly  $v_f(0)=t+1$  and  $f(u_i)=0, 1\le i\le t+1$   $e_f(0)\ge 4t+4$ . Also f(u), f(v), f(w), f(z) are not equal to 2, otherwise  $e_f(0)>4t+4$ .

Hence all 2's are labelled for the vertices  $u_i$ . Therefore  $e_t(2)=4(t+2)=4t+8>4t+4$ , an impossibility.

#### 5. CONCLUSION

In this paper we have studied 4-Product cordial behaviour of graph obtained from two given graphs using graph operations. The authors are of the opinion that the study of *k*-Product cordial labeling behaviour of graph (where *k* is an integer  $5 \le k \le |v|$ ) will be quiet interesting and also will lead to never results.

#### **REFERENCES:**

[1] M.Sundaram, R. Ponraj, S. Somosundram, Product cordial labeling of graph, Bulletin of Pure and Applied Sciences. 23(2004).

[2] M. Sundaram, R. Ponraj, S. Somosundram, EP-cordial labeling of graph, Varahmihir journal of Mathematical Sciences. 7(2007).

[3] R.Ponraj, M. Sivakumar, M. Sundaram, k-Product cordial labeling of graph, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 15, 733 – 742

[4] Harary, F., Graph Theory, (Addision wisely, New Delhi).

#### Source of support: Nil, Conflict of interest: None Declared