International Journal of Mathematical Archive-3(7), 2012, 2809-2814 MA Available online through www.ijma.info ISSN 2229-5046

ON 4-PRODUCT CORDIAL GRAPHS

R. Ponraj ${ }^{1 \text { T }}$, M. Sivakumar ${ }^{2}$, and M. Sundaram ${ }^{3}$
${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurchi-627412, India
${ }^{2}$ Department of Mathematics, Unnamalai Institute of Technology, Kovilpatti-628502, India
${ }^{3}$ Associate Professor (Rtd.), Department of Mathematics, Sri Paramakalyani College, Alwarkurchi-627412, India

(Received on: 02-07-12; Accepted on: 20-07-12)

Abstract

Let f be a map from $V(G)$ to $\{0,1, \ldots k-1\}$ where k is an integer, $2 \leq k \leq \mid V(G \mid$.

For each edge uv assign the label $f(u) f(v)(\bmod k)$. f is called a k-Product cordial labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1, i, j \in\{0,1, . . k-1\}$, where $v_{f}(x)$ and $e_{f}(x)$ denote the number of vertices and edges respectively labelled with $x(x=0,1,2,3 \ldots k-1)$. We investigate the 4-Product cordial labeling behaviour of some standard graphs.

Keywords: Complete bipartite graph, Star, Wheel.

1. INTRODUTION

The graphs considered here are finite, undirected and simple. The vertex set and edge set of a graph G are denoted by $V(\mathrm{G})$ and $E(\mathrm{G})$ respectively. Let join of two graphs G_{1} and G_{2} is a graph $G_{1}+G_{2}$ with $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1+} G_{2}\right)=E\left(G_{1}\right) \cup E(G 2) \cup\left\{u v: u \in V\left(G_{1}\right) a n d v \in V\left(G_{2}\right)\right\}$.The graph obtained subdividing each edge of a graph G by a new vertex is denoted by $S(G)$.Product cordial and EP-cordial behaviour of graphs were studied extensively in[1] and[2]. The notion of k-Product cordial labeling of graphs has been introduced in [3].In this paper we investigate the 4- Product cordial labeling behaviour of Subdivision star $s\left(K_{1, n}\right)$, wheel $W_{n}=C_{n}+K_{1}, K_{2}+m K_{1}, K_{2, n}$ etc. Terms not defined here are used in the sense of Harary[4].

2. K-PRODUCT CORDIAL LABELLING

Definition 2.1: Let f be a map from $V(G)$ to $\{0,1 \ldots . k-1\}$ where k is an integer, $1 \leq k \leq \mid V(G \mid$. For each edge uv, assign the label $f(\mathrm{u}) f(\mathrm{v})(\bmod \mathrm{k}) . f$ is called a k - Product cordial labeling of G if
$\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1, i, j \in\{0,1, . . k-1\}$
where $v_{f}(\mathrm{x})$ and $e_{f}(\mathrm{x})$ respectively denote the number of vertices and edges respectively labelled with $\mathrm{x}(\mathrm{x}=0,1,2 \ldots k-1)$.

3. ON STANDARD GRAPHS

Theorem 3.1: $K_{2, n}$ is 4-Product cordial iff $n \equiv 0,3(\bmod 4)$.
Proof: Let $V\left(\mathrm{~K}_{2, n}\right)=\left\{\mathrm{u}, \mathrm{v}, \mathrm{u}_{\mathrm{i}} ; 1 \leq i \leq n\right\}$ and $E\left(\mathrm{~K}_{2, \mathrm{n}}\right)=\left\{\mathrm{uv}, \mathrm{uu}_{\mathrm{i}}, \mathrm{vv}_{\mathrm{i}} ; 1 \leq i \leq n\right\}$
Clearly $f(u) \neq f(v) \neq 0$
Case (i): $n \equiv 0(\bmod 4)$.
${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurchi-627412, India

Let $\mathrm{n}=4 \mathrm{t}$.Here $\left|\mathrm{V}\left(\mathrm{K}_{2, \mathrm{n}}\right)\right|=4 \mathrm{t}+2$ and $\left|\mathrm{E}\left(\mathrm{K}_{2, \mathrm{n}}\right)\right|=8 \mathrm{t}$. Define $f(\mathrm{u})=1 ; f(\mathrm{v})=3$
$f\left(u_{i}\right)=0,1 \leq i \leq t$
$f\left(u_{t+i}\right)=1,1 \leq i \leq t$
$f\left(u_{2 t+i}\right)=2,1 \leq i \leq t$
$f\left(u_{3 t+i}\right)=3,1 \leq i \leq t$. Here $\mathrm{e}_{\mathrm{f}}(0)=2 \mathrm{t}, e_{f}(1)=2 \mathrm{t}, e_{f}(2)=2 \mathrm{t}$ and $e_{f}(3)=2 \mathrm{t}$.
Case (ii) : $\mathrm{n} \equiv 1(\bmod 4)$.
If possible let there be a 4-Product cordial labeling f. Let $n=4 t+1$. Sothat $\left|V\left(K_{2, n}\right)\right|=4 t+3 a n d\left|E\left(K_{2, n}\right)\right|=8 t+2$.
Clearly $v_{f}(0)=\mathrm{t}$ and $f(\mathrm{u}) \neq 0$ and $f(\mathrm{v}) \neq 0$
Subcase (i): $f(\mathrm{u})=f(\mathrm{v})=1$.
Then $e_{f}(1)=2 \mathrm{t}-2$. Sothat $e_{f}(2)=2 \mathrm{t}+2, e_{f}(2)-e_{f}(1)=4$, an impossibility.
Subcase (ii): $f(\mathrm{u})=1 ; f(\mathrm{v})=2$.
Then $e_{f}(1)=t, e_{f}(2)=3 \mathrm{t}+1, e_{f}(2)-e_{f}(1)=t+1 \geq 2$, an impossibility.
Subcase (iii): $f(\mathrm{u})=1 ; f(\mathrm{v})=3$.
Then $e_{f}(1)=2 \mathrm{t}, e_{f}(2)=2 \mathrm{t}+2, e_{f}(2)-e_{f}(1)=2$, an impossibility.

Subcase (iv): $f(\mathrm{u})=f(\mathrm{v})=2$.
Then $e_{f}(1)=0, e_{f}(2)=4 \mathrm{t}+4$. Sothat $e_{f}(2)-e_{f}(1)=4 \mathrm{t}+4$, an impossibility.
Subcase (v): $f(\mathrm{u})=2 ; f(\mathrm{v})=3$.
Then $e_{f}(1)=\mathrm{t}, e_{f}(2)=2 \mathrm{t}+1, e_{f}(2)-e_{f}(1)=\mathrm{t}+1$, an impossibility.
Subc ase (vi): $f(\mathrm{u})=f(\mathrm{v})=3$.
Then $e_{f}(1)=2 \mathrm{t}-2, e_{f}(2)=2 \mathrm{t}+2$.Here $e_{f}(2)-e_{f}(1)=4$, an impossibility. Thus there can not exists a 4-Product cordial labeling f.

Case (iii): $\mathrm{n} \equiv 2(\bmod 4)$.
Let $\mathrm{n}=4 \mathrm{t}+2$. Here $\left|\mathrm{V}\left(\mathrm{K}_{2, \mathrm{n}}\right)\right|=4 \mathrm{t}+4$ and $\left|\mathrm{E}\left(\mathrm{K}_{2, \mathrm{n}}\right)\right|=8 \mathrm{t}+4$.either $f(\mathrm{u})$ nor $f(\mathrm{v})$ is 0.Therefore $v_{f}(0)=\mathrm{t}+1, e_{f}(0)=2 \mathrm{t}+2$, a contradiction, since the size of $K_{2, n}$ is $8 \mathrm{t}+4$.

Case (iv): $n \equiv 3(\bmod 4)$.
Let $\mathrm{n}=4 \mathrm{t}+3$. Sothat $\left|\mathrm{V}\left(\mathrm{K}_{2, \mathrm{n}}\right)\right|=4 \mathrm{t}+5,\left|\mathrm{E}\left(\mathrm{K}_{2, \mathrm{n}}\right)\right|=8 \mathrm{t}+6$. Define $f(\mathrm{u})=1, f(\mathrm{v})=3$ label the vertices $\mathrm{u}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}-3$ as in case (i). Then label the vertices u_{n-2}, u_{n-1}, u_{n} by $2,0,1$ respectively to get a 4 -Product cordial labeling.

Illustration3.2: 4-Product cordial labels' of $\mathrm{K}_{2,7}$ is

Theorem 3.3: $S\left(K_{1, n}\right)$ is 4- Product cordial.
Proof: Let $V\left(K_{1, n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1, n}\right)=\left\{u u_{i}: 1 \leq i \leq n\right\}$
Let the edge $u u_{i}$ be subdivided by the vertex v_{i}.
Case (i): $n \equiv 0(\bmod 4)$.
Let $\mathrm{n}=4 \mathrm{t}$.
$f\left(u_{i}\right)=0,0 \leq i \leq 2 t$
$f\left(u_{2 t+i}\right)=2,1 \leq i \leq 2 t$
$f\left(v_{2 i}\right)=3, \quad 1 \leq i \leq 2 t$
$f\left(v_{2 i+1}\right)=1,0 \leq i \leq 2 t-1$

Define $f(\mathrm{u})=3$.Clearly f is a 4-Product cordial labeling since $v_{f}(0)=v_{f}(1)=v_{f}(2)=2 t$ and
$v_{f}(3)=2 t+1, e_{f}(0)=e_{f}(1)=e_{f}(2)=e_{f}(3)=2 t$.
Case (ii): $n \equiv 1(\bmod 4)$.
Assign the label v_{i} and $u_{i}(1 \leq \mathrm{i} \leq \mathrm{n}-1)$ as in case(i) and then assign1and 0 to v_{n} and u_{n} respectively.
Case (iii): $n \equiv 2(\bmod 4)$.
Assign the label v_{i} and $u_{i}(1 \leq \mathrm{i} \leq \mathrm{n}-1)$ as in case(ii) and then assign3and 2 to v_{n} and u_{n} respectively.
Case (iv): $n \equiv 3(\bmod 4)$.
Assign the label v_{i} and $u_{i}(1 \leq \mathrm{i} \leq \mathrm{n}-1)$ as in case(iii) and then assign1and 0 to v_{n} and u_{n} respectively. Hence $S\left(K_{1, n}\right)$ is 4 Product cordial.

4. ON JOIN OF GRAPHS

Theorem4.1: $K_{2}+m K_{1}$ is 4-Product cordial iff $m \equiv 0,3(\bmod 4)$.
Proof: Let $V\left(K_{2}+m K_{1}\right)=\left\{u, v, u_{i}: 1 \leq i \leq n\right\}$ and
$E\left(K_{2}+m K_{1}\right)=\left\{u v, u u_{i}, v u_{i}: 1 \leq i \leq n\right\}$

Case (i): $m \equiv 0(\bmod 4)$.
Let $\mathrm{m}=4 \mathrm{t}$, Define $f(\mathrm{u})=1$ and $f(\mathrm{v})=3$
$f\left(u_{i}\right)=0,1 \leq i \leq t$
$f\left(u_{t+i}\right)=1,1 \leq i \leq t$
$f\left(u_{2 t+i}\right)=2,1 \leq i \leq t$
$f\left(u_{3 t+i}\right)=3,1 \leq i \leq t . \operatorname{Here} e_{f}(0)=2 t, e_{f}(1)=2 t, e_{f}(2)=2 t$ and $e_{f}(3)=2 t+1$.Therefore f is a 4-Product cordial labeling.
Case (ii): $m \equiv 3(\bmod 4)$.
Let $\mathrm{m}=4 \mathrm{t}+3$, Define $f(\mathrm{u})=1, f(\mathrm{v})=3$ label the vertices $u_{i}, 1 \leq \mathrm{i} \leq \mathrm{m}-3$ as in case(i).Then label the vertices u_{m-2}, u_{m-1}, u_{m} by $0,2,1$ respectively, Clearly f is a 4-Product cordial labeling.

Case (iii) : $m \equiv 1(\bmod 4)$.
If possible let there be a 4 -Product cordial labeling. Let $m=4 t+1$, Clearly $f(u) \neq 0, f(v) \neq 0$. Also $v_{f}(0)=t$ Therefore $e_{f}(0)=2 t$.

Sub case (i): $f(u)=f(v)=1$.Then $e_{f}(1)=2 t-1, e_{f}(2)=2 t+2, e_{f}(2)-e_{f}(1)=3$, an impossibility.
Sub case (ii): $f(u)=1 ; f(v)=3$. Then $e_{f}(1)=2 t, e_{f}(2)=2 t+2, e_{f}(2)-e_{f}(1)=2$, an impossibility.
Sub case (iii): $f(u)=f(v)=3$.Then $e_{f}(1)=2 t-1, e_{f}(2)=2 t+2, e_{f}(2)-e_{f}(1)=3$, an impossibility.
Sub case (iv): $f(u)=2 ; f(v)=3$. Then $e_{f}(1)=t, e_{f}(2)=3 t+1, e_{f}(2)-e_{f}(1)=2 t+1$, an impossibility.
Sub case (v): $f(u)=f(v)=2 . \operatorname{Then} e_{f}(1)=0, e_{f}(2)=4 t+4, e_{f}(2)-e_{f}(1)=4 t+4$, an impossibility.
Sub case (vi): $f(u)=1 ; f(v)=2$. Then $e_{f}(1)=t, e_{f}(2)=3 t+1, e_{f}(2)-e_{f}(1)=2 t+1$, an impossibility.
Case (iv): $m \equiv 2(\bmod 4)$.
Let $m=4 t+2$, Clearly $f(u) \neq 0, f(v) \neq 0$. Clearly $v_{f}(0)=t$ or $t+1$. Here $e_{f}(0)=2 t$ or $2 t+2$, a contradiction Since the size of $K_{2}+m K_{1}$ is $8 \mathrm{t}+4$.

Illustration4.2: 4-Product cordial labels of $K_{2}+8 K_{1}$ is

Theorem4.3: Wheel $W_{n}=C_{n}+K_{1}$ is 4-Product Cordial iff $\mathrm{n}=5$ or 9 .
Proof: Let C_{n} be the cycle $u_{1}, u_{2} \ldots u_{n}, u_{1}$ and $V\left(W_{n}\right)=V\left(C_{n}\right) \cup\{u\}$ and $E\left(W_{n}\right)=E\left(C_{n}\right) \cup\left\{u u_{i}: 1 \leq i \leq n\right\}$

Case (i): $\mathrm{n}=5$ or 9
A 4-Product cordial labeling of W_{5} and W_{9} are given below.

Case (ii): $\mathrm{n} \equiv 0(\bmod 4)$.
Clearly $f(u) \neq 0, f(v) \neq 2$.If possible let there be a 4-product cordial labeling. Let $n=4 t$, Hence $\left|\mathrm{V}\left(\mathrm{W}_{\mathrm{n}}\right)\right|=4 \mathrm{t}+1$, $\left|\mathrm{E}\left(\mathrm{W}_{\mathrm{n}}\right)\right|=8 \mathrm{t}$.Then $e_{f}(0) \geq 2 \mathrm{t}+1$. This is not possible.

Case (iii): $n \equiv 1(\bmod 4)$.
Let $n=4 t+1$, Hence $\left|V\left(W_{n}\right)\right|=4 t+2,\left|E\left(W_{n}\right)\right|=8 t+2$. To get the edge label 3,1and3should be the labels of adjacent vertices.

Sub case (i): $f(\mathrm{u})=1$
Sub case(i)a: $v_{f}(3)=t$ and $v_{f}(1)=t+1$.From the spokes we get t edges with label 3 .Then when t is odd to get the edges with label 3from the rim, atleast $\frac{t+1}{2}$ 3's and $\frac{t+1}{2}$'s are used alternatively as vertex labels. Therefore remaining $t-\left(\frac{t+1}{2}\right)$ 3's are labelled consecutively. Similarly remaining $t-\left(\frac{t+1}{2}\right)$ 1's are labelled consecutively.
$e_{f}(1) \leq\left(\frac{t-1}{2}-1\right)+\left(\frac{t-1}{2}-1\right)+t \leq 2\left(\frac{t-1}{2}\right)-2+t \leq t-3+t \leq 2 t-3$, a contradiction. Similarly
when t is even $e_{f}(1) \leq 2 t-3$, a contradiction.
Sub case(ii)b: $v_{f}(3)=t+1$ and $v_{f}(1)=t+1$.From the spokes we get $t+1$ edges with label 3 .Then when t is odd to get the edges with label 3from the rim, atleast $\frac{t}{2} 3$'s and $\frac{t}{2} 1$'s are used alternatively as vertex labels.Therefore remaining 3's are $t+1-\left(\frac{t}{2}\right)=\left(\frac{t+2}{2}\right)$. Similarly remaining 1 's are $\left(\frac{t}{2}\right), e_{f}(1) \leq\left(\frac{t+2}{2}-1\right)+\left(\frac{t}{2}-1\right)+t+1 \leq 2 t$.Then some 0 appears as a vertex label consecutively. Then $e_{f}(0) \geq 2 t+2$, an impossibility. Similarly we get a contradiction, when t is even also.

Sub case (iii)c: $v_{f}(1)=\mathrm{t}$ and $v_{f}(3)=\mathrm{t}$.
From the spokes we get t edges with label 3.Then when t is odd to get the edges with label 3from the rim, atleast $\frac{t+1}{2} 3$'s and $\frac{t+1}{2} 1$'s are used alternatively as vertex labels. Remaining 3's $t-\left(\frac{t+1}{2}\right)$ are labelled consecutively.

Similarly remaining $t-1-\left(\frac{t+1}{2}\right) 1$'s are labelled consecutively.
$e_{f}(1) \leq\left(\frac{t-1}{2}-1\right)+\left(\frac{t-3}{2}-1\right)+t \leq \frac{2 t-4}{2}-2+t \leq 2 t-4$, an impossibility. Similarly when t is even we get a contradiction.

Sub case (ii): $f(\mathrm{u})=3$.
Similar to subcase(i), we get a contradiction.
Case (iv): $\mathrm{n} \equiv 2(\bmod 4)$.
Let $\mathrm{n}=4 \mathrm{t}+2$, Hence $\left|\mathrm{V}\left(\mathrm{W}_{\mathrm{n}}\right)\right|=4 \mathrm{t}+3,\left|\mathrm{E}\left(\mathrm{W}_{\mathrm{n}}\right)\right|=8 \mathrm{t}+4$. Clearly $v_{f}(0)=\mathrm{t}$.
Sub case (i): $f(\mathrm{u})=1$.
Clearly $v_{f}(1)=t+1, v_{f}(3)=t+1$, as in subcase (i)b, $\mathrm{e}_{\mathrm{f}}(0) \geq 2 \mathrm{t}+2$, again an impossibility.
Case (v): $n \equiv 3(\bmod 4)$.
Let $n=4 t+3$, Hence $\left|\mathrm{V}\left(\mathrm{W}_{\mathrm{n}}\right)\right|=4 \mathrm{t}+4,\left|\mathrm{E}\left(\mathrm{W}_{\mathrm{n}}\right)\right|=8 \mathrm{t}+6$.Similar to case(ii) an impossibility.

Theorem4.2: $K_{n}{ }^{c}+2 K_{2}$ is 4-Product Cordial iff $\mathrm{n} \leq 2$.

Proof: Let $\mathrm{V}\left(K_{n}{ }^{c}+2 K_{2}\right)=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{z} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(K_{n}{ }^{c}+2 K_{2}\right)=\left\{u u_{i}, v u_{i}, w u_{i}, z u_{i}, u v, w z ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
Case (i): $\mathrm{n}=1$ or 2.
A 4-Product cordial labeling of $K_{1}{ }^{c}+2 K_{2}$ and $K_{2}{ }^{c}+2 K_{2}$ are given below 7

Case (ii): $n \equiv 0(\bmod 4)$.
Let $\mathrm{n}=4 \mathrm{t}(\mathrm{t} \geq 1)$, $\left|\mathrm{E}\left(\mathrm{K}_{\mathrm{n}}{ }^{\mathrm{c}}+2 \mathrm{~K}_{2}\right)\right|=4(4 \mathrm{t})+2=16 \mathrm{t}+2$.Clearly $\mathrm{f}(\mathrm{u}), \mathrm{f}(\mathrm{v}), \mathrm{f}(\mathrm{w})$ and $\mathrm{f}(\mathrm{z})$ are not equal to zero, Without loss of generality assume that $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=0,1 \leq \mathrm{i} \leq \mathrm{t}+1$. Then $e_{f}(0)=4(\mathrm{t}+1)=4 \mathrm{t}+4$, a contradiction.

Case (iii): $n \equiv 1(\bmod 4)$.
Let $\mathrm{n}=4 \mathrm{t}+1(\mathrm{t} \geq 1),\left|\mathrm{E}\left(\mathrm{K}_{\mathrm{n}}{ }^{\mathrm{c}}+2 \mathrm{~K}_{2}\right)\right|=4(4 \mathrm{t}+1)+2=16 \mathrm{t}+6$. Here also $e_{f}(0) \geq 4 \mathrm{t}+4$, an impossibility.
Case (iv): $\mathrm{n} \equiv 2(\bmod 4)$.
Let $\mathrm{n}=4 \mathrm{t}+2(\mathrm{t} \geq 1),\left|\mathrm{E}\left(\mathrm{K}_{\mathrm{n}}{ }^{\mathrm{c}}+2 \mathrm{~K}_{2}\right)\right|=4(4 \mathrm{t}+2)+2=16 \mathrm{t}+10$. Here also $e_{f}(0) \geq 4 \mathrm{t}+4$, an impossibility.
Case (v): $n \equiv 3(\bmod 4)$.
Let $\mathrm{n}=4 \mathrm{t}+3(\mathrm{t} \geq 1),\left|\mathrm{E}\left(\mathrm{K}_{\mathrm{n}}{ }^{\mathrm{c}}+2 \mathrm{~K}_{2}\right)\right|=4(4 \mathrm{t}+3)+2=16 \mathrm{t}+14$. Here clearly $v_{f}(0)=\mathrm{t}+1$ and $f\left(\mathrm{u}_{\mathrm{i}}\right)=0,1 \leq \mathrm{i} \leq \mathrm{t}+1 e_{f}(0) \geq 4 \mathrm{t}+4$. Also $f(u), f(v), f(w), f(z)$ are not equal to 2 , otherwise $e_{f}(0)>4 t+4$.

Hence all 2's are labelled for the vertices u_{i}. Therefore $e_{f}(2)=4(t+2)=4 t+8>4 t+4$, an impossibility.

5. CONCLUSION

In this paper we have studied 4-Product cordial behaviour of graph obtained from two given graphs using graph operations. The authors are of the opinion that the study of k-Product cordial labeling behaviour of graph (where k is an integer $5 \leq \mathrm{k} \leq|v|$) will be quiet interesting and also will lead to never results.

REFERENCES:

[1] M.Sundaram, R. Ponraj, S. Somosundram, Product cordial labeling of graph, Bulletin of Pure and Applied Sciences. 23(2004).
[2] M. Sundaram, R. Ponraj, S. Somosundram, EP-cordial labeling of graph, Varahmihir journal of Mathematical Sciences. 7(2007).
[3] R.Ponraj, M. Sivakumar, M. Sundaram, k-Product cordial labeling of graph, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 15, 733 - 742
[4] Harary, F., Graph Theory, (Addision wisely, New Delhi).

