IMA Available online through www.ijma.info ISSN 2229-5046

A STRUCTURE OF SEMI MODULE OVER A BOOLEAN LIKE SEMI RING

B. V. N. Murthy*
Department of Mathematics, Maharaj Vijayaram Gajapathi Raj College of Engineering, Chintalavalsa, Vizianagaram, AP, India

(Received on: 02-08-12; Accepted on: 22-08-12)

Abstract

In this paper, the concepts invariant R - sub groups of R and semi module over a Boolean like semi ring R are introduced and also study some of its properties. Further if R is weak commutative Boolean like semi ring and P is an R - sub module of M then ($P: M$) is invariant R - sub group of R. Also annihilator of a sub set P of M in R is a right ideal of R and if P is an R - sub module of M then $A n n(P)$ is an ideal of R are proved.

Mathematics Subject Classification: 16Y30, 16 Y 60.
Key Words: Boolean like semi ring, Quotient Boolean like semi ring, Semi module, Quotient semi Module.

INTRODUCTION

The concept of Boolean like semi rings is due to Venkateswarlu. K, Murthy B.V.N and Amaranth N [3]. It is well known that every ring is module over itself. In a similar manner, It is observed in definition 1.1 [3] that an abelian group $(\mathrm{R},+$) over itself satisfies $\mathrm{a}(\mathrm{x}+\mathrm{y})=\mathrm{ax}+\mathrm{ay}$ and $\mathrm{a}(\mathrm{xy})=(\mathrm{ax}) \mathrm{y}$. This idea is extended to any abelian group M over Boolean like semi ring R. The present paper is divided into 3 sections. In section 1, the preliminary concepts and results regarding Boolean like semi rings. In section 2, Invariant R-sub group of R is defined in Boolean like semi ring and also furnish examples(see 2.4.A,B,C).The concept of semi module is introduced (see definition 2.6) and also furnish examples (see example 2.8. A, B...I).Further ($\mathrm{P}: \mathrm{M}$) is defined and obtain that if R is weak commutative Boolean like semi ring and P is R-sub module of M then ($P: M$) is R-sub group of R (see corollary2.18.) and $(P: M)$ is an ideal of R (see Theorem2.19.). In the last section certain properties of annihilators are obtained. Finally end this section with the theorem that Let M be an R - semi module, H an R - sub module of M and K an R -ideal of M then $\mathrm{H}+\mathrm{K}$ is an R - sub module of M (see theorem 3.5.). Throughout this paper R is Boolean like semi ring and M is semi module over R.

1. PRELIMINARIES

We recall certain definitions and results concerning Boolean like semi rings from [3]
Definition 1.1: A non-empty set R together with two binary operations + and . satisfying the following conditions is called a Boolean like semi ring

1. $(R,+)$ is an abelian group
2. (R, .) is a semi group
3. a. $(b+c)=a . b+a . c$ for all $a, b, c \in R$
4. $a+a=0$ for all $a \in R$
5. $a b(a+b+a b)=a b$ for all $a, b \in R$.

Let R be a Boolean like semi ring. Then
Lemma 1.2: For $\mathrm{a} \in \mathrm{R}, \mathrm{a} .0=0$
Lemma 1.3: For $a \in R, a^{4}=a^{2}$ (weak idempotent law)
Remark 1.4: If R is a Boolean like semi ring then, $a^{n}=a$ or a^{2} or a^{3} for any integer $n>0$

Corresponding author: B. V. N Murthy*, Department of Mathematics, Maharaj VijayaramGajapathi Raj College of Engineering, Chintalavalsa, Vizianagaram, AP, India

Definition 1.5: A Boolean like semi ring R is said to be weak commutative if $a b c=a c b$, for $a l l a, b, c \in R$.
Lemma 1.7: If R is a Boolean like semi ring with weak commutative then $0 . a=0$, for all $a \in R$
Lemma 1.8: Let R be Boolean like semi ring then for any $a, b \in R$ and for any integers $m, n>0$,

1. $a^{m} a^{n}=a^{m+n}$
2. $\left(a^{m}\right)^{n}=a^{m n}$
3. $(a b)^{n}=a^{n} b^{n}$ if R is weak commutative.

Definition 1.9: A non empty subset I of R is said to be an ideal if

1. (I,+) is a sub group of ($R,+$), i.e. for $a, b \in R \Rightarrow a+b \in R$
2. $r a \in R$ for all $a \in I, r \in R$,i.e. $R I \subseteq I$
3. $(r+a) s+r s \in I$. for all $r, s \in R, a \in I$

Remark1.10: If I satisfies 1 and 2, I is called left ideal and If I satisfies 1 and 3 , I is called right ideal of R.
Remark 1.11: If R is weak commutative Boolean like semi ring then $a r \in I$ for all $a \in I$ and $r \in R$.
Definition 1.12: An element $1 \in R$ is said to be unity if $a 1=1 a=a$, for all $a \in R$. If $a 1=a$, then 1 is called right unity and if $1 \mathrm{a}=\mathrm{a}$, then 1 is called left unity.

Theorem 1.13: Let R be a Boolean like semi ring with unity 1 . If I is an $I d e a l$ of R such that $1 \in I$ then $I=R$.

2 INVARIANT SUB GROUPS AND SEMI MODULES

Definition 2.1: A sub set H of R is called (two sided or invariant) R - subgroup of R if
(a) $(\mathrm{H},+)$ is a sub group of $(\mathrm{R},+)$
(b) $\mathrm{RH} \subseteq \mathrm{H}$
(c) $\mathrm{HR} \subseteq \mathrm{H}$

Remark 2.2: In the above definition H satisfies (a) and (b), H is called left R - sub group of R and H satisfies (a) and (c), H is called right R - sub group of R.

Theorem 2.3: If $a \in R$ then $a R$ is a right R - sub group of R.
Proof: Let ar, as $\in a R$ Then ar + as $=a(r+s) \in a R$
Hence $a R$ is a sub group of R.
Now $(a R) R=a(R R) \subseteq a R$. Thus $a R$ is a right $R-s u b$ group of R.

Example 2.4:

A) Let $\mathrm{R}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$. The binary operations + and. are defined as follows

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

.	0	a	b	c
0	0	0	0	0
a	0	0	a	a
b	0	0	b	b
c	0	a	b	c

Then ($R,+,$.) is a Boolean like semi ring. We observe that $c a b \neq c b a$.
Clearly $H=\{0, b\}$ is a right $R-$ sub group of R.
$H=\{0, a\}$ is $R-$ sub group of R.
$H=\{0, c\}$ is neither right nor left $R-$ sub goup of R.
B) Let $\mathrm{R}=\{0, \mathrm{x}, \mathrm{y}, \mathrm{z}\}$. The binary operations + and. are defined as follows

Then ($R,+$, . $)$ is a Boolean like semi ring. We note that $a b c=a c b$, for $a l l a, b, c \in R$.
Clearly $\{0, x\}$ and $\{0, z\}$ both are right R - sub groups of R and also $\{0, z\}$ is $R-$ sub group of R.
C) Let $R=\{0, p, q, 1\}$. The binary operations + and . are defined as follows

+	0	p	q	1
0	0	p	q	1
p	p	0	1	q
q	q	1	0	p
1	1	q	p	0

.	0	p	q	1
0	0	0	0	0
p	0	0	p	p
q	0	0	q	q
1	0	p	q	1

Then R is a Boolean like semi ring. It is clear that $\mathrm{a} \cdot 1=1 . \mathrm{a}=\mathrm{a}$ for all $\mathrm{a} \in \mathrm{R}$.
Clearly $H=\{0, q\}$ is a right $R-$ sub group of R.
$H=\{0, p\}$ is $R-$ sub group of R.
$H=\{0,1\}$ is neither right nor left $R-$ sub goup of R.

MODULES:

Definition 2.6: Let R be a Boolean like semi ring and $(M,+)$ be an abelian group then M is called a semi R - module if there is a mapping . $: \mathrm{M} \times \mathrm{R} \rightarrow \mathrm{M}$ (the image of (m,r) under th mapping is denoted by mr) such that '
$m(r+s)=m r+m s$ and $m(r s)=(m r) s$, for all $m \in M, r, s \in R$.
Remark 2.7: If R is Boolean like semi ring then obviously ($R,+$) is itself R - Module.

Examples 2.8:

A) Let $R=\{0, a, b, c\}$, see example $2.4(A)$ and $M=\{0,1,2,3\}$ is abelian group under the binary operation "+" addition modulo 4 is defined and define * $: \mathrm{MxR} \rightarrow \mathrm{M}$ as follows

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

$*$	0	a	b	c
0	0	0	0	0
1	0	0	2	2
2	0	0	2	2
3	0	0	0	0

Then M is semi module over R. We observed that Chr $M \neq 2$.
B) Let $R=\{0, a, b, c\}$, see example $2.4(A)$ and $M=\{0,1,2,3\}$ is abelian group under the binary operation " + " addition modulo 4 is defined and define $*: \mathrm{M} \times \mathrm{R} \rightarrow \mathrm{M}$ as follows

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

$*$	0	a	b	c
0	0	0	0	0
1	0	0	2	2
2	0	0	2	2
3	0	0	2	2

Then M is semi module over R. We observed that Chr $M \neq 2$.
C) Let $R=\{0, a, b, c\}$, see example $2.4(A)$ and $M=\{0,1,2,3\}$ is abelian group under the binary operation + is defined and define *: $\mathrm{M} \times \mathrm{R} \rightarrow \mathrm{M}$ as follows

+	0	1	2	3
0	0	1	2	3
1	1	0	3	0
2	2	3	0	1
3	3	0	1	0

$*$	0	a	b	c
0	0	0	0	0
1	0	0	2	2
2	0	0	2	2
3	0	0	2	2

Then M is semimodule over R . We observed that Chr $\mathrm{M}=2$.
D) Let $R=\{0, a, b, c\}$, see example $2.4(A)$ and $M=\{0,1,2,3\}$ is abelian group under the binary operation + is defined and define * $: \mathrm{M} \times \mathrm{R} \rightarrow \mathrm{M}$ as follows

+	0	1	2	3
0	0	1	2	3
1	1	0	3	0
2	2	3	0	1
3	3	0	1	0

$*$	0	a	b	c
0	0	0	0	0
1	0	0	3	3
2	0	0	3	3
3	0	0	3	3

Then M is semimodule over R . We observed that Chr $\mathrm{M}=2$.
E) Let $R=\{0, a, b, c\}$, see example $2.4(A)$ and $M=\{0,1,2,3\}$ is abelian group under the binary operation + is defined and define * $\mathrm{M} \times \mathrm{R} \rightarrow \mathrm{M}$ as follows

+	0	1	2	3
0	0	1	2	3
1	1	0	3	0
2	2	3	0	1
3	3	0	1	0

$*$	0	a	b	c
0	0	0	0	0
1	0	0	2	2
2	0	0	2	2
3	0	0	3	3

Then M is semimodule over R . We observed that $\mathrm{Chr} \mathrm{M}=2$.
F) Let $\mathrm{R}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$, see example $2.4(\mathrm{~A})$ and $\mathrm{M}=\{0,1,2,3\}$ is abelian group under the binary operation + is defined and define *: $\mathrm{M} \times \mathrm{R} \rightarrow \mathrm{M}$ as follows

+	0	1	2	3
0	0	1	2	3
1	1	0	3	0
2	2	3	0	1
3	3	0	1	0

$*$	0	a	b	c
0	0	0	0	0
1	0	0	2	2
2	0	0	3	3
3	0	0	3	3

Then M is semimodule over R . We observed that $\mathrm{Chr} \mathrm{M}=2$.
G) Let $R=\{0, p, q, 1\}$, see example $2.4(C)$ and $M=\{0,1,2,3\}$ is abelian group under the binary operation + is defined and define *: $\mathrm{M} \times \mathrm{R} \rightarrow \mathrm{M}$ as follows

+	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	0	1	0

$*$	0	p	q	1
0	0	0	0	0
1	0	0	3	3
2	0	0	2	2
3	0	0	3	3

Then M is semimodule over R . We observed that Chr $\mathrm{M}=2$ and $\mathrm{m} * 1 \neq \mathrm{m}$.
H) Let $R=\{0, p, q, 1\}$, see example $2.4(\mathrm{C})$ and $\mathrm{M}=\{0,1,2,3\}$ is abelian group under the binary operation + is defined and define *: $\mathrm{M} \times \mathrm{R} \rightarrow \mathrm{M}$ as follows

+	0	1	2	3
0	0	1	2	3
1	1	0	3	0
2	2	3	0	1
3	3	0	1	0

$*$	0	p	q	1
0	0	0	0	0
1	0	0	1	1
2	0	0	2	2
3	0	0	3	3

Then M is semimodule over R . We observed that Chr $\mathrm{M}=2$ and $\mathrm{m}^{*} 1=\mathrm{m}$.
I) Let $R=\{0, p, q, 1\}$, see example $2.4(C)$ and $M=\{0,1,2,3\}$ is abelian group under the binary operation " + " addition modulo 4 is defined and define $*: \mathrm{M} \times \mathrm{R} \rightarrow \mathrm{M}$ as follows

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

$*$	0	p	q	1
0	0	0	0	0
1	0	0	2	2
2	0	0	2	2
3	0	0	0	0

Then M is semimodule over R . We observed that Chr $\mathrm{M} \neq 2$ and $\mathrm{m}^{*} 1 \neq \mathrm{m}$.
Definition2.8: Let H be a sub group of M such that for all $r \in R$, for all $h \in H$, we have that $h r \in H$ then H is called $R-$ sub module of M, we denote $H<_{R} M$

Definition2.9: If R is weak commutative and M is module over $R, 0 \in M$, $0 r=0$, for all $r \in R$.
Theorem 2.10: If M is semi module over R then $m=0$ for all $m \in M$
Theorem2.11: If M is an R-module and $m \in M$ then $m R$ is an $R-$ submodule of M.
Proof: $m R=\{m r / r \in R\}$. Clearly $m R \subseteq M$.
Let $m r, m s \in m R$ where $r, s \in R$, then $m r-m s=m(r-s) \in m R$
Hence $m R$ is a sub group of M .
Let $h \in m R$ then $h=m r$, for some $r \in R$. Now for all $s \in R$, $h s=(m r) s=m(r s) \in m R$
Hence $m R$ is a sub module of M over R.

Definition2.12: A sub group P of a module M is called R-ideal of M if for all $r \in R m \in M$ and $n \in P$, we have ($m+n$)r - mre P.

Remark2.13: If $M=R$ then R - ideals of M becomes right ideals of R and the R - sub modules of M are the right R sub groups of R.

Example2.14: Let $\mathrm{R}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\} . \mathrm{H}=\{0, \mathrm{~b}\}$ and $\mathrm{K}=\{0, \mathrm{a}\}$ both are proper $\mathrm{R}-$ sub modules. Also $\mathrm{H}=\{0, \mathrm{~b}\}$ is not an R-ideal, since $(a+b) b-a b=c$, which is not in H.

From this example, we say that R - sub modules of M are not necessarly R - ideals of M .
Theorem2.15: If R is weak commutative then every R - ideal of M is an R - sub module of M.
Proof: Let P be an R-ideal of M then P is sub group of M. We prove P is a sub module of M. It is enough to show that $r \in R, p \in P$ implies that $p r \in P$.

Write $\mathrm{pr}=(0+\mathrm{p}) \mathrm{r}-0 \mathrm{r} \in \mathrm{P}$
Definition2.16: Let P be an R-ideal of M then $(P: M)=\{r \in R / M r \subseteq P\}$
Theorem2.17. If P is an R-sub module of M then (a) ($P: M$) is a right R-sub group of R. (b) (P: M) is a left R-sub group of R if R is weak commutative.

Proof: $(P: M)=\{r \in R / M r \subseteq P\}$.
(a) First we prove ($\mathrm{P}: \mathrm{M}$) is sub group of $(\mathrm{R},+$)

For $\mathrm{r}, \mathrm{s} \in(\mathrm{P}: \mathrm{M})$ then $\mathrm{Mr} \subseteq \mathrm{P}, \mathrm{Ms} \subseteq \mathrm{P}$
$\mathrm{M}(\mathrm{r}+\mathrm{s}) \subseteq \mathrm{Mr}+\mathrm{Ms} \subseteq \mathrm{P}$. Hence $\mathrm{r}+\mathrm{s} \in(\mathrm{P}: \mathrm{M})$
Thus (P: M) is a sub group of R
Now we Prove $(\mathrm{P}: \mathrm{M}) \mathrm{R} \subseteq(\mathrm{P}: \mathrm{M})$
Let $r \in R, p \in(P: M)$ then $M p \subseteq P$
$\mathrm{M}(\mathrm{pr})=(\mathrm{Mp}) \mathrm{r} \subseteq \operatorname{Pr} \subseteq \mathrm{P}$ (since P is sub module), hence $\mathrm{pr} \in(\mathrm{P}: M)$.
Thus (P:M) is a right R- sub group of R.
(b) In (a), (P: M) is sub group of $(R,+)$. Finally we show that $R(P: M) \subseteq(P: M)$

Let $\mathrm{r} \in \mathrm{R}, \mathrm{p} \in(\mathrm{P}: \mathrm{M})$ then $\mathrm{Mp} \subseteq \mathrm{P}$
Consider $\operatorname{Mrp}=\operatorname{Mrp}(\mathrm{r}+\mathrm{p}+\mathrm{rp})=\operatorname{Mrpr}+\operatorname{Mrpp}+\operatorname{Mrprp}$

$$
=\mathrm{Mrrp}+\mathrm{Mrrp}+\mathrm{Mrrpp} \subseteq \mathrm{Mp}+\mathrm{Mp}+\mathrm{Mp} \subseteq \mathrm{P}+\mathrm{P}+\mathrm{P} \subseteq \mathrm{P}
$$

Hence $\mathrm{Mrp} \subseteq \mathrm{P}, \mathrm{rp} \in \mathrm{P}$ thus ($\mathrm{P}: \mathrm{M}$) is a left R-sub group of R .
Corollary 2.18: If R is weak commutative Boolean like semi ring and P is an R-sub module of M then ($P: M$) is invariant R-sub group of R .

Theorem2.19: If P is an R - ideal of M then ($P: M$) is an ideal of R.
Proof: If P is an R- ideal of M then P is sub group of M and for allr $\in R$, for all $n \in P$, for all $m \in M$, we have ($m+n$)r$\mathrm{mr} \in \mathrm{P}$

If P is an R - ideal of M then P is R - submodule of M , i.e $\mathrm{PR} \subseteq \mathrm{P}$

We prove (P: M) is an ideal of R.
(i) For $a, b \in(P: M) \Rightarrow M a, M b \subseteq P \Rightarrow M a+M b \subseteq P \Rightarrow M(a+b) \subseteq P \Rightarrow a+b \in(P: M)$
(ii) For a $\in(\mathrm{P}: \mathrm{M}), \mathrm{r} \in \mathrm{R} \Rightarrow \mathrm{Ma} \subseteq \mathrm{P}$

Since M is R - module, Hence $\mathrm{Mr} \subseteq \mathrm{M}$

$$
\mathrm{Mr} \subseteq \mathrm{M} \Rightarrow \mathrm{Mra} \subseteq \mathrm{Ma} \subseteq \mathrm{P} \Rightarrow \mathrm{ra} \in(\mathrm{P}: \mathrm{M})
$$

(iii) For $r, s \in R, a \in(P: M) M a \subseteq P$

For all $m \in M, m[(r+a) s-r s]=m(r+a) s-m r s=(m r+m a) s-m r s \in P$
Hence ($\mathrm{r}+\mathrm{a}$) s - $\mathrm{rs} \in(\mathrm{P}: \mathrm{M})$
Thus (P: M) is an ideal of R.
Proposition 2.20: Let I be an ideal of R then R / I is semi module over R with scalar multiplication defined by:
$(\mathrm{s}+\mathrm{I}) \mathrm{r}=\mathrm{sr}+\mathrm{I}$ for all $\mathrm{r}, \mathrm{s} \in \mathrm{R}$.
Proof: Let $r, s, t \in R$
(i) $(\mathrm{r}+\mathrm{I})(\mathrm{s}+\mathrm{t})=\mathrm{r}(\mathrm{s}+\mathrm{t})+\mathrm{I}=(\mathrm{rs}+\mathrm{rt})+\mathrm{I}=(\mathrm{rs}+\mathrm{I})+(\mathrm{rt}+\mathrm{I})=(\mathrm{r}+\mathrm{I}) \mathrm{s}+(\mathrm{r}+\mathrm{I}) \mathrm{t}$
(ii) $(\mathrm{r}+\mathrm{I}) \mathrm{st}=\mathrm{r}(\mathrm{st})+\mathrm{I}=(\mathrm{rs}) \mathrm{t}+\mathrm{I}=(\mathrm{rs}+\mathrm{I}) \mathrm{t}=((\mathrm{r}+\mathrm{I}) \mathrm{s}) \mathrm{t}$

Theorem 2.21: Let M be a semi module over R and P be an R - ideal of M. Then the quotient group $M / P=\{m+P /$ $\mathrm{m} \in \mathrm{M}$ \}is semi module over R (called the quotient semi module over R) with scalar multiplication defined by ($\mathrm{m}+\mathrm{P}$) r $=m r+P$, for all $r \in R, m \in M$.

Proof: Same as the proof of proposition 2.20.

3 ANNIHILATORS

Definition 3.1: If $P \subseteq M$ then annihilator of P in R is defined by Ann $(P)=\{r \in R / P r=\{0\}\}$
Theorem 3.2: If M is an R -module and $\mathrm{P} \subseteq \mathrm{M}$ then
(i) $\operatorname{Ann}(\mathrm{P})$ is a right ideal of R
(ii) If P is an R-sub module of M then $\operatorname{Ann}(P)$ is an ideal of R.

Proof:

(i) Let $r, s \in R$ such that $r, s \in \operatorname{Ann}(P)$ then $\operatorname{Pr}=\{0\}=P s$

Now for all $p \in P, p(r+s)=p r+p s=0+0=0$, Hence $x+y \in \operatorname{Ann}(P)$
Let $r, s \in R, x \in \operatorname{Ann}(P)$ then $P x=\{0\}$
Now for all $p \in P p[(r+x) s+r s]=p[(r+x) s-r s]$
$=p(r+x) s-p r s=(p r+p x) s-p r s$
$=(\mathrm{pr}+0) \mathrm{s}-\mathrm{prs}=\mathrm{prs}-\mathrm{prs}=0$
Hence $[(r+x) s+r s] \in A n n(P)$, Thus Ann (P) is a right ideal of R.
(ii) From (i), If P is an R-sub module of M then $\operatorname{Ann}(P)$ is a right ideal of R. It is sufficient to prove that for all $r \in R, a \in \operatorname{Ann}(P) \Rightarrow r a \in \operatorname{Ann}(P)$

Let $\mathrm{r} \in \mathrm{R}, \mathrm{a} \in \operatorname{Ann}(\mathrm{P}) \Rightarrow \mathrm{Pa}=\{0\}$

B. V. N Murthy*/ A structure of Semi Module over a Boolean like Semi Ring/ IJMA- 3(8), August-2012, 2850-2857

Now $\mathrm{P}(\mathrm{ra})=(\mathrm{Pr}) \mathrm{a} \subseteq \mathrm{Pa}=\{0\} \Rightarrow \mathrm{ra} \in \operatorname{Ann}(\mathrm{P})$
Thus Ann (P) is an ideal of R

Proposition3.3:

(a) If M is an R - semi module and $I \subseteq \operatorname{Ann}(M)$ then M is an $R / I-$ semi module with respect to $m(r+I)=m r$.
(b) If M is an $R / I-$ semi module then M becomes an R - semi module under the scalar multiplication $\mathrm{mr}=\mathrm{m}(\mathrm{r}+\mathrm{I})$, with $\mathrm{I} \subseteq \operatorname{Ann}(\mathrm{M})$

Proof:

(a) Define a map $M \times R / I \rightarrow M$ as $m(r+I)=m r$, for all $m \in M, r \in R$

Let r, s R such that $\mathrm{r}+\mathrm{I}=\mathrm{s}+\mathrm{I} \Rightarrow \mathrm{r}+\mathrm{s} \in \mathrm{I} \subseteq \operatorname{Ann}(\mathrm{M}) \Rightarrow \mathrm{M}(\mathrm{r}+\mathrm{s})=0 \Rightarrow \mathrm{~m}(\mathrm{r}+\mathrm{s})=0$, for all $\mathrm{m} \in \mathrm{M} \Rightarrow \mathrm{m}(\mathrm{r}-\mathrm{s})=0 \Rightarrow \mathrm{mr}-\mathrm{ms}$ $=0 \Rightarrow \mathrm{mr}=\mathrm{ms} \Rightarrow \mathrm{m}(\mathrm{r}+\mathrm{I})=\mathrm{m}(\mathrm{s}+\mathrm{I})$

Hence the given map is well defined
(i) $\mathrm{m}[(\mathrm{r}+\mathrm{I})+(\mathrm{s}+\mathrm{I})]=\mathrm{m}[(\mathrm{r}+\mathrm{s})+\mathrm{I}]=\mathrm{m}(\mathrm{r}+\mathrm{s})=\mathrm{mr}+\mathrm{ms}=\mathrm{m}(\mathrm{r}+\mathrm{I})+(\mathrm{s}+\mathrm{I})$
(ii) $\mathrm{m}[(\mathrm{r}+\mathrm{I})(\mathrm{s}+\mathrm{I})]=\mathrm{m}[(\mathrm{rs}+\mathrm{I})]=\mathrm{m}(\mathrm{rs})=(\mathrm{mr}) \mathrm{s}=\mathrm{mr}(\mathrm{s}+\mathrm{I})=[\mathrm{m}(\mathrm{r}+\mathrm{I})](\mathrm{s}+\mathrm{I})$

Thus M is R/I - Module
(b) Proof follows the reverse process in (a).

Further more, if $x \in I \Rightarrow x+I=0+I \Rightarrow m(x+I)=m(0+I)=0$, for all $m \in M$

$$
\Rightarrow m x=0 \Rightarrow x \in \operatorname{Ann}(M) \text {, hence } I \subseteq \operatorname{Ann}(M)
$$

Theorem3.4: Let M be an R -semimodule, H an R - sub module of M and K an R -sub module (R -ideal) of M then $\mathrm{H} \cap \mathrm{K}$ is an R - sub module (R-ideal) of M

Proof: Proof is routine verification.
Theorem3.5: Let M be an R - semi module, H an R - sub module of M and K an R-ideal of M then $H+K$ is an R - sub module of M.

Proof: $\mathrm{H}+\mathrm{K}=\{\mathrm{h}+\mathrm{k} / \mathrm{h} \in \mathrm{H}, \mathrm{k} \in \mathrm{K}\}$
Clearly $\mathrm{H}+\mathrm{K}$ is a sub group of M .
(i) Now we prove for all $x \in H+K, r \in R \Rightarrow x \in H+K$

For $\mathrm{x} \in \mathrm{H}+\mathrm{K} \Rightarrow \mathrm{x}=\mathrm{h}+\mathrm{k}, \mathrm{h} \in \mathrm{H}, \mathrm{k} \in \mathrm{K}$
$\mathrm{xr}=(\mathrm{h}+\mathrm{k}) \mathrm{r}=(\mathrm{h}+\mathrm{k}) \mathrm{r}-\mathrm{hr}+\mathrm{hr}=[(\mathrm{h}+\mathrm{k}) \mathrm{r}-\mathrm{hr}]+\mathrm{hr} \in \mathrm{K}+\mathrm{H}$

REFERENCES

[1] Gunter Pilz: Near-Rings, The theory and its applications (North-Holland) 1983.
[2] Mr. S. Juglal: Prime near ring modules and their links with the generalized group near -ring
[3] Venkateswarlu. K and Murthy B.V.N and Amaranth N: Boolean like semi rings, Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 13, 619-635
[4] Venkateswarlu. K and Murthy B.V.N: primary ideals in a Boolean like semi rings. (Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 28, 1367 - 1377
[5] Venkateswarlu. K and Murthy B.V.N: Semi prime ideals and Annihilators in Boolean like semi rings, International Journal of Algebra, Vol. 5, 2011, no. 28, 1363 - 1370.

Source of support: Nil, Conflict of interest: None Declared

