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ABSTRACT 
In this paper, the concepts invariant R- sub groups of R and semi module over a Boolean like semi ring R are 
introduced and also study some of its properties. Further if R is weak commutative Boolean like semi ring and P is an 
R- sub module of M then (P: M) is invariant R- sub group of R.  Also annihilator of a sub set P of M in R is a right ideal 
of R and if P is an R- sub module of M then Ann (P) is an ideal of R are proved. 
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INTRODUCTION 
 
The concept of Boolean like semi rings is due to Venkateswarlu. K, Murthy B.V.N and Amaranth N [3]. It is well 
known that every ring is module over itself. In a similar manner, It is observed in definition 1.1 [3] that an abelian 
group (R,+)  over itself  satisfies a(x+y) = ax + ay and a(xy) = (ax)y. This idea is extended to any abelian group M over 
Boolean like semi ring R. The present paper is divided into 3 sections. In section 1, the preliminary concepts and results 
regarding Boolean like semi rings. In section 2, Invariant R-sub group of R is defined in Boolean like semi ring and 
also furnish examples( see 2.4.A,B,C ).The concept of semi module is introduced (see definition 2.6 ) and also furnish 
examples ( see example 2.8. A, B…I).Further (P:M) is defined and obtain that if R is weak commutative Boolean like 
semi ring and P is R-sub module of M then (P:M) is R-sub group of R (see corollary2.18.) and(P:M) is an ideal of R 
(see Theorem2.19.). In the last section certain properties of annihilators are obtained. Finally end this section with the 
theorem that Let M be an R- semi module, H an R - sub module of M and K an R-ideal of M then H + K is an R- sub 
module of M( see theorem 3.5.). Throughout this paper R is Boolean like semi ring and M is semi module over R. 

 
1. PRELIMINARIES 
 
We recall certain definitions and results concerning Boolean like semi rings from [3]  
 
Definition 1.1: A non-empty set R together with two binary operations + and . satisfying the following conditions is 
called a Boolean like semi ring  
 
1. (R, +) is an abelian group  
2. (R, .) is a semi group 
3. a.(b+c) = a.b +a.c for all a, b, c ∈ R  
4. a + a = 0 for all a ∈ R 
5. ab (a+b+ab) = ab for all a, b  ∈ R.  
 
Let R be a Boolean like semi ring. Then  
 
Lemma 1.2:    For a ∈  R, a.0 =0 
 
Lemma 1.3:    For a ∈  R, a4 = a2  (weak idempotent law) 
 
Remark 1.4:  If R is a Boolean like semi ring then, an = a or a2 or a3 for any integer n > 0 
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Definition 1.5:  A Boolean like semi ring R is said to be weak commutative if abc = acb, for all a, b, c∈  R. 
 
Lemma 1.7: If R is a Boolean like semi ring with weak commutative then 0.a = 0, for all a∈R 
 
Lemma 1.8:  Let R be Boolean like semi ring then for any a, b∈  R and for any integers m, n > 0, 
 
1.  aman = am+n     
2.  (am) n = amn      
3.  (ab)n = anbn if R is weak commutative. 
 
Definition 1.9:   A non empty subset I of R is said to be an ideal if  
 
1. (I,+) is a sub group of (R,+) ,i.e. for a, b∈  R ⇒   a + b ∈  R 
2. ra∈  R for all  a∈  I , r ∈R  ,i.e.  RI ⊆  I 
3. (r+a) s + rs∈  I. for all  r, s ∈R  , a ∈  I  
 
Remark1.10: If I satisfies 1 and 2, I is called left ideal and If I satisfies 1 and 3, I is called right ideal of R. 
 
Remark 1.11: If R is weak commutative Boolean like semi ring then ar∈I for all a∈I and r∈R. 
 
Definition 1.12: An element 1∈ R is said to be unity if a1=1a = a, for all  a∈R. If a1 = a, then 1 is called right unity and 
if 1a = a, then 1 is called left unity.  
 
Theorem 1.13: Let R be a Boolean like semi ring with unity 1. If I is an Ideal of R such that 1 ∈ I then I = R. 
 
2 INVARIANT SUB GROUPS AND SEMI MODULES 
 
Definition 2.1: A sub set H of R is called (two sided or invariant) R – subgroup of R if 
 
(a) ( H , + ) is a sub group of (  R ,+ )    (b)RH ⊆  H     (c) HR ⊆  H 
 
Remark 2.2: In the above definition H satisfies (a) and (b), H is called left R – sub group of R and H satisfies (a) and 
(c), H is called right R – sub group of R. 
 
Theorem 2.3: If a ∈  R then aR is a right R – sub group of R. 
 
Proof: Let ar, as ∈aR Then ar + as = a (r +s) ∈aR 
 
Hence aR is a sub group of R. 
 
Now (aR) R = a(RR) ⊆ aR.  Thus aR is a right R – sub group of R. 
 
Example 2.4: 

 
A) Let R = {0, a, b, c}. The binary operations + and. are defined as follows 

 
+ 0 a b c 

 

. 0 a b c 

0 0 a b c 0 0 0 0 0 

a a 0 c b a 0 0 a a 

b b c 0 a b 0 0 b b 

c c b a 0 c 0 a b c 
 
Then (R, +,.) is a Boolean like semi ring. We observe that    cab ≠ cba. 
  
Clearly H = {0, b} is a right   R - sub group of R. 
 
H = {0, a} is R - sub group of R. 
 
H = {0, c} is neither right nor left R - sub goup of R. 
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B)  Let R = {0, x, y, z}. The binary operations + and. are defined as follows 
 

+ 0 x y z 

 

. 0 x y z 

0 0 x y z 0 0 0 0 0 

x x 0 z y x 0 x 0 x 

y y z 0 x y 0 0 0 0 

z z y x 0 z 0 z 0 z 
 
Then (R, +,  .) is a Boolean like semi ring.  We note that abc = acb, for all a, b, c∈ R.  
 
Clearly {0, x} and {0, z} both are right R – sub groups of R and also {0, z} is R – sub group of R. 
 
C) Let R = {0, p, q, 1}. The binary operations + and . are defined  as follows 

 
+ 0 p q 1 

 

. 0 p q 1 

0 0 p q 1 0 0 0 0 0 

p p 0 1 q p 0 0 p p 

q q 1 0 p q 0 0 q q 

1 1 q p 0 1 0 p q 1 
 
Then R is a Boolean like semi ring. It is clear that a.1 = 1.a = a for all a ∈R. 
 
Clearly H = {0, q} is a right   R - sub group of R. 
 
H = {0, p} is R - sub group of R. 
 
H = {0, 1} is neither right nor left R - sub goup of R. 
 
MODULES: 
 
Definition 2.6:  Let R be a Boolean like semi ring and (M, +) be an abelian group then M is called a semi R – module 
if there is a mapping  . : M x R → M (the image of (m,r) under th mapping is denoted by mr ) such that  ‘ 
 
m( r+s ) = mr + ms and m(rs) = (mr)s, for all m∈  M, r, s∈ R. 
 
Remark 2.7:  If R is Boolean like semi ring then obviously (R, +) is itself R- Module. 
 
Examples 2.8: 
 
A) Let R = { 0,a,b,c}, see example 2.4(A) and M  = {0,1,2,3} is abelian group under the binary operation “+”  

addition modulo 4  is defined and   define * :M x R→ M  as follows 
 

+ 0 1 2 3 

 

* 0 a b c 

0 0 1 2 3 0 0 0 0 0 

1 1 2 3 0 1 0 0 2 2 

2 2 3 0 1 2 0 0 2 2 

3 3 0 1 2 3 0 0 0 0 
 
 Then M is semi module over R. We observed that Chr M ≠ 2. 
 
B) Let R = { 0,a,b,c}, see example 2.4(A)   and M  = { 0,1,2,3} is abelian group under the binary operation “+”  

addition modulo 4  is defined and   define * :M x R → M  as follows 
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+ 0 1 2 3 

 

* 0 a b c 

0 0 1 2 3 0 0 0 0 0 

1 1 2 3 0 1 0 0 2 2 

2 2 3 0 1 2 0 0 2 2 

3 3 0 1 2 3 0 0 2 2 
 
 Then M is semi module over R. We observed that Chr M ≠ 2. 
 
C) Let R = {0,a,b,c}, see example 2.4(A)    and M  = {0,1,2,3} is abelian group under the binary operation + is 

defined and   define * :M x R → M  as follows 
+ 0 1 2 3 

 

* 0 a b c 

0 0 1 2 3 0 0 0 0 0 

1 1 0 3 0 1 0 0 2 2 

2 2 3 0 1 2 0 0 2 2 

3 3 0 1 0 3 0 0 2 2 
 
 Then M is semimodule over R. We observed that Chr M = 2. 
 
D)  Let R = {0,a,b,c}, see example 2.4(A)    and M  = {0,1,2,3} is abelian group under the binary operation + is 

defined and   define * :M x R → M  as follows 
 

+ 0 1 2 3 

 

* 0 a b c 

0 0 1 2 3 0 0 0 0 0 

1 1 0 3 0 1 0 0 3 3 

2 2 3 0 1 2 0 0 3 3 

3 3 0 1 0 3 0 0 3 3 
 
 Then M is semimodule over R. We observed that Chr M = 2. 
 
E)  Let R = {0,a,b,c}, see example 2.4(A)    and M  = {0,1,2,3} is abelian group under the binary operation + is 

defined and   define * :M x R → M  as follows 
 

+ 0 1 2 3 

 

* 0 a b c 

0 0 1 2 3 0 0 0 0 0 

1 1 0 3 0 1 0 0 2 2 

2 2 3 0 1 2 0 0 2 2 

3 3 0 1 0 3 0 0 3 3 
 
Then M is semimodule over R. We observed that Chr M = 2. 
 
F) Let R = { 0,a,b,c}, see example 2.4(A)    and M  = { 0,1,2,3} is abelian group under the binary operation + is 

defined and   define * :M x R → M  as follows 
 

Then M is semimodule over R. We observed that Chr M = 2. 

+ 0 1 2 3 

 

* 0 a b c 

0 0 1 2 3 0 0 0 0 0 

1 1 0 3 0 1 0 0 2 2 

2 2 3 0 1 2 0 0 3 3 

3 3 0 1 0 3 0 0 3 3 
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G) Let  R ={0, p, q,1}, see example 2.4(C)  and M  = {0,1,2,3} is abelian group under the binary operation + is 

defined and   define * :M x R → M  as follows 
 

+ 0 1 2 3 

 

* 0 p q 1 

0 0 1 2 3 0 0 0 0 0 

1 1 0 3 2 1 0 0 3 3 

2 2 3 0 1 2 0 0 2 2 

3 3 0 1 0 3 0 0 3 3 
 
Then M is semimodule over R. We observed that Chr M = 2 and m*1 ≠ m. 
 
H) Let  R ={0,p,q,1}, see example 2.4(C)  and M  = {0,1,2,3} is abelian group under the binary operation + is defined 

and   define * :M x R → M  as follows 
 

+ 0 1 2 3 

 

* 0 p q 1 

0 0 1 2 3 0 0 0 0 0 

1 1 0 3 0 1 0 0 1 1 

2 2 3 0 1 2 0 0 2 2 

3 3 0 1 0 3 0 0 3 3 
 
Then M is semimodule over R. We observed that Chr M = 2 and m*1=  m. 
 
I) Let R = { 0,p,q,1}, see example 2.4(C)  and M  = {0,1,2,3} is abelian group under the binary operation  “+”  

addition modulo 4 is defined and   define * :M x R → M  as follows 
 

+ 0 1 2 3 

 

* 0 p q 1 

0 0 1 2 3 0 0 0 0 0 

1 1 2 3 0 1 0 0 2 2 

2 2 3 0 1 2 0 0 2 2 

3 3 0 1 2 3 0 0 0 0 
 
Then M is semimodule over R. We observed that Chr M ≠ 2and m*1≠ m. 
 
Definition2.8:  Let H be a sub group of M such that for all r ∈R, for all h ∈ H, we have that  hr∈ H then H is called R – 
sub module of M  , we denote H <R M 
 
Definition2.9: If R is weak commutative and M is module over R, 0∈M, 0r = 0, for all r∈ R. 
 
Theorem 2.10: If M is semi module over R then m0 = 0 for all m ∈M 
 
Theorem2.11:  If M is an R-module and m∈M then mR is an R – submodule of M. 
 
Proof: mR = {mr / r ∈R}. Clearly mR ⊆ M. 
 
Let mr, ms ∈ mR where r, s∈ R, then mr-ms = m(r – s)∈mR 
 
Hence mR is a sub group of M. 
 
Let h ∈ mR then h = mr , for some r∈ R. Now for all s∈ R, hs = (mr)s = m(rs)∈mR 
 
Hence mR is a sub module of M over R. 
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Definition2.12: A sub group P of a module M is called R-ideal of M if  for all r ∈ R m ∈ M and n ∈ P ,we have (m+n)r 
– mr∈ P. 
 
Remark2.13: If M = R then R – ideals of M becomes right ideals of R and the R – sub modules of M are the right R – 
sub groups of R. 
 
Example2.14: Let R = {0, a, b, c}. H = {0, b} and K = {0, a} both are proper R –sub modules. Also H = {0, b} is not 
an R- ideal, since (a+b)b – ab = c, which is not in H. 
 
From this example, we say that R – sub modules of M are not necessarly R- ideals of M. 
 
Theorem2.15:  If R is weak commutative then every R- ideal of M is an R- sub module of M. 
 
Proof: Let P be an R -ideal of M then P is sub group of M. We prove P is a sub module of M. It is enough to show that 
r∈R, p∈P implies that pr∈ P. 
 
Write pr = (0 + p)r – 0r∈ P 
 
Definition2.16: Let P be an R -ideal of M then( P:M)  = {r∈R / Mr ⊆ P} 
 
Theorem2.17. If P is an R-sub module of M then (a) (P: M) is a right R-sub group of R. (b) (P: M) is a left R-sub group 
of R if R is weak commutative. 
 

Proof: (P: M) ={r∈R / Mr ⊆ P}.   
 
(a) First we prove (P: M) is sub group of (R, +) 

 
For r,s∈( P:M)   then Mr ⊆ P ,Ms ⊆ P 
 
M(r+s) ⊆ Mr+Ms ⊆  P. Hence r+s∈ (P: M) 
 
Thus (P: M) is a sub group of R 
 
Now we Prove (P:M)R ⊆  (P:M) 
 
Let r∈R, p∈ (P:M) then Mp ⊆ P 
M(pr) = (Mp)r ⊆ Pr ⊆ P (since P is sub module), hence pr∈(P:M).  
 
Thus (P:M) is a right R- sub group of R. 
 
(b) In (a), (P: M) is sub group of (R, +).  Finally we show that   R(P:M)  ⊆  (P:M) 

 
Let r∈R ,p∈ (P:M) then Mp ⊆ P 
 
Consider Mrp = M rp( r + p + rp) = Mrpr + Mrpp + Mrprp 
 
                     = Mrrp + Mrrp +Mrrpp ⊆ Mp + Mp + Mp ⊆ P+ P + P ⊆ P 
 
Hence Mrp ⊆ P, rp∈ P thus (P: M) is a left R-sub group of R. 
 
Corollary 2.18: If R is weak commutative Boolean like semi ring and P is an R-sub module of M then (P : M) is 
invariant R-sub group of R.   
 
Theorem2.19: If P is an R- ideal of M then (P:M) is an ideal of R. 
 
Proof: If P is an R- ideal of M then P is sub group of M and for allr∈R , for all n∈ P, for all m ∈ M, we have (m+n)r-
mr∈P 
 
If P is an R- ideal of M then P is R – submodule of M, i.e PR ⊆ P 
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We prove (P: M) is an ideal of R. 
 
(i) For a, b∈ (P:M)⇒  Ma, Mb ⊆  P ⇒Ma+Mb ⊆ P ⇒M(a+b) ⊆  P ⇒ a +b ∈ (P:M)   
(ii) For a ∈ (P:M) , r∈ R ⇒  Ma ⊆  P  

 
Since M is R – module, Hence Mr ⊆  M 
 

Mr ⊆  M ⇒Mra ⊆  Ma ⊆ P⇒ra∈(P:M)   
 

(iii) For r, s∈ R ,  a ∈ (P:M) Ma ⊆  P 
 

For all m ∈M,  m[ (r+a)s –rs ] = m (r+a ) s – mrs = (mr+ma)s-mrs∈ P 
 
Hence (r+a)s – rs∈ (P:M)  
 
Thus (P: M) is an ideal of R. 
 

Proposition 2.20: Let I be an ideal of R then R/I is semi module over R with scalar multiplication defined by:  
 
(s+I)r = sr +I for all r, s ∈ R. 
 

Proof: Let r, s, t ∈ R 
 

(i) (r + I) ( s+t) = r(s+t) + I = (rs+rt) +I = (rs+I) + (rt+I) = ( r+I)s + (r+I)t 
(ii) (r+I)st = r(st) +I = (rs)t + I = (rs + I)t = ((r + I)s)t 
 

Theorem 2.21: Let M be a semi module over R and  P be an R- ideal of M. Then the quotient group M/P = {m + P / 
m∈M }is semi module over R (called the quotient semi module over R) with scalar multiplication defined by (m + P ) r 
= mr + P , for all r ∈R, m∈M. 
 

Proof: Same as the proof of proposition 2.20. 
 

3 ANNIHILATORS 
 

Definition 3.1: If P ⊆ M then annihilator of P in R is defined by Ann (P) = {r∈R/Pr = {0}} 
 

Theorem 3.2: If M is an R-module and P ⊆ M then 
 
(i) Ann(P) is a right ideal of R 
(ii) If P is an R-sub module of M then Ann(P) is an ideal of R. 

 
Proof: 
 
(i) Let r, s ∈R such that r, s∈Ann(P) then Pr = {0} = Ps 

 
Now for all p ∈P,   p(r+s) = pr + ps = 0 + 0 = 0, Hence x + y ∈Ann(P) 
 
Let r, s ∈ R , x ∈ Ann(P) then Px = {0} 
 
Now for all p ∈P p[ (r+ x)s + rs ] = p[ (r+ x)s - rs ]  
 
= p (r+ x)s -prs =(pr+px)s – prs 
 
=(pr+0)s – prs = prs – prs = 0 
 
Hence [ (r+ x)s + rs] ∈Ann(P) , Thus Ann (P) is a right ideal of R. 
 

(ii) From (i) , If P is an R-sub module of M then Ann(P) is a right  ideal of R. It is sufficient to prove that for all 
r∈R , a ∈Ann(P)⇒ra∈Ann(P) 
 
Let r∈R , a ∈Ann(P) ⇒Pa = {0} 
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Now P(ra) = (Pr)a ⊆  Pa = {0}⇒ra∈Ann(P) 
 
Thus Ann (P) is an ideal of R 
 

Proposition3.3: 
(a) If M is an R- semi module  and I ⊆ Ann(M) then M is an R/I –  semi module with respect to m(r + I) = mr. 
(b) If M is an  R/I –semi module then M becomes an R- semi module under the scalar multiplication  

mr = m(r + I) , with I ⊆  Ann(M) 
Proof:  

(a) Define a map M x R/I → M as m(r + I) = mr, for all m∈M , r∈R 
 
Let r,s R such that r+ I = s + I ⇒r+s∈I ⊆  Ann(M) ⇒M(r+s) = 0 ⇒m(r+s) = 0 ,for all m∈M ⇒ m(r-s) = 0 ⇒mr – ms 
=0⇒mr = ms⇒m(r+I) = m(s+I) 
 
Hence the given map is well defined 
 

(i) m[(r+I)+(s+I)] = m[(r+s)+I]  = m(r+s) = mr + ms = m( r+I) + (s+I) 
(ii) m[(r+I) (s+I)]=m [(rs+I)] = m(rs) = (mr)s = mr(s+I) = [m(r+I)](s+I) 
 
Thus M is R/I – Module 

 
(b) Proof follows the reverse process in (a). 

 
Further more, if x ∈ I⇒ x + I = 0 + I ⇒ m (x + I) = m(0+I) =0 , for all m ∈M  
 
⇒mx = 0⇒ x∈ Ann(M) , hence I ⊆  Ann(M) 

 
Theorem3.4: Let M be an R-semimodule, H an R – sub module of M and K an R-sub module (R-ideal) of M then  
H ∩K is an R- sub module (R-ideal) of M 
 
Proof: Proof is routine verification. 
 
Theorem3.5: Let M be an R- semi module, H an R - sub module of M and K an R-ideal of M then H + K is an R- sub 
module of M. 
 
Proof:  H+K = {h + k / h ∈ H, k ∈ K} 
 
Clearly H+K is a sub group of M. 
 
(i) Now we prove for all x ∈ H + K ,r ∈ R⇒x r ∈ H+K 
 
For x∈H+K ⇒x = h+k ,h∈H, k∈K 

 
xr = (h+k)r = (h+k)r –hr +hr = [(h+k)r –hr ] + hr∈ K+H 
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