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N N ABSTRACT
In this paper g I-closed sets and g °I-closed sets are defined and their properties are investigated.
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1. INTRODUCTION

Ideal topological spaces have been first introduced by K. Kuratowski [2] in 1930.Vaidyanathaswamy [6] introduced
local function in 1945 and defined a topology t. M.E. Abd EIl Monsef, E. F. Lashien and A. a Nasef [1] introduced semi
local function in 1992 and defined a topology t*°.

In this paper g ~"I-closed sets and g”~*I-closed sets are defined and their properties are investigated.
2. PRELIMINARIES

Definition 2.1: An ideal[2] | on a non empty set X is a collection of subsets of X which satisfies the following
properties.i)Ael,Bel = AuBel (ii)Ael, Bc A = Bel A topological space (X,7)
with an ideal 1 on X is called an ideal topological space and is denoted by (X,z,1) .Let Y be a subset of X .

I, = {I NY/l e I} isan ideal on Y and by (Y,z'/Y, IY) we denote the ideal topological subspace.

Definition 2.2: Let P(X) be the power set of X , then a set operator ( )*: P(X)— P(X) called the local
function[6] of A with respect to 7 and | is defined as follows: For A X , A*(l,7) = {X e XIUNAgl for

every open set U containing X}. We simply write A" instead of A"(l,7) in case there is no confusion. A

Kuratowski closure operator cl”( ) for a topology 7 (I,7) , called the .* - topology is defined by
CI'(A)=AUA

For A, B in (X,z,l) wehave

() If Ac B then A" c B’

i) (A7) < A"

(i) A" UB " =(AUB)”

iv) (AnB) c A"nB W If I ={p}, A" =cl(A) and cl"(A) =cl(A)
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(vi) If | =P(X) then A" =¢ and cl”(A) = Aii) A" =cl(A") c cl(A) and A" isaclosed subset of cl(A).

Definition 2.3: A subset A of a space (X, 7) is said to be semi-open [3] if A < cl(int(A))

Definition 2.4: A set operator [1] ( )™ : P(X) — P(X) called a semi local function and ¢l ™( ) of A with
respect to 7 and | are defined as follows: For Ac X , A (l,7) = {x e XU Ag]l for every semi open set
U containing X}. and CI™° (A)= AUA™.

For a subset A of X, cl(A) (resp. scl(A)) denotes the closure (resp. semi closure) of A in (X, 7). Similarly
cl”(A) and int” (A) denote the closure of A and interior of A in (X,7).

Definition 2.5: Asubset A of X is called * closed [6] (resp.* s closed [1]) if A” < A(resp. A™ < A).
Definition 2.6: A subset A of X is called * - dense [6] in itself (resp.* s - dense [1]) if Ac A" (resp. Ac A™).

Definition 2.7: A subset A of X is called * - perfect [6] (resp.* s - perfect [1]) if A= A" (resp. A= A"®)

LEMMA 2.5: [1] For A, B in (X,7,1) we have

(i) If Ac B then A® cB™®

i) (A)° < A

(i) A® UB™® o (AUB)™

(iv) (AnB)® c A®NB™

W) If | ={g}, A =scl(A) and cl™® (A) = scl(A)
(vi) If | =P(X) then A™ =¢ and cl™(A) = A
(viiy A =scl(A™) < scl(A) and A™ is semi closed.

A subset A of an ideal space (X,7,1)is said to be g- closed [4], if Cl(A) = U whenever Ac U and U is
open in X . The complement of g —closed set is said to be g —open.

Asubset A of an ideal space (X,7,1)issaidtobe g” — closed [7], if ¢l (A) U whenever AcU and U is
g —open in X . The complement of g~ — closed set is said tobe g~ —open.

Asubset A of an ideal space (X ,7,1)issaidtobe g~ — closed [5], if ¢l (A) cU whenever AcU and U is
g~ —open in X . The complement of g~ —closed setissaidtobe g~ —open

3.9 | —closed and g "°1 —closed sets

Definition 3.1: subset A of an ideal space (X,z,1)issaidtobe g~ | closed, if cI”(A) U whenever AcU
and U is g —open in X . The complement of g~ | —closed setissaidtobe g~ | ——open.A subset A of an
ideal space (X,7,1)issaidtobe g > closed, if ¢l (A) c U whenever Ac U and U is g~ —open in X .
The complement of g~ °1 —closed set is said to be g~ °1 ——0pen.The collection of all g~ | —closed sets
(resp. g 1 —closed sets) is denoted by G~ IC(X) (resp. G °IC(X) ) Similarly the collection of all
9”1 —opensets (resp. g~ ° | —open sets) is denoted by G~ 10(X) (resp. G °10(X))
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Remarks: 3.2:

1 If 1 = P(X) then cI™ (A) =cl"(A) = A forall Ac X and hence every subset of X is g~ | —closed .
and g ° | —closed
2.since A ={p} =A"forevery Ae I, every member of | is g”| —closed .and g™ I —closed
3. Every closed set A is g~ | —closed since cl"(A) ccl(A)=A and every semi closed set A is
g°1 —closed since ¢l (A) < scl(A) = A
4. Every *—closed setis g~ | —closed since ¢l (A) = A

- - n n
5. Finite union of g | —closed setsis g | —closed since cl {UA,} = UCI (A)

i=1

i=1
In general, (A B)*s #A” UB™ for subsets A and B in X as seen from the following example.

Example 3.3: Let X = {a,b,c,d} LT = {¢,X,{a}, {b}, {a,b}}, | = {¢5} Then {a}*s = {a} {b}*S = {b} and
{a,b}*S = X .This shows (AU B)™ # A™ U B in general.

*S

Moreover in general [UAI} #* U(AI)* and{UAi} ;«r&L_J(AI )™ For arbitrary indexing sef2 ,
i=1 i=1 i=1 i=1

* *S
{U A, } # U (A,) and {U A, } #* U (A, )™® as seen from the following examples.

aeQ) ae) aeQ) aeQ)

Example 3.4: Let X=Z, 7 be the cofinite topology in X and | = {¢} Then A=A = A" if A is finite and
A" =Z = A%t Aisinfinite. G " 1C(X) = {X, ¢, all finite subsets }.

Let A, = {-n,-n+1,.....-1,1,.....n-1,n} for every positive integer n. Then An* = An*S = A foreveryn.

{OA} -z {CJA} andJ(A) =2 ~{0}= (A"

*

Therefore [OA.} ;tO(AI)* and{oﬁg} iO(Ai)*S

Here A, is g1 —closed and g~*I- closed for every n. But {UAI} isnot g I-closed and g1 -closed.
i-1
Definition 3.5: An ideal space (X, 7, 1) is said to be

(i) *— countably additive if {0 A } = O (A)
i=1 i=1

*

(i) * — additive if {U Aa} = U(Aa)* for all indexing sets Q.

aeQ) aeQ)

n *S n
(iii) * — additive if {U AI} = U (A )*S for every positive integer N.
i=1 i=1

o0

N
(iv) * S — countably additive if {U A } =)
i=1

i=1

*S
(v) *S — additive if [UA{Z} = L_J(Aa)*S for all indexing sets €.

aeQ) aeQ)
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Remark: 3.6: In an ideal topological space (X, 7, |) which is * S — finitely additive we have following results:
Lc™(g)=¢

2. ¢l (X)=X

3. Accl™ (A

4 cl™ (AuB)= cl™ (A v cl™ (B)

5. ¢l (CI*S (A)): cl™ (A) for all subsets A, B in X.

Therefore ¢l () satisfies Kuratowski Closure axioms and hence it defines a topology 7"° whose closure operation is
given as ¢l "> (A) = AU A™  Note that = 7~ = z™°. ¢I"®(A) and int™ (A) denote the closure and interior of
Ain (X,77°).

Theorem3.7 In a * — countably additive (resp * — additive) ideal topological space (X, 7, ) Countable union (resp

arbitrary union) of g~ | —closed setsis g | —closed.

Proof: It follows since in *— countably additive space CI*{UAJ = UCI*(Ai) and in *— additive space

cl*{UAa} el (A)

i=1

Theorem 3.8: Ina * s — finitely additive( resp *s-countably additive , *s- additive ) ideal topological space (X, 7, 1)

finite union ( resp countable union ,arbitrary union) of g**l —closed sets is g**l —closed

n n
Proof: It follows since in *s finitely additive space cl {U A.} = U cl™(A) and in *s-countably additive space
i i-1

CI*{UAJ = UCI*S(Ai) andin *s — additive space CI*{U Aa} = UCI*S(A

i=1 i=1 aeQ) aeQ)

Definition 3.9: {Aa la e Q} is said to be a locally finite (resp locally countable) family of sets in (X, z, 1) if for
every X € X , there exists an open set U in X containing X that intersects only a finite (resp countable) number of
members Aal yerearaes , Aan (resp AO!i d=1..... 00) of {Aa la e Q}_

Theorem 3.10: Let (X, 7, 1) be an ideal space, and let {Aa la e Q} be a locally finite family of g™"I-closed sets in

(X,z,1). Then (U Aaj is also g”'I- closed.

aeQ)

aeQ) aeQ)

Proof: A, U A implies A < (U A, )* for every a.Therefore U (Aa)* c (U Aaj ------ 1)

*

On the otherhand, if X € [U Aaj then there exists an open set U containing X, that intersects only finite number of
ae)

members Aal, -------- . Aan .Let V be an open set containing X. Then U NV is an open set containing X .which
|mpI|es U mV (UA Je l.
aeQ)
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{Umv [UA H {UmV)ﬂ(gAaiﬂel e {¢}U{Umv (UA ﬂ and hi

implies V ﬂ(o Aaijsé | Therefore X e(o Aaij U(A ) <. U(A )

*

Therefore (UAQJ - U(Aa)* -------- (2) From (1) and(2) we get (UAaj = U(Aa)*

aeQ) aeQ) aeQ) aeQ

Let UAa cU andU—-g” —openin X .Then A, cUVaeQ impliescl (A))cUVaeQ.

aeQ)

ThenCI*(UAaj = (UA{X] U(UAaj = UCI*(Aa) U Therefore UAa is g~ I- closed.

aeQ) aeQ) aeQ) aeQ) aeQ)

Theorem 3.11: Let (X, 7, 1) be an ideal space which is = - countably additive, and let {Aa la e Q} be a locally

countable family of g”'I- closed. setsin (X,7,1) . Then (U Aaj is also g”'I- closed.

aeQ)

Proof: Similar to proof of above Theorem since in = - countably additive space {U A } = U (A )*
i=1 i
Theorem 3.12: Let the ideal space (X,z,l) be *S - finitely additive (resp. *S - countably additive), and let

{Aa la e Q} be a locally finite (resp locally countable) family of sets in (X, 7,1). Ifeach A_is g I —closed
then UAa isalso g ° 1 —closed

aeQ)

Proof: Similar to proof of above Theorem, since in *S - finitely additive and *S - countably additive spaces,
n *S n o0 *S 0

{U A } =J(A)™ and {U A } = J(A)™ respectively
i=1 i=1 i=1 i=1

Remark 3.13: In general intersection of two g1 — closed sets need not be g™’ — closed as seen from the following
example.

Example 3.14: Let X ={a,b,c,d} 7 = {¢, X {a, b}} | = {¢} Then A ={a,c} and B ={a,d} are g "I-closed and gl —
closed but A B ={a} isnot - g ~I-closed and g™l - closed

Theorem 3.15: A subset A of an ideal space (X,z,1) is g~ | —open if and only if F < Int”(A) whenever
Fc A and Fisa g —closed subset of X .

Proof: Let A be g | —open and F be a g° —closed subset of X contained in A. Then (X —F) is a
g" —open set containing X — A which implies X —In "¢A) =cl (X —A)c X —F. So F < Int"(A)

Conversely, let F < Int”(A) whenever F — A and F isa g —closed subset of X . Let U be a g —open
and X —AcU . Then X U < Int"(A) = X —cl" (X — A) . Therefore ¢l (X —A) cU which proves
X —Ais g l—closed.So Aisg™ | —open.

Theorem 3.17: A subset A of a *s - finitely additive ideal space (X,z,1) is g~ °| —open if and only if
F < Int™(A) whenever F — A and Fisa g —closed subset of X .
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Proof: similar to the proof of the above theorem since in *S - finitely additive ideal space
Int™(A)= X —cI™(X - A)

Theorem 3.18: For each X € (X, 7, ) either {X} is g" —closed or {x}°is g”I —closed inX .

Proof: Suppose {X} isnot g” —closed. then {X}° isnot g~ —open.

c

Therefore the only g~ —Open set containing {X}° is X and cl"({x}°) = X which proves that {X} is
9”1 —closed .

Theorem 3.19: For each X € (X, 7, |) either {X} is g" —closed or {x}°is g”*1 —closed in X .

Proof: Similar to the above proof.

Theorem 3.20: In an ideal space (X, 7, 1), if U isopenand A is g~ | —open, then U N A is g~ | —open.

Proof follows from (5) of remark (3.2) since every open setis g .- open

Theorem 3.21: In an ideal space (X,z,l) which is finitely *S - additive, if U is semi open and A is

g 1 —open,thenU N A is g °1 —open.
Proof follows from theorem (3.8) since every semi open setis g - open

Theorem 3.22: If B is a subset of an ideal space (X,7,1) such that Ac B <cl (A) and A isg” | —closed
then B isalso g~ | —closed in X .

Proof: Let U be g—open and BcU .Then AcU  and this implies cl'(A) cU Therefore
cl”(B) ccl”(cl” (A)) = ¢l (A) < U which proves B isg™ | —closed .

Theorem 3.23: If B is a subset of a finitely *s - additive ideal space (X,7,1) such that A< B < cl™®(A) and
Aisg”°l —closed , then B isalso g | —closed in X .

Proof is similar to the proof of above theorem.

Theorem 3.24: Let (X, 7, 1) bean ideal spaceand A bea g~ | —closed subset of X . Then
()cl(A")cU forall g° —open set U containing A.

ii) ¢l (A ) — A contains no non empty g~ —closed set.

(i) cI(A") — A contains no non empty g~ —closed set.

(i) (A") — A contains no non empty g~ — closed set.

Proof:

(i) Let U be g" —open set containing A.Then cl A" = A" ccl"(A) cU,
(ii) Suppose that there exists a non empty g~ — closed set F such that F < ¢l”(A) - A,

then Ac X —F which is g~ —open. So cl"(A)c X —F and this implies F < X —cl”(A ) Hence
Fo(X=c'(A) (el (A)-A) = {¢}
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(iii) It follows from (ii) since Cl(A") = A" < cl”(A)
(iv) It follows from (ii) since A" — A ¢l (A) — A.

Theorem 3.25: Let (X, 7, 1) bean ideal spaceand A a g ° 1 —closed subset of X . Then
(iyscl(A®) cU forall g~ —open set U containing A.

(i) ¢l (A) — A contains no non empty g~ — closed set.

(iii) scl(A™) — A contains no non empty g~ — closed set.

(iv) (A™) — A contains nonon empty g~ — closed set.

Proof is similar to the proof of above theorem.
Theorem 3.26: Let (X, 7, 1) bean ideal spaceand AcY < X IfAisg™ | —closed in(Y,z/Y,1/Y) Yis

open and 7~ —closed in X then A is g**l —closed in X.

Proof: Let U be g —open setin X containing A.Then A"(1,7) NY = A"(l,, z,) cU NY. Then
YcUU(X=A(l, 7). Since Yis 7" —closed, A" Y <Y cU U (X -A(l, 7)).

Therefore A” < U and this implies ¢l (A) = AUA" cU
Theorem 3.27: Let (X, 7, 1) bean ideal spaceand AcY < X IfAisg °I —closed in(Y,z/Y,1/Y) Yis
open and 7"° —closed in X then Ais g~ °| —closed in X.

Proof is similar to the proof of above theorem.

Theorem 3.28: Let (X,7,1) be an ideal space and Ac X . If A is g~ | —closed then AU (X —A") is
g~ | —closed.

Proof: Let U be g —open and AU(X —A")cU .Then X —U < X -[AU(X —A")]= A" — A Since
Ais g7 1 —closed , A" — A contains no non empty g —closed set. Therefore X —U = ¢ which implies
X =U . Thus X is the only g —open set containing AU (X —A") which proves AU (X —A") is
g™l —closed .

Theorem 3.29: Let (X,7,1) be an ideal space and Ac X . If Ais g  °I —closed then AU (X —A™) is
g1 —closed .

Proof is similar to the proof of above theorem.

Theorem 3.30: Let (X,7,1) be an ideal space. If every g* —openset is *—closed , then every subset of X is
9”1 —closed .

Proof: Let AcU and U a g —open set in X . Then cl"(A)ccl (U)=U which proves A is
g | —closed

Theorem 3.31: Let (X, 7, 1) be an ideal space. If every g* —opensetis *s —closed , then every subset of X is
g1 —closed .

Proof is similar to the proof of above theorem.
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