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ABSTRACT 
In this paper g**I-closed sets and g**sI-closed sets are defined and their properties are investigated.  
 
Key words: ,** closedIg − closedIg s −**  sets, −*  countably additive, −*  additive, −s*  additive, −s*
countably additive −s* finitely additive ideal spaces, locally finite and locally countable family of sets. 
 
 
1. INTRODUCTION 
  
Ideal topological spaces have been first introduced by K. Kuratowski [2] in 1930.Vaidyanathaswamy [6] introduced 
local function in 1945 and defined a topology τ. M.E. Abd El Monsef, E. F. Lashien and A. a Nasef [1] introduced semi 
local function in 1992 and defined a topology τ*s

.   

 
In this paper g **I-closed sets and g**sI-closed sets are defined and their properties are investigated.  
 
2. PRELIMINARIES 
 
Definition 2.1: An ideal[2] I  on a non empty set X  is a collection of subsets of X  which satisfies the following 
properties.(i) IA∈ , IB∈  ⇒  IBA ∈∪  (ii) IA∈ , AB ⊂  ⇒  IB∈ .A topological space ),( τX  
with an ideal I  on X  is called an ideal topological space and is denoted by ),,( IX τ .Let Y be a subset of X . 

{ }IIYIIY ∈∩= /  is an ideal on Y  and by ( )YIYY ,/,τ  we denote the ideal topological subspace.  
 
Definition 2.2: Let )(XP  be the power set of X , then a set operator (  )*: )()( XPXP →  called the local 

function[6] of A with respect to τ  and I  is defined as follows: For XA ⊂ , { IAUXxIA ∉∩∈= /),(* τ  for 

every open set U  containing }x . We simply write *A instead of ),(* τIA  in case there is no confusion. A 

Kuratowski closure operator )(*cl  for a topology ),(* ττ I , called the *τ - topology is defined by 
** )( AAACl ∪=  

For A , B  in ),,( IX τ  we have   

(i) If BA ⊂  then ** BA ⊂   

(ii) ( ) *** AA ⊆  
(iii) *** )( BABA ∪=∪  
(iv) ***)( BABA ∩⊆∩ (v) If { }φ=I , )(* AclA =  and )()(* AclAcl =  
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(vi) If )(XPI =  then  φ=*A  and AAcl =)(* (vii) )()( ** AclAclA ⊂=  and *A  is a closed  subset of cl(A). 
 
Definition 2.3: A subset A of a space ),( τX  is said to be semi-open [3] if ))(int(AclA ⊂  

Definition 2.4: A set operator [1] )()(:)( * XPXPS →  called a semi local function and )(*scl  of A  with 

respect to τ  and I  are defined as follows: For XA ⊂ , { IAUXxIA S ∉∩∈= /),(* τ  for every semi open set 

U  containing }x . and SS AAACl ** )( ∪= .  
 
For a subset A  of X , )(Acl  (resp. ))(Ascl  denotes the closure (resp. semi closure )  of A  in ),( τX . Similarly 

)(* Acl  and )(int* A  denote the closure of A  and interior of A  in ),( *τX .  
 
Definition 2.5: A subset A  of X  is called * closed [6] (resp. s* closed [1]) if AA ⊆* (resp. AA S ⊆* ).  
 
Definition 2.6: A subset A of X is called * - dense [6] in itself (resp. s* - dense [1]) if *AA ⊂  (resp. SAA *⊂ ). 
 
Definition 2.7: A subset A of X is called * - perfect [6] (resp. s* - perfect [1]) if *AA =  (resp. SAA *= ) 
 
LEMMA 2.5: [1] For A , B  in ),,( IX τ  we have     
 
(i) If BA ⊂  then SS BA ** ⊂      

(ii) ( ) SSS AA *** ⊆      
(iii) SSS BABA *** )( ∪⊇∪  
(iv) SSS BABA ***)( ∩⊆∩  
(v) If { }φ=I , )(* AsclA S =  and )()(* AsclAcl S =  
(vi) If )(XPI =  then  φ=SA*  and AAcl S =)(*

 
(vii) )()( ** AsclAsclA SS ⊂=  and SA*  is semi closed. 
 
A subset A  of an ideal space ),,( IX τ is said to be g- closed [4], if UAcl ⊆)(  whenever UA ⊆  and U  is 
open  in X . The complement of closedg −  set is said to be .g open−  
 
A subset A  of an ideal space ),,( IX τ is said to be −*g  closed [7], if UAcl ⊆)(  whenever UA ⊆ and U  is 

openg −  in X . The complement of closedg −* set is said to be openg −* . 
 
A subset A  of an ideal space ),,( IX τ is said to be −**g  closed [5], if UAcl ⊆)(  whenever UA ⊆  and U  is 

openg −*  in X . The complement of closedg −**  set is said to be openg −**  
 

3. closedIg −** and closedIg s −**  sets 
 

Definition 3.1: subset A  of an ideal space ),,( IX τ is said to be Ig **  closed, if UAcl ⊆)(*  whenever UA ⊆  

and U  is openg −*  in X . The complement of closedIg −**  set is said to be openIg −−** .A subset A  of an 

ideal space ),,( IX τ is said to be Ig S**  closed, if UAcl S ⊆)(*  whenever UA ⊆  and U  is openg −*  in X . 

The complement of closedIg s −**  set is said to be openIg s −−** .The collection of all closedIg −** sets 

(resp. closedIg S −**  sets) is denoted by )(** XICG  (resp. )(** XICG S ) Similarly the collection of all 

openIg −** sets ( resp. openIg S −**  sets) is denoted by )(** XIOG  (resp. )(** XIOG S ) 
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Remarks: 3.2: 

1. If )(XPI =  then XAforallAAclAcl S ⊆== )()( **  and hence every subset of X  is closedIg −** . 

and closedIg S −**
 

2. Since { }φ=SA*  = *A for every IA∈ , every member of I  is closedIg −** .and closedIg S −**
 

3. Every closed set A is closedIg −** since AAclAcl =⊆ )()(*  and every semi closed set A is 

closedIg s −** since AAsclAcl s =⊆ )()(*  

4. Every closed−* set is closedIg −** since AAcl =)(*
 

5. Finite union of closedIg −** sets is closedIg −** since 


n

i
i

n

i
i AclAcl

1

*

1

* )(
==

=







 

In general, 
SSS BABA ***)( ∪≠∪ for subsets A and B in X as seen from the following example. 

 
Example 3.3: Let { }dcbaX ,,,=  , { } { } { }{ }babaX ,,,,,φτ = , { }φ=I . Then { } { }aa S =* , { } { }bb S =*  and 

{ } Xba S =*, .This shows SSS BABA ***)( ∪≠∪ in general. 
 

Moreover in general 
  



∞

=

∞

=

≠








1

*
*

1

)(
i

i
i

i AA
 



∞

=

∞

=

≠








1

*
*

1

)(
i

S
i

S

i
i AAand

   
For arbitrary indexing set Ω ,

   

andAA


Ω∈Ω∈

≠








α
α

α
α

*
*

)(
   



Ω∈Ω∈

≠








α
α

α
α

S
S

AA *
*

)( as seen from the following examples. 

 
Example 3.4: Let X=Z, τ  be the cofinite topology in X and { }φ=I .Then AA =* sA*=  if A is finite and 

ZA =* sA*= if A is infinite. { allXXICG ,,)(** ϕ= finite subsets }.  
 

Let An = {-n,-n+1,…..-1,1,…..n-1,n} for every positive integer n. Then  =*
nA   AA s

n =*
   for every n.   

*

1







 ∞

=


i
iA = Z

 

s

i
iA

*

1








=

∞

=


=−=
∞

=

}0{)(
1

* ZAand
i

i 

∞

=1

*)(
i

s
iA

                    

Therefore 


∞

=

∞

=

≠








1

*
*

1

)(
i

i
i

i AA
 



∞

=

∞

=

≠








1

*
*

1

)(
i

S
i

S

i
i AAand  

Here   An  is  g**I –closed  and  g**s I- closed  for every n. But  






 ∞

=


1i
iA   is not 

    
g**I- closed  and  g**s I -closed. 

Definition 3.5: An ideal space ),,( IX τ is said to be  

(i) −*  countably additive if 


∞

=

∞

=

=








1

*
*

1

)(
i

i
i

i AA
 

(ii) −*  additive if 


Ω∈Ω∈

=








α
α

α
α

*
*

)(AA  for all indexing sets Ω . 

(iii) −*  additive if 


n

i

S
i

Sn

i
i AA

1

*
*

1

)(
==

=







 for every positive integer n .    

(iv) −S*  countably additive if 


∞

=

∞

=

=








1

*
*

1

)(
i

S
i

S

i
i AA  

(v) −S*  additive if 


Ω∈Ω∈

=








α
α

α
α

S
S

AA *
*

)(  for all indexing sets Ω . 
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Remark: 3.6: In an ideal topological space ),,( IX τ which is −S*  finitely additive we have following results: 

1. φφ =)(*Scl   
2. XXcl S =)(*   

3. )(* AclA S⊆  

4. )()()( *** BclAclBAcl SSS ∪=∪   
5. ( ) )()( *** AclAclcl SSS =  for all subsets A, B  in X. 

Therefore )(*Scl satisfies Kuratowski Closure axioms and hence it defines a topology S*τ whose closure operation is 

given as SS AAAcl ** )( ∪= . Note that S** τττ ⊆⊆ . )(* Acl S
  and )(int* AS denote the closure and interior of 

A in ),( *SX τ .    
 
Theorem3.7 In a −*  countably additive   (resp −*  additive) ideal topological space ),,( IX τ Countable union (resp 

arbitrary union) of closedIg −** sets is ** .g I closed−  
 

Proof: It follows since in −*  countably additive space 


∞

=

∞

=

=








1

*

1

* )(
i

i
i

i AclAcl and in −*  additive space 



∞

Ω∈Ω∈

=








α
α

α
α )(**

iAclAcl
 

 
Theorem 3.8: In a −s*  finitely additive( resp *s-countably additive , *s- additive ) ideal topological space ),,( IX τ
finite union ( resp countable union ,arbitrary union) of closedIg −** sets is closedIg −**

 
 

Proof: It follows since in *s finitely additive space 


n

i
i

s
n

i
i

s AclAcl
1

*

1

* )(
==

=







and in *s-countably additive space 



∞

=

∞

=

=








1

*

1

* )(
i

i
s

i
i

s AclAcl and in  −s*  additive  space 


Ω∈Ω∈

=








α
α

α
α )(**

i
ss AclAcl

 
 
Definition 3.9: { }Ω∈αα /A  is said to be a locally finite (resp locally countable) family of sets in ),,( IX τ  if for 

every Xx∈ , there exists an open set U  in X  containing x  that intersects only a finite (resp countable) number of 

members 
n

AA αα ,........,
1

(resp ∞= ,.........1,iA
iα ) of  { }Ω∈αα /A . 

 
Theorem 3.10: Let ),,( IX τ  be an ideal space, and let { }Ω∈αα /A  be a locally finite family of g**I-closed sets in

),,( IX τ . Then 








Ω∈


α
αA is also g**I- closed.  

Proof: 
 αα AA ⊆ implies ( )**

 αα AA ⊆ for every α.Therefore 
*

*)( 







⊆

Ω∈Ω∈


α
α

α
α AA ------ (1) 

On the otherhand, if 
*









∈

Ω∈


α
αAx then there exists an open set U containing x , that intersects only finite number of 

members 
n

AA αα ,........,
1

.Let V  be an open set containing x . Then VU ∩  is an open set containing x .which 

implies ( ) IAVU ∉







∩∩

Ω∈


α
α . 
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i.e. ( ) ( ) IAVUAVU
n

i
i

i

∉















∩






















∩∩

=≠




1
α

αα
α

 

i.e. { } ( ) IAVU
n

i
i

∉















∩

=




1
αφ   and this 

implies IAV
n

i
i
∉








=




1
α Therefore ⊆=








∈

==


n

i

n

i
ii

AAx
1

*
*

1

)( αα .


Ω∈α
α

*)(A  

Therefore 


Ω∈Ω∈

⊆








α
α

α
α

*
*

)(AA  --------(2)  From (1) and(2)  we get 


Ω∈Ω∈

=








α
α

α
α

*
*

)(AA
 

Let UA ⊆
Ω∈


α
α   and opengU −− *  in X . Then Ω∈∀⊆ αα UA   implies Ω∈∀⊆ αα UAcl )(* . 

Then =








Ω∈


α
αAcl *










Ω∈


α
αA

*










Ω∈




α
αA UAcl ⊆=

Ω∈


α
α )(* Therefore 



Ω∈α
αA  is g**I- closed.  

 
Theorem 3.11: Let ),,( IX τ  be an ideal space which is * - countably additive, and let { }Ω∈αα /A  be a locally 

countable family of  g**I- closed. sets in ),,( IX τ . Then 








Ω∈


α
αA is also g**I- closed.  

Proof: Similar to proof of above Theorem since in * - countably additive space


∞

=

∞

=

=








1

*
*

1

)(
i

i
i

i AA  

Theorem 3.12: Let the ideal space ),,( IX τ  be s*  - finitely additive (resp. s*  - countably additive), and let 

{ }Ω∈αα /A  be a locally finite (resp locally countable) family of sets in ),,( IX τ . If each αA is closedIg S −**  

then 


Ω∈α
αA  is also closedIg S −**

 

 
Proof: Similar to proof of above Theorem, since in S*  - finitely additive and  S*  - countably additive spaces, 



n

i

S
i

Sn

i
i AA

1

*
*

1

)(
==

=







and 



∞

=

∞

=

=








1

*
*

1

)(
i

S
i

S

i
i AA respectively

     
 
Remark 3.13: In general intersection of two g**I – closed sets need not be g**I – closed as seen from the following 
example. 
 
Example 3.14: Let X ={a,b,c,d} { }},{,, baXφτ = { }φ=I ,Then A ={a,c} and B ={a,d} are g **I-closed and g**sI – 

closed but }{aBA =∩  is not 
 
–  g **I-closed and g**sI – closed  

 
Theorem 3.15: A subset A of an ideal space ),,( IX τ  is openIg −**

 if and only if )(* AIntF ⊂ whenever 

AF ⊆   and F is a closedg −*  subset of X . 
 
Proof: Let A  be openIg −**

 and F  be a closedg −*  subset of X contained in A . Then )( FX − is a 

openg −*  set containing AX −  which implies * *( ) ( ) .X In tA cl X A X F− = − ⊂ −  So )(* AIntF ⊂  
 
Conversely, let )(* AIntF ⊂  whenever AF ⊆  and F  is a closedg −*

 subset of X . Let U  be a openg −*  

and UAX ⊂− . Then )()( ** AXclXAIntUX −−=⊂− . Therefore UAXcl ⊆− )(*  which proves 

AX −  is closedIg −** . So A  is openIg −** . 
 
Theorem 3.17: A subset A of a s* - finitely additive ideal space ),,( IX τ  is openIg s −**

 if and only if 

)(* AIntF s⊂  whenever AF ⊆   and F is a closedg −*  subset of .X  
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 Proof: similar to the proof of the above theorem since in s* - finitely additive ideal space

)()( ** AXclXAInt ss −−=  
 
Theorem 3.18: For each ),,( IXx τ∈ either { }x  is closedg −*

 or { }cx  is closedIg −**  in X . 
 
Proof: Suppose { }x  is not * .g closed−  then { }cx  is not openg −* . 
 
Therefore the only openg −* set containing { }cx  is X  and Xxcl c ⊆)}({*  which proves that { }cx  is 

closedIg −** .  
 
Theorem 3.19: For each ),,( IXx τ∈ either { }x  is closedg −*

 or { }cx  is closedIg s −**  in X . 
 
Proof: Similar to the above proof. 
 
Theorem 3.20: In an ideal space ),,( IX τ , if U  is open and A  is openIg −** , then AU ∩   is openIg −** . 

Proof follows from (5) of remark (3.2) since every open set is openIg −**   
 
Theorem 3.21: In an ideal space ),,( IX τ  which is finitely s* - additive, if U  is semi open and A  is 

openIg S −** , then AU ∩   is openIg S −** . 
 
 Proof follows from theorem (3.8) since every semi open set is openIg S −**   
 
Theorem 3.22: If B  is a subset of an ideal space ),,( IX τ  such that )(* AclBA ⊂⊂  and A  is closedIg −** , 

then B  is also closedIg −**  in X . 
 
Proof: Let U  be openg −  and UB ⊂ .Then UA ⊂   and this implies UAcl ⊂)(* Therefore 

UAclAclclBcl ⊂⊂⊂ )())(()( **** which proves B  is closedIg −** . 
 
Theorem 3.23: If B  is a subset of a finitely s* - additive ideal space ),,( IX τ  such that )(* AclBA S⊂⊂  and 

A  is closedIg S −** , then B  is also closedIg S −**  in X .  
 
Proof is similar to the proof of above theorem. 
 
Theorem 3.24: Let ),,( IX τ  be an ideal space and A  be a closedIg −**  subset of X . Then  

(i) UAcl ⊆)( *   for all openg −*  set U  containing A . 

ii) AAcl −)(*
 contains no non empty closedg −* set.  

 (ii) AAcl −)( *  contains no non empty closedg −* set. 

(iii) AA −)( *  contains no non empty closedg −* set. 
 
Proof:   

(i) Let U be  openg −*  set containing A .Then  UAclAAcl ⊆⊆= )(*** , 
 
(ii) Suppose that there exists a non empty closedg −*  set F such that AAclF −⊂ )(* ., 
 
then FXA −⊆  which is .* openg −  So FXAcl −⊆)(* and this implies )(* AclXF −⊂ Hence 

))(( * AclXF −⊆ =−∩ ))(( * AAcl { }φ  
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(iii) It follows from (ii) since )()( *** AclAAcl ⊆=  
(iv) It follows from (ii) since AAclAA −⊆− )(** . 
 
Theorem 3.25: Let ),,( IX τ  be an ideal space and A  a closedIg S −**  subset of X . Then  

(i) UAscl S ⊆)( *  for all openg −*  set U  containing A . 

(ii) AAcl s −)(*  contains no non empty closedg −* set. 

(iii) AAscl S −)( *  contains no non empty closedg −* set. 

(iv) AA s −)( *
 contains no non empty closedg −* set. 

 
Proof is similar to the proof of above theorem. 
 
Theorem 3.26: Let ),,( IX τ  be an ideal space and XYA ⊆⊆ .If A is closedIg −**  in )/,/,( YIYY τ , Y is 

open and −*τ closed in X then A is  closedIg −** in X. 
 
Proof: Let U be  openg −*  set in X containing A .Then ,(),( **

YIAYIA =∩τ ) .Y U Yτ ⊆ ∩  Then 

,(( * IAXUY −∪⊆ )).τ  Since Y is −*τ closed, ⊆⊆⊆ YYA ** ,(( * IAXU −∪ )).τ  
 
Therefore UA ⊆* and this implies UAAAcl ⊆∪= ** )(  
 
Theorem 3.27: Let ),,( IX τ  be an ideal space and XYA ⊆⊆ .If A is closedIg s −**  in )/,/,( YIYY τ , Y is 

open and −s*τ closed in X then A is  closedIg s −** in X. 
 
Proof is similar to the proof of above theorem. 
 
Theorem 3.28: Let ),,( IX τ  be an ideal space and XA ⊆ . If A  is closedIg −** then )( *AXA −∪  is 

** .g I closed−  
 
Proof: Let U  be openg −*  and UAXA ⊂−∪ )( * .Then AAAXAXUX −=−∪−⊂− ** )]([ .Since 

A  is closedIg −** , AA −*  contains no non empty closedg −* set. Therefore φ=−UX  which implies 

UX = . Thus X  is the only openg −*  set containing )( *AXA −∪  which proves )( *AXA −∪  is 

closedIg S −* .  
 
Theorem 3.29: Let ),,( IX τ  be an ideal space and XA ⊆ . If A  is closedIg s −** then )( *sAXA −∪  is 

closedIg s −** . 
 
Proof is similar to the proof of above theorem. 
 
Theorem 3.30: Let ),,( IX τ  be an ideal space. If every openg −* set is closed−* , then every subset of X  is 

closedIg −** . 
 
Proof: Let UA ⊂  and U  a openg −*  set in X . Then UUclAcl =⊂ )()( **  which proves A is 

closedIg −**
 

 
Theorem 3.31: Let ),,( IX τ  be an ideal space. If every openg −* set is closeds −* , then every subset of X  is 

closedIg s −** . 
 
Proof is similar to the proof of above theorem. 
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