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1. INTRODUCTION   
 
The terms ‘oscillatory’ or ‘unsteady’ are generally used in the literature to describe the flows in which velocity or 
pressure or both depend on time. Oscillatory flow is a periodic flow that oscillates around a zero value. From 
technological view, oscillatory flow is always important for it has many practical applications, as for example in the 
aerodynamics of a helicopter rotor or in a fluttering airfoil as well as in a variety of bio-engineering problems.   
 
The study of the flow of a viscous incompressible electrically conducting fluid in the presence of a magnetic field in a 
channel is motivated by several important problems of geophysical and astrophysical interest and fluid engineering. It 
is useful in Astrophysics because much of the universe is filled with widely spaced charged particles and permeated by 
magnetic fields. Geophysicists encounter MHD phenomena in the interactions of conducting fluids and magnetic fields 
that are present in and around heavenly bodies. Engineers employ MHD principles in the design of heat exchangers, 
MHD pumps and flow meters, in solving space vehicle propulsion, control and reentry problems; in creating novel 
power generating systems and in developing confinement schemes for controlled fusion. Soundalgekar and Bhat (1971) 
have investigated the MHD oscillatory flow of a Newtonian fluid in a channel with heat transfer. MHD flow of viscous 
fluid between two parallel plates with heat transfer was discussed by Attia, and Kotb (1996). Raptis et al. (1982) have 
analyzed the hydromagnetic free convection flow of  a viscous fluid through a porous medium between two parallel 
plates. Aldoss et al. (1995) have studied mixed convection flow from a vertical plate embedded in a porous medium in 
the presence of a magnetic field. Khaled and Vafai (2004) have been discussed the effect of slip condition on stokes 
and coutte flows due to an oscillating wall. Makinde and Mhone (2005) have considered heat transfer to MHD 
oscillatory flow in a channel filled with porous medium.  Makinde and Osalusi (2006) have discussed a MHD steady 
flow in a channel with slip at permeable boundaries. The effect of slip condition on unsteady MHD Oscillatory flow of 
a viscous fluid in a planer channel was studied by Mahmood and Ali (2007). Mostafa (2009) have studied thermal 
radiation effect on unsteady MHD free convection flow past a vertical plate with temperature dependent viscosity.  
Unsteady heat transfer to MHD oscillatory flow through a porous medium under slip condition was discussed by 
Hamza et al. (2011).   
 
An important class of fluids differs from Newtonian fluids in that the relationship between the shear stress and the flow 
field is more complicated. Such fluids are non-Newtonian. Examples include various suspensions such as coal-water or 
coal-oil slurries, food products, inks, glues, soaps, polymer solutions,  mud, blood at low shear rate, cosmetic products 
and many others. Al Khatib andWilson (2001) have studied the Poiseuille flow of a yield stress fluid in a channel.  
Flow of a visco-elastic fluid in a channel of slowly varying width was studied by Frigaard and Ryan (2004). Mokhtar et 
al. (2006) have studied the pulsatile MHD non-Newtonian fluid flow with heat and mass transfer through a porous 
medium between two permeable parallel plates.  Mishra et al. (2008) investigated a flow and heat transfer of a MHD 
viscoelastic fluid in a channel with stretching walls. Ali and Asghar (2011) have analyzed by oscillatory channel flow 
for non-Newtonian fluid.  Rita and Jyoti Das (2012) have studied the effect of heat transfer on MHD oscillatory 
viscoelastic fluid flow in a channel through a porous medium.    
 
In view of these we studied the effect of heat transfer on MHD oscillatory flow of a Jeffrey fluid in a channel with slip 
effect at lower wall. The expressions are obtained for velocity and temperature analytically. The effects of various 
emerging parameters on the velocity and temperature are discussed through graphs in detail.  
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2. MATHEMATICAL FORMULATION 
 
We consider the slip effect on flow of a Jeffrey fluid in a channel of width h  under the influence of electrically applied 
magnetic field and radiative heat transfer as depicted in Fig.1. It is assumed that the fluid has small electrical 
conductivity and the electromagnetic force produced is very small. We choose the Cartesian coordinate system ( ),x y , 
where x - is taken along center of the channel and the y - axis is taken normal to the flow direction.  
 
The constitute equation of S  for Jeffrey fluid is  

( )2
11

S µ γ λ γ
λ

= +
+

                     (2.1) 

where µ is the dynamic viscosity, 1λ  is the ratio of relaxation to  retardation times, 2λ is the retardation time, γ  is the 
shear rate and dots over the quantities denote differentiation with time.  
 
The basic equations of momentum and energy governing such a flow, subject to the Boussinesq approximation, are: 

( )
2
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Fig. 1 Physical model of the problem 

 
The boundary conditions are given by 

 
uu
y

γ ∂=
∂

, 0T T=   at  0y =                 (2.4) 

 0u = ,  1T T=   at  y h=                 (2.5) 

where u is the axial velocity, T is the fluid temperature, p is the pressure, ρ is the fluid density, 0B  is the magnetic  

field strength, σ  is the conductivity of the fluid, g  is the acceleration due to gravity, β  is the coefficient of volume 

expansion due to temperature, pc  is the specific heat at constant pressure, k  is the thermal conductivity, γ  is slip 
parameter and q is the radiative heat flux. Following Cogley et al. (1968), it is assumed that the fluid is optically thin 
with a relatively low density and the radiative heat flux is given by 

 ( )2
04q T T

y
α∂

= −
∂

                      (2.6) 

 
here α  is the mean radiation absorption coefficient. 
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Introducing the following non-dimensional variables  
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2 2
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here U is the mean flow velocity, into the equations (2.2) and (2.3), we get (after dropping bars) 
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u p u M u Gr
t x y

θ
λ
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= − + − +
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                 (2.7) 
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= +

∂ ∂
                    (2.8) 

where Re  is the Reynolds number, M  is the Hartmann number, Gr  is the Grashof number, Pe  is the Peclet 
number and N is the radiation parameter.  
 
The corresponding non-dimensional boundary conditions are 
 0u = ,  0θ =   at  0y =                 (2.9) 
 0u = ,  1θ =   at  1y =               (2.10) 
 
3. SOLUTION 
 
In order to solve equations (2.7) – (2.10) for purely oscillatory flow, let 

 i tp e
x

ωλ∂
− =
∂

                     (3.1) 

 ( ) ( )0, i tu y t u y e ω=                     (3.2) 

 ( ) ( )0, i ty t y e ωθ θ=                     (3.3) 

where λ  is a real constant and ω  is the frequency of the oscillation.  
 
Substituting the equations (3.1) - (3.3) in to the equations (2.7) – (2.10), we get 

 ( ) ( )
2

20
2 0 1 1 02 1 1d u m u Gr

dy
λ λ λ θ− = − + − +                  (3.4) 

 

 
2

20
1 02 0d m

dy
θ θ+ =                     (3.5) 

 
with the boundary conditions 
 0 0u = , 0 0θ =   at  0y =                 (3.6) 

 0 0u = , 0 1θ =   at  1y =                 (3.7) 

in which 2
1m N i Peω= −  and 2

2 Rem M iω= + .  
 
Solving equations (3.4) and (3.5) using the boundary conditions (3.6) and (3.7), we obtain 

 ( ) 1
0 1 2 2 2 3 4

1

sincosh sinh
sin

m yu y A m y A m y A A
m

= + + +                (3.8) 

and  ( ) 1
0

sin
sin

m yy
m

θ =                     (3.9) 
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Therefore, the fluid velocity and temperature are given as 

( ) 2 1
2

2 1
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sinh sin
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m m

ω 
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            (3.10) 

and  ( ) 1sin,
sin

i tm yy t e
m

ωθ =                    (3.11) 

 
4. DISCUSSION OF THE RESULTS 
 
Fig. 2   shows the effect of material parameter 1λ  on velocity u  for Re 1= , 1Gr = , 0.71Pe = , 1λ = , 

1ω = , 0.1t = , 1N =  and 1M = . It is observed that, the axial velocity u  increases with increasing 1λ . Also, 
the maximum velocity occurs at the centerline of the channel while the minimum at the channel walls. Moreover, the 
velocity is more of Jeffrey fluid ( )1 0λ > than that of Newtonian fluid( )1 0λ → . 
 
Effect of Hartmann number M  on velocity u  for Re 1= , 1Gr = , 0.71Pe = , 1λ = , 1ω = , 0.1t = , 

1N =  and 1 0.3λ =  is shown in Fig.3. It is found that, the axial velocity u  decreases with increasing M . 
 
Fig. 4  depicts the effect of radiation parameter N  on velocity u  for Re 1= , 1Gr = , 0.71Pe = , 1λ = , 

1ω = , 0.1t = , 1M =  and 1 0.3λ = . It is noted that, the axial velocity u  decreases with an increase in N . 
 
Effect of Peclet number Pe  on velocity u  for Re 1= , 1Gr = , 1N = , 1λ = , 1ω = , 0.1t = , 1M =  and 

1 0.3λ =  is shown in Fig. 5. It is noted that, the axial velocity u  decreases with an increase in N . 
 
Fig. 6 shows the effect of Grashof number Gr  on velocity u  for Re 1= , 1M = , 0.71Pe = , 1λ = , 1ω = , 

0.1t = , 1N =  and 1 0.3λ = . It is observed that, the axial velocity u  increases with increasingGr .  
 
Effect of Reynolds number Re  on velocity u  for 1M = , 1Gr = , 0.71Pe = , 1λ = , 1ω = , 0.1t = , 

1N =  and 1 0.3λ =  is depicted in Fig. 7. It is found that, the axial velocity u  decreases with decreasing Re . 
 
Fig. 8 shows the effect of λ  on velocity u  for Re 1= , 1Gr = , 0.71Pe = , 1M = , 1ω = , 0.5t = , 

1N =  and 1 0.3λ = . It is noted that, the axial velocity u  increases with an increase inλ .  
 
Effect of ω  on velocity u  for Re 1= , 1Gr = , 0.71Pe = , 1λ = , 1M = , 0.1t = , 1N =  and 1 0.3λ =  
is shown in Fig. 9. It is observed that, the axial velocity u  decreases with decreasingω . 
 
Fig. 10 shows the effect of N  on temperature  θ  for 0.71Pe = , 1ω =   and 0.5t = .  It is noted that, the 
temperature  θ  increases with an increase in N . 
 
Effect of Pe  on temperature θ  for 1N = , 1ω =   and 0.5t =  is shown in Fig. 11. It is observed that, the 
temperature  θ  decreases with increasing Pe . 
 
Fig. 12 depicts the effect of ω  on temperature θ  for 1N = , 0.71Pe =   and 0.5t = . It is found that, the 
temperature  θ  decreases with an increase in ω . 
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5. CONCLUSIONS 
 
In this chapter, we studied the effect of heat transfer on MHD oscillatory flow of Jeffrey fluid in a channel. The 
expressions for the velocity and temperature are obtained analytically. It is found that, the velocity u  increases with 
increasing 1,Grλ and λ , while it decreases with increasing , , ,ReM N Pe  and ω . Also, it is observed that the 

temperature θ  increases with increasing N and Pe , while it decreases with increasing ω . Further, it is found that, 
the velocity is more for Jeffrey fluid than that of Newtonian fluid.  
  

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

 
Fig. 2   Effect of material parameter 1λ  on velocity u  for Re 1= , 1Gr = , 0.71Pe = , 1λ = , 1ω = , 

0.1t = , 1γ = , 1N =  and 1M = .   
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Fig. 3   Effect of Hartmann number M  on velocity u  for Re 1= , 1Gr = , 0.71Pe = , 1λ = , 1ω = , 
0.1t = , 1γ = , 1N =  and 1 0.3λ = . 
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Fig. 4   Effect of radiation parameter N  on velocity u  for Re 1= , 1Gr = , 0.71Pe = , 1λ = , 1ω = , 

0.1t = , 1γ = , 1M =  and 1 0.3λ = . 
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Fig. 5   Effect of Peclet number Pe  on velocity u  for Re 1= , 1Gr = , 1N = , 1λ = , 1ω = , 0.1t = , 

1γ = , 1M =  and 1 0.3λ = . 
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Fig. 6   Effect of Grashof number Gr  on velocity u  for Re 1= , 1M = , 0.71Pe = , 1λ = , 1ω = , 0.1t = , 

1γ = , 1N =  and 1 0.3λ = . 
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Fig. 7   Effect of Reynolds number Re  on velocity u  for 1M = , 1Gr = , 0.71Pe = , 1λ = , 1ω = , 

0.1t = , 1γ = , 1N =  and 1 0.3λ = . 
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Fig. 8   Effect of λ  on velocity u  for Re 1= , 1Gr = , 0.71Pe = , 1M = , 1ω = , 1γ = , 0.1t = , 1N =  

and 1 0.3λ = . 
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Fig. 9   Effect of ω  on velocity u  for Re 1= , 1Gr = , 0.71Pe = , 1λ = , 1M = , 0.1t = , 1γ = , 1N =  

and 1 0.3λ = . 
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Fig. 10   Effect of N  on temperature θ  for 0.7Pe = , 1ω =   and 0.5t = . 
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Fig. 11   Effect of Pe  on temperature θ  for 1N = , 1ω =   and 0.5t = . 
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Fig. 12   Effect of ω  on temperature θ  for 1N = , 0.71Pe =   and 0.5t = . 
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