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ABSTRACT

We prove a common fixed point theorem for three self mappings in complex valued metric spaces. Our result
generalizes some recent results in the literature due to Azam et. al.[1] and Sintunavarat et. al.[14]. Also, an example is
given to illustrate our obtained result.
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1. INTRODUCTION

Banach’s fixed point theorem plays a major role in fixed point theory. It has applications in many branches of
mathematics. Because of its usefulness, a lot of articles have been dedicated to the improvement and generalization of
that result. Most of these generalizations have been made by considering different contractive type conditions in
different spaces. In 2011, Azam et. al.[1] made one such generalization by introducing a complex valued metric space.
In fact, they obtained a sufficient condition for the existence of common fixed points of a pair of mappings satisfying
some contractive type conditions in this setting. Very recently, Sintunavarat et. al. [14] generalized this result by
replacing the constants of contraction by some control functions. The purpose of this work is to obtain a common fixed
point result for three self mappings in complex valued metric spaces which generalizes the results of [1] and [14].

2. PRELIMINARIES

Let C be the set of complex numbers and z,, Z, € €. We can define a partial ordering < onC as follows: Z, < 7,
ifand only if Re(z,) <Re(z,) and Im(z,) <Im(z,).

Thus, z, < Z, if one of the following conditions is satisfied:
() Re(z,)=Re(z,) and Im(z,)=1m(z,);
(i) Re(z,) <Re(z,) and Im(z,)=1Im(z,);
(i) Re(z,)=Re(z,) and Im(z,) <Im(z,);
(iv) Re(z,) <Re(z,) and Im(z,) <Im(z,).

In particular, we will write Z, < z,, if Z, # Z, and one of (ii), (iii), and (iv) is satisfied and we will write 2, <z, if
only (iv) is satisfied. It follows ;that

() 0=2z,=7,=z|<|z,|:

(i) 0=z <7, = AR AL

(i) z, Xz,and 2, <72, = 7, < 73,

(ivy a,beR,0<a<band z,<z,=az, <bz,.
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Definition 2.1. ([1]) Let X be a nonempty set. Suppose that the mapping d : X x X — € satisfies the following
conditions:

(i) 0<d(x,y), for all x,ye X and d(x,y)=0if and only if x=y;
(i) d(x,y) =d(y,x), for all x,ye X;
(i) d(x,y) <d(x,z)+d(z,y), for all x,y,ze X.

Then d is called a complex valued metric on X and (X,d)is called a complex valued metric space. Note that

d(x,y)
1+d(x,y)

<1

d(x,y) <1+d(x,Y) andso,

Example 2.2. ([14] ) Let X = C . Define the mapping d : X x X — € by d(z,,z,) = ¢e" |Zl - 22|,

where K € R. Then (X, d) isa complex valued metric space.

Definition 2.3. ([1] ) Let (X, d) be a complex valued metric space, (X, ) be a sequencein X and x e X .
(i) [Ifforevery c € C, with O <C thereis N, € N such that for all n >ng, d(X,,X) <C, then (X, ) is said to
be convergent, (X,)converges to X and X is the limit point of (X,). We denote this by lim X, =X or

nN—oo

X, —> X asn-— o,

(i) If for every c € €, with 0 < C thereis N, € N such that for all n > n,, d(X ) <cC,where me N,

n? Xn+m
then (X,) is said to be Cauchy sequence.

(iii) If every Cauchy sequence in X is convergent, then (X,d) is said to be a complete complex valued metric
space.

Lemma 2.4. ([1]) Let (X,d)be a complex valued metric space and let (X,)be a sequence in X . Then (X,)
converges to X if and only if |d (Xn,x)| —0 asn— w.

Lemma 2.5. ([1]) Let (X, d)be a complex valued metric space and let (X,) be a sequence in X . Then (X, ) isa

Cauchy sequence if and only if |d (x )| —>0 asn-—>oo,where me N .

n? Xn+m

Definition 2.6. ([4]) Let T and S be self mappings of a set X . If w=Tx = Sx for some X in X, then X is
called a coincidence point of T and S and W is called a point of coincidence of T and S .

Definition 2.7. ([7]) Let T and S be self mappings of a nonempty set X . The mappings T and S are weakly
compatible if TSX = STX whenever TX = SX.

Definition 2.8. A mapping T : X — X in a complex valued metric space (X, d)is said to be expansive if there is
a real constant ¢ > 1 satisfying

cd(x,y) < d(Tx,Ty)
forall X,y € X .

3. MAIN RESULTS

In this section, we always suppose that € is the set of complex numbers and < is a partial ordering on € . Throughout
the paper we denote by N the set of all positive integers.

Lemma 3.1. ([2]) Let X be a nonempty set and the mappings S, T, f : X — X have a unique point of

coincidence v in X . If (S, f) and (T, f)are weakly compatible, then S, T and f have a unique common fixed
point.
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Theorem 3.2. Let (X, d) be a complex valued metric space and f, S, T : X — X . Suppose there exist mappings

Apy Ay 0 X —[0,1) suchthatforall X,y e X :

@B A (SX)SA(fX) and A, (TX) <A (fX) fori=1,2;

(i) A () +A,(fX) <1,

A, (IX)d(fx,Sx)d(fy,Ty)

(1) d(Sx.Ty) < A (YA M)+ =2 i )

If S(X)UT(X)c f(X) and f(X) is complete, then f,S and T have a unique point of coincidence.

Moreover, if (S, f) and (T, f)are weakly compatible , then f, S and T have a unique common fixed point in
X.

Proof. Let X, € X be arbitrary. Choose a point X, € X such that fX, = SX, which is possible since
S(X) < f(X). Also, we may choose a point X, € X satisfying fX, =Tx; since T(X) < f(X). Continuing
in this way, we can construct a sequence ( fx,)in f(X) such that
fx, = Sx,,, if n isodd

=Tx,,,if n iseven.

If n e N is odd, then by using hypothesis we obtain

d(fx,, fx,,;) =d(Sx, ,,TX,)

A, (X )d(fx, ,,Sx, )d(fx,,Tx,)
1+d(fx,,, fx,)

A, (P )d(fx, o, &, )d(fx,, TX..,)
1+d(fx,, fx,) '

j /\1 (fxn—l)d(fxn—l’ fxn) +

= /\l( an_l)d(an_lv an) +

Therefore,
| d(fx,, fx,) |
1+d(fx,,, fx,)

|d ( an ' an+1)| < /\1( an—l) |d ( an—l’ an )| + /\2 ( an—l)|d ( an ’ an+1)

< /\l( an—l) |d ( an—l’ an )| + /\2 ( an—l) |d ( an ! an+l)|

= /\l(TXn—Z) |d ( fxn—l’ an )| + /\2 (Txn—Z) |d ( an ! an+1)|
< /\l( fxn—z) |d ( fXn—l' an )| + /\2 ( fxn—Z) |d ( an ! an+1)|
= /\l(SXn—S) |d ( fxn—l’ an )| + /\2 (an—S) |d ( an ! an+1)|
< /\l( fxn—3) |d ( fxn—l’ an )| + /\2 ( fxn—3) |d ( an ! an+l)|

< /\l(fXO) |d(fxn—l’ fXn)| + /\z(fxo) |d(an, an+l)|

which implies that

Aq (%)
ld(fx,, fX,.,)) S—l—/\z(fxo) d(fx, ., X,)|-

If ne N iseven, then

d ( an ' an+1) = d (Txn—l’ an) = d (an ’Txn—l)
/\2 ( an)d ( an ! an)d ( fXn—l’TXn—l)

< fx,)d(fx,, fx,,)+
=< A (fx)d(fx, 1) 1+d(fx,, fx, )
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A, (X)d(fx,, X,.)d (X, ,, X,)

— fx,)d(fx,, X, )+
A () d (X, ) 1+d(fx,, fx )

Therefore,
| d(fx, .y, 7X,) |
L+d(fx,, X, )|

|d ( an ' an+l)| < /\1( an) |d ( an ' an—1)| + /\2 ( fxn)|d ( an ! an+1)|

< /\l( an) |d ( an ! fXn—l)| + /\2 ( an) |d ( an ! fXn+1)|

= /\l(TXn—l) |d ( an ' an—1)| + /\2 (TXn—l) |d ( an ' an+1)|

< Ag(P) [d (B, x| + Ap () [d (X))

= /\l(sxn—Z) |d ( fXn ! an—1)| + /\2 (an—z) |d ( an ! fxn+l)|

< /\l(fxo) |d(an, fXn—l)| + /\z(fxo) |d(fxn’ an+l)|

which gives that

d(x,, x,.,)| < N () d(fx,, ).
1-n,(FX,)
Thus for any positive integer N, it must be the case that
Ay (FX,)
d(fx , fx )< —2|d(fx ., fx ). 3.1
| ( n n+1)| 1—/\2(fXO) | ( n-1 n)| ( )
Ay (%))

Ifwelet o i= , then by repeated application of (3.1)

1-n,(fX,)
ld(fx,, fX,,)| < @ [d(fx, 4, X))

<a? [d(fx,_,, X))

<a" |d(fx,, )|
Now, forall m, n € N, m > n, we have

d(fx,, fx,) <d(fx,, ) +d(fx. ., X,.,)+--+d(fx, ,, 7X,).

n+l1?

Therefore,
A (fx,, )| < [d (B, B, )|+ [d (X X )|+ o+ [d (fx gy, X))

< (a“ +a™ +-"+0!m_l)|d(fxo’ )

<

n
a
L a |d (. fx,)|.
Since €0, 1), taking limitas m, n — oo, we have |d(an, X, )| — 0 which implies that (fx,) isa Cauchy
sequence in f (X). By completeness of f(X), thereexist U,v € X such that fx, > v = fu.

Now,

d(fu,Tu) < d(fu, X,,,,) +d(fX,,,, TU)
=d(fu, fx,,,)+d(Sx,,,Tu)
/\2 (fxzn) d(fxzn’SXZn) d(fU,TU)

< d(fu, fX,, )+ A, (x,,) d(fx,,, fu) +
=<d( ani) T A1(FXp,) d (X, ) 1+d(fx,., fu)
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which implies that
Ag (B ) [d (X5, SXp )| [d (fu, TU))|
L+ d(fx,,, fu)
<l (U, By Ay () [y )| + A (P ) [0 (P SX50)| [ Fu, T,
since 1 < 1+d(fx,,, fu).
<Jd (fu, B,y )| + AL(FXo) [d (g, FU)| + AL (FXo) [d (FX,, X5, )] (Fu, Tu)).

ld (fu, Tu)| < [d (fu, £, )+ Ay (Xp,) [d(FX,,, fu)| +

Takingn — oo, it follows that |d ( fu,Tu)| =0 and hence d(fu,Tu) = 0. Therefore, fu =Tu = V. Similarly, we
can show that fu=Su=v.

Thus, fu=Su =Tu =V andso vV becomes a common point of coincidenceof f, S and T .

For uniqueness, let there exists another point W(# V) € X such that fx = Sx = Tx = w for some X € X . Thus,
d(v,w) =d(Su,Tx)
A, (fu) d(fu,Su) d(fx,Tx)
1+d(fu, fx)
A, (V) d(v,v) d(w,w)
1+d(v,w)

< A, (fu) d(fu, fx) +

= A, (V) d(v,w) +
= A(v) d(v,w)

which implies that

|d (v, W) < Ay (v) [d (v, ).

Since 0 < A, (V) <1, it follows that |d (V,W)| =0andsov=w.If (S, f) and (T, f) are weakly compatible,

then by Lemma 3.1, f, S and T have a unique common fixed point in X .
As an application of Theorem 3.2, we have the following results.

Corollary 3.3. [[14], Theorem 3.1] Let (X,d) be a complete complex valued metric space and S, T : X — X.
Suppose there exist mappings A, A, : X — [0, 1) such that forall X, y € X :

B A (SX)SA(X) and A, (TX) S A(x) fori=1,2;

(i) AL () +A,(x)<1;

A (X)d(x,Sx)d(y, Ty)

(i) dTY) <A (000 + =270

Then Sand T have a unique common fixed point in X .

Proof. The result follows from Theorem 3.2 by taking f = | , the identity mapping.
Corollary 3.4. [[1], Theorem 4] Let (X,d) be a complete complex valued metric space and S, T : X — X . If
Sand T satisfy

d(Sx.Ty) < Ad(x,y) + 2450 d(.Ty)
1+d(x,y)

for all X, y € X, where A,z are nonnegative reals with A + x <1, then Sand T have a unique common fixed
point.
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Proof. The desired result can be obtained from Theorem 3.2 by setting A, (X) =4, A, (X) =g and f =1.

Corollary 3.5. [[14], Theorem 3.7] Let (X,d) be a complex valued metric space, f,T : X — X be such that
T(X) < f(X) and f(X) is complete. Suppose there exist mappings A,, A, : X —[0,1) such that for all
X, yeX:

@B A, (MX)<A(fX) fori=12;
(i) AL () +A,(fX) <1;

i) d(Tx,Ty) < A, (F)d(fx, fy) + 22 (fx)li((;)z’;’,‘)fj)(fyjy) .

Then f and T have a unigue point of coincidence. Moreover, if f and T are weakly compatible, then f and T have a
unique common fixed pointin X .

Proof. The conclusion of the Corollary follows from Theorem 3.2 by considering S =T .

Corollary 3.6. Let (X,d) be a complex valued metric space and let f, T : X — X satisfy
d(TxTy) < Ad(fx, fy) + A0XTAD.TY)

1+d(fx, fy)
for all X, y € X, where A, u are nonnegative reals with 4+ u <1.1f T(X) < f(X) and f(X) is complete,
then f and T have a unique point of coincidence. Moreover, if f and T are weakly compatible, then f and T have a
unique common fixed point in X .

Proof. Putting S =T, A, (X) =4, A, (X) = & in Theorem 3.2, we can prove this result.

Corollary 3.7. Let (X,d) be a complete complex valued metric space and T : X — X . Suppose there exist
mappings A, A, : X —[0,1) suchthatforall X,y e X :

B A M)A (X) fori=12;

(i) A () +A,(x)<1;

(i) d(Tx,Ty) <A, (X)d(x,y)+

A, (X)d(x, TX)d(y,Ty)
1+d(x,y) '

Then T has a unique fixed pointin X .

Proof. The conclusion of the Corollary follows from Theorem 3.2 by considering S =T and f =1 .

Theorem 3.8. Let (X,d) be a complete complex valued metric space and let f : X — X be an onto expansive
mapping i.e., T (X) = X and there exists a real constantC >1 such that

cd(x,y) < d(fx fy)

forall X, y € X .Then f hasa unique fixed pointin X .

Proof. We can prove this result by applying Corollary 3.6 with T =1, and x#=0.
We conclude with an example.

Example 3.9. Let X =[L,00). Define T, f : X —> Xby Tx=2Xx-1 and fx=5x—-4.If d,is the usual
metric on X , then T and f are not contraction mappings as for all X, y € X

d, (T, Ty) =2 |x—Y|
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and

d, (fx, fy) =5|x—y].
So, we can not apply Banach contraction theorem to find the unique fixed point 1 of T and f .
We consider a complex valued metric d : X x X — C by

d(x,y) =[x—y|+i|x—y] forall x,yeX.

Then (X,d) isa complete complex valued metric space.

Now,
d(Tx,Ty):2[|x—y|+i|x—y|]
:éd(fx, fy)

j%d(fx, ).

1
Since T(X) = f(X) = X, we have all the conditions of Corollary 3.6 with 1 = > =0 So, applying Corollary

3.6 we can obtain a unique common fixed point 1 of T and f in X .
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