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ABSTRACT 
We introduce a new type of functions called (τ1,τ2)* - Q* continuous maps, (τ1,τ2)*-Q*- irresolute and (τ1,τ2)*-Q*-
Contra continuous map. We obtain several characterization of this functions and study its bitopological properties. 
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1. INTRODUCTION  
 
A triple (X,τ1,τ2) where X is a non-empty set and τ1,τ2 are topologies on X is called a bitopological space and Kelly 
[11] initiated the study of such spaces. The notion of Q*-closed sets in a topological space was introduced by 
Murugalingam and Lalitha[9] in 2010.  
 
Levine [12] introduced the concept of generalized closed sets in topological spaces. Also he introduced the notion of 
semi open sets in topological spaces. Bhattacharyya and Lahiri[1]  introduced a class of sets called semi generalized 
closed  sets by means of semi open sets of  Levine and obtained various topological properties . 
 
Maheshwari and Prasad [15] introduced semi open sets in bitopological spaces in 1977 and further properties of this 
notion were studied by Bose in 1981.  
 
In 1985, Fukutake[9] introduced the concepts of g - closed sets in bitopological spaces and after that several authors 
turned their attention towards generalizations of various concepts of topology by considering bitopological spaces .Also 
he defined one kind of semi open sets in bitopological spaces and studied their properties in 1989. 
 
Sundaram et al. introduced and studied the concept of a class of maps, namely g - continuous maps. Semi generalized 
closed sets and generalized semi closed sets are extended to bitopological settings by F.H. Khedr and H.S. Alsadi. 
 
Recently P. Padma and S. Udayakumar[10] introduced  the concept of (τ1,τ2)* -Q*closed sets in bitopological spaces. 
 
In the present paper, we introduced (τ1,τ2)* - Q* continuous maps, (τ1,τ2)* - Q*  irresolute map, (τ1, τ2)* - Q* Contra 
continuous map. We obtain several characterization of this functions and study its bitopologicalproperties. 
 
 2. PRELIMINARIES  
 
Throughout this paper X and Y always represent nonempty bitopological spaces (X, τ1, τ2) and (Y, σ1, σ2). For a subset 
A of X, τi - cl (A), τi - Q*cl (A) (resp. τi - int (A). τi - Q*int ( A ) ) represents closure of A and  Q*closure of A (resp. 
interior of A, Q*-interior of A ) with respect to the topology τi . Now we shall require the following known definitions 
are prerequiesties. 
 
Definition 2.1 - A subset A of a bitopological spaces (X,τ1, τ2)  is called  
 
i) (τ1, τ2)*- Q* closed if τ1τ2 - int(A) = φ and A is τ1 τ2 - closed . 
ii) (τ1, τ2)* - Q* open if X – A is (τ1, τ2)* - Q* closed in X. 
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Example 2.1 - Let X = {a, b, c}, τ1 = {φ, X, {c}}, τ2 = {φ, X, {b, c}}. Then τ 1 τ 2 - open sets on  X  are φ, X, {b, c}, {c} 
and τ 1 τ 2 - closed sets on  X  are φ, X, {a},{a, b}.   Clearly   φ, {a, b} and {a} are (τ1 ,τ2)* - Q* closed  and X, {c} and 
{b, c}  are (τ1, τ2)*- Q* open . 
 
Definition 2.2 - Let (X, τ1, τ2) be a bitopological spaces. Let A ⊂X. The intersection of all (τ1, τ2)* - Q* closed sets of 
X containing a subset A of X is called (τ1, τ2)* -Q* closureof A and is denoted by (τ1, τ2)*- Q*cl (A). 
 
Definition 2.3 -Let (X, τ1, τ2) be a bitopological spaces. Let A ⊂X. The union of all  (τ1, τ2)*- Q* open sets contained in 
a subset A of X is called (τ1, τ2)*-Q* interior of A and is denoted by (τ1,τ2)*- Q* int (A). 
 
3. PROPERTIES OF (τ1, τ2)* - Q* CLOSED SETS  
 
The family of all (τ1,τ2)* - Q* closed subsets of a bitopological space (X, τ1, τ2) is denoted by (τ1 ,τ2)* -  Q*. 
 
Theorem 3.1. Let (X,τ1,τ2) be a bitopological spaces. The set of all (τ1, τ2)* - Q* closed sets with X is a topology.  
 
Proof: It follows from example 2.1 
 
Lemma 3.1. For any subset S of X, (τ1, τ2)*- Q* int [(τ1, τ2)* - Q* cl (S) − S] =φ. 
 
Proof. The proof is obvious. 
 
Proposition 3.1. Every (τ1, τ2)* - Q* closed set is τ1 τ2 - closed. 
 
Proof: Let A be a (τ1 , τ2)* - Q* closed set in X. 
 
Then X – A is (τ1,τ2)* - Q* open. 
 
We have to show that A is (τ1, τ2)* - Q* closed. 
 
Since every (τ1, τ2)*- Q* - open set is τ1τ2 - open, we have X – A is τ1τ2 - open. 
 
Thus, 
 
A is τ1τ2 -closed. 
 
Remark 3.1. The converse is not true in general. 
 
i.e)  τ1 τ2 - closed need not be a (τ1,τ2)* - Q*closed.  
 
Definition 3.1. Let (X, τ1, τ2) be a bitopological spaces. (τ1, τ2)*- contra Q* cl (A) is defined by the intersection of all 
(τ1, τ2)*- Q* open sets containing A. 
 
Theorem 3.2. Let (X, τ1, τ2) be a bitopological spaces. Then (τ1, τ2)*- contra cl (A) ≠(τ1,τ2)*- contra Q* cl (A). 
 
Proof: The following example supports our claim. 
 
Consider the example  
 
Let  X= {a, b, c),   
 
Let τ1 = {φ, X, {a, b}, {c}},  τ2 = {φ, X, {c}}.  
 
Let A = {a, b} 
 
Then  
(τ1, τ2)*- contra cl (A) = {a, b} 
 
(τ1, τ2)*- contra Q* cl (A) = X 
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Therefore 
 
(τ1, τ2)*- contra cl (A) ≠(τ1, τ2)*- contra Q* cl (A). 
 
Theorem 3.3. If every (τ1, τ2)* - Q* open set is (τ1, τ2)*- Q* closed then (τ1, τ2)*- Q* cl (A) = (τ1, τ2)* - contra Q* cl 
(A).  
 
Proof: Proofs follows from the definition  
 
Example 3.1. Let X = {a, b, c}andτ1 = {φ, X},  τ2={φ, X, {a}}. 
 
Let A = {b, c}. 
 
Then  
(τ1, τ2)* - Q* cl (A) = {b, c} 
(τ1, τ2)* - contra Q* cl (A) = {b, c}. 
 
Therefore, 
(τ1, τ2)* - Q* cl (A) = (τ1, τ2)* - contra Q* cl (A). 
 
Remark 3.2. Intersection of two (τ1,τ2)* - Q* closed sets are (τ1, τ2)* - Q* closed . The following example supports our 
claim. 
 
Example 3.2. In example 2.1, {a, b}, {a} are (τ1, τ2)* - Q* closed set. {a, b}∩{a}={a} are  (τ1, τ2)* - Q* closed set. 
 
4. (τ1, τ2)* -Q* continuous Map 
 
In this section we study the continuous maps by using (τ1, τ2)* - Q* closed sets. 
 
Definition 4.1. A map f : X → Y is called ( τ1 , τ2 )* - Q* continuous if the inverse image of each ( σ1 , σ2)*- Q*closed 
in Y is τ1τ2 - closed in X .  
 
Example 4.1. Let X = Y = {a, b, c}, τ1={φ, X}, τ2 ={φ, X, {b}, {b,c}} and  σ1 = {φ, Y, {b}},  σ2 = {φ, Y,{b}, {b, c}}. 
Then φ, {a}, {a, c} are (σ1, σ2)*- Q*  closed in Y. Let f: X → Y be the identity map. Then f (φ) = φ, f ({a, c}) = {a, c}, f 
({a}) = {a}. Since  φ, {a, c}, {a} are τ1τ2 - closed in X . Therefore, f is (τ1, τ2)* - Q* continuous . 
 
Theorem 4.1. Every (τ1, τ2)* - Q* continuous map is (τ1, τ2)*  - continuous . 
 
Proof: Let f: X → Y be the (τ1, τ2)* - Q* continuous. 
 
We shall show that f is (τ1, τ2)* - continuous. 
 
Let U be any (τ1, τ2)* - closed set in Y. 
 
 
Since f is (τ1, τ2)*  - Q* continuous, we have 
 
 f – 1 (U) is (τ1, τ2)* - closed set in X. 
 
Since every (τ1, τ2)* -Q* closed set is (τ1, τ2)* - closed. 
 
Then  
f – 1 (U) is (τ1, τ2)* - closed set in X. 
 
Therefore, 
f is (τ1, τ2)*  -  continuous. 
 
Remark4.1- The converse of the above theorem is not true in general. The following example supports our claim. 
 
Example 4.2- Let X = Y = {a, b, c}, τ1 = {φ, X, {a}, {a, b}}, τ2 = {φ, X, {a}} and σ1 = {φ, Y, {a}}, σ2 = {φ, Y}. 
Thenφ, {b, c} are (σ1, σ2)*- Q*  closed in Y. Let f: X → Y be the identity map. Clearly, f is (τ1, τ2)* - continuous map 
but not (τ1, τ2)* - Q* continuous since f – 1 ({a, b}) = {a, b} is not (τ1, τ2)* - Q* open. 
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Remark 4.2. Since every (τ1,τ2) * - Q* closed is τ1τ2 - closed and τ1τ2 - closed set is  (τ1, τ2) * -g closed, (τ1, τ2) * -sg 
closed, (τ1, τ2) * -semi closed, we have every (τ1,τ2) * - Q* continuous map is (τ1, τ2) * -g continuous, (τ1, τ2) * -sg 
continuous and (τ1, τ2) * -semi continuous. But none of the above is reversible. The following example supports our 
claim. 
 
Example 4.3.  
i) Let X = {a, b, c}, τ1 = {φ, X, {a, b}}}, τ2 = {φ, X} and σ1 = {φ, Y, {a}},  σ2 = {φ, Y}.  Let f: X → Y be the identity 
map. Therefore, f is (τ1, τ2)* -sg continuous but not (τ1 ,τ2) * - Q* continuous. 
 
ii) Let X = {a, b, c}, τ1 = {φ, X, {a, c}, {a}, {c}}, τ2 = {φ, X , {a}} and  σ1 = {φ, Y, {a}},  σ2 = {φ, Y}.  Let f: X → Y 
be the identity map. Clearly, f is  (τ1, τ2)* -g continuous but not (τ1 ,τ2  * - Q* continuous . 
 
iii) Let X = {a, b, c}, τ1 = {φ, X, {a, b}}}, τ2 = {φ, X} and  σ1 = {φ, Y, {a}}, σ2 = {φ, Y, {a, b}}. Let f: X → Y be the 
identity map. Therefore, f is(τ1, τ2) * -semi continuous but not (τ1,τ2) * - Q* continuous. 
 
Definition 4.2. A map f: X → Y is called ( τ1 , τ2 )* - Q* irresolute if the inverse image of each (σ1,σ2)* - Q*closed set 
in Y is (τ1, τ2)* - Q*closed set in X. 
 
Example 4.4. In Example 4.1 φ, {a}&{a, c} are (σ1 ,σ2)* - Q*closed set in Y and  φ,{a}, {a, c} are (τ1,τ2)* - Q* closed 
set in X. Let f: X → Y be the identity map. Then f (φ) = φ, f ({a, c}) = {a, c}, f ({a}) = {a}. Therefore, f is τ1τ2 - Q* - 
irresolute Map. 
 
Proposition 4.1. Every (τ1, τ2)* - Q* irresolute Map is (τ1, τ2)* - Q*continuous. 
 
Proof: Let f: X → Y be the (τ1, τ2)* - Q* irresolute. 
 
We shall show that f is (τ1, τ2)* - Q*continuous. 
 
Let v be any (τ1, τ2)* - Q* closed set in Y. 
 
Since f is (τ1 , τ2)*  - Q*irresolute , we have 
 
f – 1 (v) is (τ1, τ2)* - Q* closed set in X. 
 
Since every (τ1, τ2)* - Q*closed set is τ1 τ2 - closed. 
 
Then  
f – 1 (v) is τ1 τ2 - closed set in X. 
 
Therefore, 
f is (τ1, τ2)*  - Q*continuous. 
 
Remark 4.4 - The converse is true in general  
 
ie)  Every (τ1, τ2)* - Q* continuous Map is not (τ1, τ2)* - Q* irresolute. 
 
Example 4.5 - Let X = Y = {a, b, c}, τ 1 = {φ, X, {a}, {c}, {a, c}} and τ 2 = {φ, X, {a}}. Then τ 1τ 2 - open sets on X are 
φ, X, {a}, {c}, {a, c} and τ 1 τ 2 - closed sets on X are φ, X, {b, c}, {a, b}, {b}. Clearly {b} is (τ1, τ2)* - Q* closed in X. 
 
Let σ1 = {φ, Y, {a}} and σ2 = {φ, Y}. Then σ1σ 2 - open sets on X are φ, Y, {a}  and σ1σ 2 - closed sets on X are φ, X, 
{b, c}. Clearly {b, c} is (σ1, σ 2)* - Q* closed in Y. 
 
Let f: X → Y be the identity map. 
 
Let g: Y → Z be the identity map. 
 
Clearly f is (τ1, τ2) * - Q* continuous but not (τ1, τ2) * - Q* irresolute. 
 
Since the inverse image of (σ1, σ2) * - Q* closed set {b, c} in Y is not (τ1, τ2) * - Q* closed in X. 
 
 



1P. Padma*, 2S. Udayakumar and 3K. Chandrasekhara Rao/ (τ1, τ2)* - Q* CONTINUOUS MAPS IN BITOPOLOGICAL SPACES /  
IJMA- 3(8), August-2012. 

© 2012, IJMA. All Rights Reserved                                                                                                                                                                    2994 

 
Remark 4.5. A map f: X → Y is (τ1, τ2) * - Q*irresolute if and only if the inverse image of every (σ1, σ2) * - Q* open 
in Y is (τ1, τ2) * - Q* open in X. 
 
Remark 4.6. The composition of two (τ1, τ2)*- Q* continuous map is not, in general, (τ1, τ2)* - Q* continuous map as 
is illustrated in the following example. 
 
Example 4.6. Let X = Y = Z = {a, b, c} and let τ1 = {φ, X} and τ2 = {φ, X, {a}}.  
 
Then τ1τ2 - open sets on X are φ, X, {a}   and τ1τ2 - closed sets on X are φ, X, {b, c}.   
 
Let σ1 = {φ, Y, {a}} and  σ2  = {φ, Y} Then σ1σ2  - open sets on Y are φ, Y, {a}  and σ1σ2 - closed sets on Y are φ, Y, 
{b, c}. 
 
Let U 1 = {φ, Z, {a, c}} and  U2  = {φ, Z}. Then U1U2  - open sets on Z are φ, Z, {a, c}  and U1U2 - closed sets on Z are 
φ, Z, {b}. 
 
Let f: X → Y and g: Y → Z be the identity map. 
 
Clearly f is (τ1, τ2) * - Q* continuous map and g is (σ1, σ2) * - Q* continuous map. But g οf is not (τ1, τ2) * - Q* 
continuous map. Since f -1 (g -1({b}) = f -1({b}) = {b} is not (τ1, τ2) * -  Q* closed [τ 1τ 2 - cl ({b}) = X. 
 
Proposition 4.2. For any (τ1, τ2)* - Q* irresolute map f: X → Y and any (τ1, τ2)* - Q*  continuous map g: Y → Z the 
composition gο f: X → Z is (τ1, τ2)* - Q* continuous map. 
 
Proof: Let V be any (σ1,σ2)* - Q* closed set in Z. 
 
Since g is (τ1, τ2)* - Q*continuous, we have  
 
g – 1 (V) is τ1 τ2 - closed set in Y. 
 
Since f is τ1τ2 - Q* - irresolute, we have  
 
f – 1 [g – 1 (V)] is τ1τ2 - closed set in X  
  
Thus,  
gοf: X → Z is (τ1, τ2)* - Q*continuous map.  
 
Definition 4.3. A bijection f: X → Y is called (τ1, τ2)* - Q* homeomorphism, if f is (τ1, τ2)* - Q* continuous and its 
inverse also (τ1, τ2)* - Q* continuous.   
 
Definition 4.4. A space X is called (τ1, τ2)*- Q* T space, if every (τ1, τ2)* - Q* closed set is  τ1 τ2- closed. 
 
Proposition 4.3. A space X is called (τ1, τ2)* - Q* T space, iff every (τ1, τ2)* - Q* closed set is τ1τ2 - closed. 
 
Proposition  4.4. If (X, τ1 ,τ2) is  (τ1, τ2)* - Q* T space, then it is an τ1τ2 - Q* T space. 
 
Proof: Let (X, τ1 ,τ2) be a (τ1, τ2)* - Q* T space. 
 
Claim: (τ1, τ2)* - Q* T spaceis an τ1τ2 - Q* T space. 
 
i.e) to prove every τ1τ2 - Q* closed set is  τ2 - closed. 
 
Let A be τ1τ2 - Q* closed set in X. 
 
⇒  A is τ1τ2 - closed. [Since, X is (τ1, τ2)* - Q* T space] 
 
⇒  A is τ 2 - closed. 
 
Thus, every τ1τ2 - Q* closed set is τ2 - closed. 
 
Therefore, (X, τ1 ,τ2) is an (τ1, τ2)* - Q* T space. 
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Remark 4.7. The converse of the above proposition is not true as shown in the following example . 
 
Example 4.7. Let X = {a, b, c}, τ1 ={φ, X, {a}} and τ2  = {φ, X, {a}, {b, c}}. Then φ and {b, c} are τ1τ2 - Q* closed set. 
Clearly {b, c} is not (τ1, τ2)* - Q* closed. 
 
Therefore, (X, τ1 ,τ2) is an τ1τ2 - Q* T space, but it is not (τ1, τ2)* - Q* T space. 
 
Example 4.8. Let X = {a, b, c}, τ1 = {φ, X, {c}} and τ2 = {φ, X, {c}, {b, c}}. Then τ1τ2 - open sets are φ, X, {b, c}, {c} 
and τ1τ2 - closed sets are φ, X, {a, b}, {a}.  
Then φ, {a, b}, {a} are (τ1, τ2)* - Q*closed set. Therefore, X is (τ1, τ2)* - Q*T space.  
 
Definition 4.5. A bitopological space (X, τ1, τ2) is said to be Strongly (τ1, τ2)* - Q*Tspace if it is both (τ1, τ2)* - Q* 
Tand (τ2 , τ1)*  - Q* T . 
 
Definition 4.6.  A map f: X → Y is called (τ1, τ2)* -Q*Contra continuous if the inverse image of each (σ1,σ2) * - Q* 
closed in Y is τ1 τ2 - open in X. 
 
Example 4.9. Let X = Y = {a, b, c}, τ1 = {φ, X, {b}}, τ2 = {φ, X, {b}, {b, c} } and σ1 = {φ, Y, {a }},  σ2 = {φ, Y, {a}, 
{a, c}}. Then  φ, X, {a, c} are τ1 τ2 - open in X and φ, {b, c}, {b} are (σ1, σ2)* - Q* closed in Y. Let f: X → Y be the 
identity map.  
 
Then f (φ) = φ, f ({b, c}) = {b, c}, f ({b}) = {b}.  
 
⇒ f – 1 (φ) = φ, f – 1 ({b, c}) = {b, c} and f – 1 ({b}) = b. 
 
Since  φ, {b} & {b, c} are τ1 τ2 - open in X. Therefore, f is (τ1 , τ2)* - Q* Contracontinuous.  
 
Remark 4.8. A (τ1, τ2)* - Q* Contra continuous map need not be (τ1 ,τ2)* - Q*continuous. The following example 
supports our claim. 
 
 
Example 4.10. Refer example 4.4, clearly A = {b, c} is not (τ1, τ2)* - closed. Therefore , f is (τ1, τ2)*- Q* Contra 
continuous map but not (τ1, τ2)*  - Q*continuous. 
 
Remark 4.9. From the above maps, we have the following diagram of implications  
 
                         (τ1, τ)* - Q* continuous                                  (τ1, τ2)* - Q* irresolute 
     
                                        
 
                                                                    (τ1, τ2)* - Q* Contra continuous 
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