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ABSTRACT 
In this paper, three recurrence relations for a certain class of probability distributions are presented. The first one is a 
recurrence relation between conditional moments of h(X) given X < y. The second is the relationship between the 
moments E(ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘+1)), E(ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘)) and E(ℎ𝑚𝑚−1(𝑌𝑌𝑘𝑘)), where 𝑌𝑌𝑘𝑘  is the 𝑘𝑘𝑡𝑡ℎ  order statistic from a sample of size n. The last 
one is the relationship between the conditional moments E(ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘)|𝑌𝑌𝑘𝑘<t) and E(ℎ𝑚𝑚−1(𝑌𝑌𝑘𝑘)|𝑌𝑌𝑘𝑘<t). Some results 
concerning exponentiated Weibull, modified Weibull, exponentiated Pareto, inverse Weibull, inverse Rayleigh, linear 
failure rate distribution, Burr, power and uniform distributions are obtained as special cases. 
 
Keywords: Characterization, right truncated moments, order statistics, recurrence relations, exponentiated Weibull, 
expnentiated Pareto, modified Weibull, inverse Weibull, inverse Rayleigh, linear failure rate, Burr, Power, beta, 
uniform distributions. 
 
 
1. INTRODUCTION 
 
Characterization theorems are located on the borderline between probability theory and mathematical statistics and 
utilize numerous classical tools of mathematical analysis such as complex variable and differential equations. Some 
excellent references are Azlarove and Volodin [7], Galambos and Kotz [10], Kagan, Linnik and Rao [13]and  
Mchlachlan and Peel[17], among others. Several tools have been used to characterize the probability distributions. 
Gupta [12] ,Ouyang [19], Talwalker [21], have used the concept of right truncated moments to identify different 
distributions like Weibull, exponential, pareto, and power distributions. In fact characterizations by right truncated 
moments are very important in practice since, for example, in reliability studies some measuring devices may be unable 
to record values greater than time t. On the other hand characterizations of some particular distributions based on 
conditional moments of order statistics have been considered by several authors such as Pakes et al [20], Wu and 
Ouyang [22], Ahsanullah and Nevzorov [4], Asadi et al [6] and Govindarajulu [11], among others. 
 
Let X be a continuous random variable with distribution function F(x) defined by: 
 
F(x) =   (𝑑𝑑 − ℎ(𝑥𝑥) )𝑐𝑐 , x∈( a, b )                                                                                                                                     (1.1) 
 
Such that:  
(1) d and c are constants such that  c ∉ {−1 , 0}.   
 
(2)  h(X) is a real valued differentiable function defined on ( a, b)  with  
(a)  lim𝑥𝑥→𝑎𝑎+ ℎ(𝑥𝑥) = d     and        
(b)  lim𝑥𝑥→𝑏𝑏− ℎ(𝑥𝑥)  = d-1 
(c)   E(h(X)) exists and finite. 
 
It is easy to see that several wellknown distributions (like exponentiated Weibull, exponentiated Pareto, Burr, 
Power,…etc) arise from the above family by suitable choices for the function h(x), the values of the parameters d and c 
and the domain ( a ,b) .  
 
2. MAIN RESULTS 
 
A recurrence relation is a relation in which the function under consideration, 𝑆𝑆𝑛𝑛  , is defined in terms of a smaller value 
of n. Recurrence relations play a vital role in statistics. In fact, a recurrence relation together with some initial 
conditions define a unique function. On the other hand, recurrence relations can be used to reduce the number of 
operations required to obtain a general form for the function under consideration. This has motivated several authors to 
use this concept to identify some probability distributions (see, e.g., Al-Hussaini et al. [5], Ahmad [2], Lin [15], Khan 
et. al. [14] and Fakhry [9]).   
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The following Theorem identifies the distribution defined by (1.1) using a recurrence relation between conditional 
moments of ℎ𝑚𝑚  (X), m = 1, 2 …given X<y. 
 
Theorem 2.1. Let X be a continuous random variable with distribution function F(x), and density function f(x) such 
that F(a) = 0 and F(b) =1 and F(.) has continuous first order derivative on  (a, b ) with 𝐹̀𝐹 (x) > 0 for all x. Then X has 
the distribution defined by (1.1) if and only if for any finite number y ∈ (a, b) and any natural number m= 1, 2 … the 
following relation is satisfied:  
 
E( ℎ𝑚𝑚  (X) |X < y ) =  𝑐𝑐

𝑐𝑐+𝑚𝑚
  ℎ𝑚𝑚 (y) + 𝑚𝑚 𝑑𝑑

𝑐𝑐+𝑚𝑚
  E (ℎ𝑚𝑚−1( X)|X < y),                                                                                      (2.1) 

 
where h (X) is defined as before. 
 
Proof.  Necessity 
 
By definition  
 

E(ℎ𝑚𝑚 (X)|X<y) = 
∫ ℎ𝑚𝑚 (𝑥𝑥)𝑦𝑦
𝑎𝑎  𝑑𝑑𝑑𝑑(𝑥𝑥)

𝐹𝐹(𝑦𝑦)
 

 
Integrating by parts, and noting that F (a) = 0, one gets: 
 
E( ℎ𝑚𝑚  (X) | X < y ) = ℎ𝑚𝑚 (y) -  𝑚𝑚

𝐹𝐹(𝑦𝑦)
   ∫ ℎ̀𝑦𝑦𝑎𝑎  (𝑥𝑥) ℎ𝑚𝑚−1(x) F(x) d x                                                                                    (2.2) 

 
It is easy to see that:  
 
ℎ̀ (x) = − (𝑑𝑑−ℎ(𝑥𝑥))𝑓𝑓(𝑥𝑥)

𝑐𝑐 𝐹𝐹(𝑥𝑥)
 ,                                                                                                                                                     (2.3) 

 
 the integral on the right can be written as follows:    
               
I = ∫ ℎ ̀𝑦𝑦

𝑎𝑎 (x) ℎ𝑚𝑚−1(x) F(x) d x = −1
𝑐𝑐

  ∫ (𝑑𝑑 − ℎ(𝑥𝑥))𝑦𝑦
𝑎𝑎  ℎ𝑚𝑚−1(x) f(x) dx 

 
                                       =  1

𝑐𝑐
 ∫ ℎ𝑚𝑚𝑦𝑦
𝑎𝑎 (x) f(x) d x -  𝑑𝑑

𝑐𝑐
  ∫ ℎ𝑚𝑚−1𝑦𝑦

𝑎𝑎 (x) f(x) d x       
 

Substituting this result in equation (2.2), one gets: 
 
E(ℎ𝑚𝑚 (X)|X<y)= ℎ𝑚𝑚 (y) - 𝑚𝑚

𝑐𝑐
 E(ℎ𝑚𝑚 (X)|X<y) +𝑚𝑚𝑚𝑚

𝑐𝑐
 E( ℎ𝑚𝑚−1(X)|X< y). 

 
 
Solving this equation for E(ℎ𝑚𝑚 (X)|X<y), we get: 
 
E (ℎ𝑚𝑚 (X) |X < y) = 𝑐𝑐

𝑐𝑐+𝑚𝑚
  ℎ𝑚𝑚 (y) + 𝑚𝑚 𝑑𝑑

𝑐𝑐+𝑚𝑚
  E (ℎ𝑚𝑚−1(X) | X < y). 

 
Sufficiency. 
 
Equation (2.1) can be written as an equation of the unknown function F(y) as follows: 
 
∫ ℎ𝑚𝑚𝑦𝑦
𝑎𝑎 (x) f(x) d x = 𝑐𝑐

𝑐𝑐+𝑚𝑚
 ℎ𝑚𝑚 (y) F(y) + 𝑚𝑚 𝑑𝑑

𝑐𝑐+𝑚𝑚 
 ∫ ℎ𝑚𝑚−1𝑦𝑦
𝑎𝑎 (x) f(x) d x 

 
Differentiating both sides with respect to y, dividing both sides by ℎ𝑚𝑚−1 (y), we get: 
 
h(y) f(y) = 𝑐𝑐

𝑐𝑐+𝑚𝑚
 h(y) 𝐹̀𝐹(y) + 𝑐𝑐𝑐𝑐

𝑐𝑐+𝑚𝑚
 ℎ̀(y) F(y) + 𝑚𝑚𝑚𝑚

𝑐𝑐+𝑚𝑚
  f(y) 

 
Recalling that f(y) = 𝐹̀𝐹(y), cancelling out 𝑐𝑐

𝑐𝑐+𝑚𝑚
 h(y) f(y) from both sides, multiplying the result by  𝑐𝑐+𝑚𝑚

𝑚𝑚
 , adding to both 

sides –[h(y)f(y) + c ℎ̀(𝑦𝑦)𝐹𝐹(𝑦𝑦)],and multiplying the result by [(𝑑𝑑 − ℎ(𝑦𝑦))𝑓𝑓(𝑦𝑦)]−1, we get: 
 
𝑓𝑓(𝑦𝑦)
𝐹𝐹(𝑦𝑦)

 =     −𝑐𝑐 ℎ̀  (𝑦𝑦)
𝑑𝑑−ℎ(𝑦𝑦)
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Integrating both sides with respect to y from x to b and using the fact that F (b) =1, we get: 
 
F(x) =  [ 𝑑𝑑 − ℎ( 𝑥𝑥)]𝑐𝑐   , 
 
Remarks (2.1). 
 
(1) If we put m =1 in Theorem (2.1), we obtain Ouyang’s result [19]. 
(2) If we put m = 1, h(X) = −𝑍𝑍(𝑋𝑋)

𝑍𝑍(𝑏𝑏)− 𝑔𝑔(𝑘𝑘)
1−𝑛𝑛(𝑘𝑘)

   , d = −𝑔𝑔(𝑘𝑘) [(1−𝑛𝑛(𝑘𝑘)]⁄

𝑍𝑍(𝑏𝑏)− 𝑔𝑔(𝑘𝑘)
1−𝑛𝑛𝑛𝑛 )

  , c = 𝑛𝑛(𝑘𝑘)
1−𝑛𝑛(𝑘𝑘)

  , where g( ·) and n(·) are finite real valued 

functions of k and Z(X) is a differentiable function such that: 
 
 lim𝑥𝑥→𝑎𝑎+ 𝑍𝑍(𝑥𝑥)= 𝑔𝑔(𝑘𝑘)

1−𝑛𝑛(𝑘𝑘)
  and lim𝑥𝑥→𝑏𝑏− 𝑍𝑍(𝑥𝑥) = Z(b) then we get Talwalker’s result [21] 

 

F(x) = �
𝑔𝑔(𝑘𝑘)

1−𝑛𝑛(𝑘𝑘)  −  𝑍𝑍(𝑥𝑥)
𝑔𝑔(𝑘𝑘)

1−𝑛𝑛(𝑘𝑘) −  𝑍𝑍(𝑏𝑏)
�
𝑛𝑛(𝑘𝑘) [1−𝑛𝑛(𝑘𝑘)]⁄

 ,  x ∈ ( a, b), 

 
Iff 
 
E(Z(X)|X<y ) = n(k)Z(y) + g(k). 
 
The following Theorem identifies the distribution (1.1) using a recurrence relation between moments of some function 
of the 𝑘𝑘𝑡𝑡ℎ  and (𝑘𝑘 − 1)𝑡𝑡ℎorder statistics. 
 
Theorem (2.2). Let X be an absolutely continuous random variable with cumulative distribution function F(·),survival 
function G(·) and density function f(·). Let 𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝑛𝑛  be a random sample from F(·). Denote by 𝑌𝑌1< 𝑌𝑌2<… < 
𝑌𝑌𝑛𝑛  the corresponding ordered sample. Then under the same conditions posed on the function h(·) , the random variable 
X has the distribution defined by equation (1.1) iff for any natural number m, the following recurrence relation is 
satisfied: 
 
E ( ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘+1 )) = 𝑚𝑚+𝑘𝑘𝑘𝑘

𝑘𝑘𝑘𝑘
  E(ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘)) - 𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘
  E( ℎ𝑚𝑚−1(𝑌𝑌𝑘𝑘)),          k=1,2,…,n-1                                                                   (2.4) 

 
Proof.    Necessity 
 
The density function of the 𝑘𝑘𝑡𝑡ℎ  order statistic is given by:  
 
𝑓𝑓𝑛𝑛 (𝑦𝑦𝑘𝑘) = 𝛼𝛼𝑘𝑘:𝑛𝑛   f(y) 𝐹𝐹𝑘𝑘−1(𝑦𝑦)  𝐺𝐺𝑛𝑛−𝑘𝑘  (y), where 𝛼𝛼𝑘𝑘:𝑛𝑛   = 𝑛𝑛!

(𝑘𝑘−1)!(𝑛𝑛−𝑘𝑘)!
 

 
Then by definition we have:  
 
E(ℎ𝑚𝑚  (𝑦𝑦𝑘𝑘))  = 𝛼𝛼𝑘𝑘:𝑛𝑛  ∫ ℎ𝑚𝑚𝑏𝑏

𝑎𝑎 (y) f(y) 𝐹𝐹𝑘𝑘−1(y) 𝐺𝐺𝑛𝑛−𝑘𝑘 (y) d y 
                   =  𝛼𝛼𝑘𝑘:𝑛𝑛

𝑘𝑘
 ∫ ℎ𝑚𝑚𝑏𝑏
𝑎𝑎 (y)  [𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘𝑑𝑑 [𝐹𝐹(𝑦𝑦)]𝑘𝑘  ) 

 
Integrating by parts, recalling that f(y) = - 𝐺̀𝐺(y) and noting that F(a) = G(b) =0, one gets: 
 
E(ℎ𝑚𝑚 (𝑦𝑦𝑘𝑘)) = −𝑚𝑚 𝛼𝛼𝑘𝑘:𝑛𝑛  

𝑘𝑘  
 ∫ ℎ𝑚𝑚−1𝑏𝑏
𝑎𝑎 (y) [𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘  [𝐹𝐹(𝑦𝑦)]𝑘𝑘ℎ̀(y)dy +𝑛𝑛−𝑘𝑘

𝑘𝑘
   𝛼𝛼𝑘𝑘:𝑛𝑛  ∫ ℎ𝑚𝑚𝑏𝑏

𝑎𝑎 (y) f(y) [𝐹𝐹(𝑦𝑦)]𝑘𝑘[𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘−1dy 
 
Making use of equation (2.3) to eliminate ℎ̀(y), we can write E (ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘)) as follows: 
 
E (ℎ𝑚𝑚 (𝑦𝑦𝑘𝑘)) = 𝑚𝑚 𝛼𝛼𝑘𝑘:𝑛𝑛

𝑘𝑘𝑘𝑘
  {−∫ ℎ𝑚𝑚𝑏𝑏

𝑎𝑎 (y) f(y) [𝐹𝐹( 𝑦𝑦)]𝑘𝑘−1(y) [𝐺𝐺( 𝑦𝑦) ]𝑛𝑛−𝑘𝑘(y) dy  

                            + d∫ ℎ𝑚𝑚−1𝑏𝑏
𝑎𝑎 (y) f(y)[𝐹𝐹(𝑦𝑦)]𝑘𝑘−1 [𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘dy}+ (𝑛𝑛−𝑘𝑘)𝛼𝛼𝑘𝑘:𝑛𝑛

𝑘𝑘
  ∫ ℎ𝑚𝑚𝑏𝑏

𝑎𝑎 (y) f(y) [𝐹𝐹( 𝑦𝑦)]𝑘𝑘[𝐺𝐺( 𝑦𝑦)]𝑛𝑛−𝑘𝑘−1d y 
 
                   =   −𝑚𝑚 𝛼𝛼𝑘𝑘:𝑛𝑛

𝑘𝑘𝑘𝑘
  ∫ ℎ𝑚𝑚(𝑦𝑦)𝑏𝑏
𝑎𝑎  f(y) [𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘  [𝐹𝐹(𝑦𝑦)]𝑘𝑘−1d y + 𝑚𝑚 𝑑𝑑 𝛼𝛼𝑘𝑘:𝑛𝑛

𝑘𝑘𝑘𝑘
 ∫ ℎ𝑚𝑚−1𝑏𝑏
𝑎𝑎 (y) f(y) [𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘  [𝐹𝐹(𝑦𝑦)]𝑘𝑘−1dy 

                               +(𝑛𝑛−𝑘𝑘)𝛼𝛼𝑘𝑘:𝑛𝑛
𝑘𝑘

  ∫ ℎ𝑚𝑚𝑏𝑏
𝑎𝑎 (y) f(y) [𝐺𝐺(𝑦𝑦)]𝑛𝑛−(𝑘𝑘+1) [𝐹𝐹(𝑦𝑦)](𝑘𝑘+1)−1 d y  

                  = −𝑚𝑚 𝛼𝛼𝑘𝑘:𝑛𝑛
𝑘𝑘𝑘𝑘

  𝐸𝐸(ℎ𝑚𝑚 (𝑌𝑌𝐾𝐾))
𝛼𝛼𝑘𝑘:𝑛𝑛

 + 𝑚𝑚𝑚𝑚  𝛼𝛼𝑘𝑘 :𝑛𝑛
𝑘𝑘𝑘𝑘

 𝐸𝐸(ℎ𝑚𝑚−1(𝑌𝑌𝑘𝑘 ))
𝛼𝛼𝑘𝑘 :𝑛𝑛

 + (𝑛𝑛−𝑘𝑘)𝛼𝛼𝑘𝑘:𝑛𝑛
𝑘𝑘

  𝐸𝐸(ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘+1))
𝛼𝛼𝑘𝑘+1:𝑛𝑛
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Solving the last equation for E (ℎ𝑚𝑚(𝑦𝑦𝑘𝑘+1)), we get: 
 
E (ℎ𝑚𝑚 (𝑦𝑦𝑘𝑘+1)) =  (𝑚𝑚+𝑘𝑘𝑘𝑘)

𝑘𝑘𝑘𝑘
 E(ℎ𝑚𝑚 (𝑦𝑦𝑘𝑘)) – 𝑚𝑚 𝑑𝑑

𝑘𝑘𝑘𝑘
 E(ℎ𝑚𝑚−1(𝑦𝑦𝑘𝑘)) 

 
Sufficiency 
 
Equation (2.4) can be written in integral form as follows: 
 

𝑛𝑛!
𝑘𝑘!(𝑛𝑛−𝑘𝑘−1)!

 ∫ ℎ𝑚𝑚𝑏𝑏
𝑎𝑎 (y) f(y) [𝐹𝐹(𝑦𝑦)]𝑘𝑘[𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘−1dy = 𝑛𝑛! (𝑚𝑚+𝑘𝑘𝑘𝑘)

(𝑘𝑘−1)!(𝑛𝑛−𝑘𝑘)!𝑘𝑘𝑘𝑘
 ∫ ℎ𝑚𝑚𝑏𝑏
𝑎𝑎 (y)f(y)  𝐹𝐹(𝑦𝑦)]𝑘𝑘−1[𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘d y  

                                                      – 𝑛𝑛!  𝑚𝑚𝑚𝑚
(𝑘𝑘−1)!(𝑛𝑛−𝑘𝑘)!𝑘𝑘𝑘𝑘

 ∫ ℎ𝑚𝑚−1𝑏𝑏
𝑎𝑎 (y)f(y)[𝐹𝐹(𝑦𝑦)]𝑘𝑘−1[𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘d y                                           (2.5) 

 
Consider the integral on the left side, noting that f(y) = - 𝐺̀𝐺(y), we get: 
 

I=   ∫ ℎ𝑚𝑚𝑏𝑏
𝑎𝑎 (y)f(y) [𝐹𝐹(𝑦𝑦)]𝑘𝑘[𝐺𝐺(𝑦𝑦]𝑛𝑛−𝑘𝑘−1d y = −∫ ℎ𝑚𝑚𝑏𝑏

𝑎𝑎 (y) [𝐹𝐹(𝑦𝑦)]𝑘𝑘   𝑑𝑑 [𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘   
𝑛𝑛−𝑘𝑘

 
 

Integrating by parts, recalling that f(y) = 𝐹̀𝐹(y)   and making use of the facts F(a) = G(b)=0, we get: 
 
I = 𝑚𝑚

𝑛𝑛−𝑘𝑘
∫ ℎ𝑚𝑚−1𝑏𝑏
𝑎𝑎 (y)  ℎ̀(y) [𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘 [𝐹𝐹(𝑦𝑦)]𝑘𝑘dy+ 𝑘𝑘

𝑛𝑛−𝑘𝑘
∫ ℎ𝑚𝑚𝑏𝑏
𝑎𝑎 (y)f(y)[𝐹𝐹(𝑦𝑦)]𝑘𝑘−1[𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘dy 

 
Substituting this result in equation (2.5), multiplying both sides by (𝑛𝑛−𝑘𝑘)!

𝑛𝑛!
   (k-1)! , cancelling out  

 
∫ ℎ𝑚𝑚𝑏𝑏
𝑎𝑎 (y) f(y) [𝐹𝐹(𝑦𝑦)]𝑘𝑘−1  [𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘dy from both sides then multiplying the result by 𝑘𝑘𝑘𝑘

𝑚𝑚
 ,  we get : 

 
c ∫ ℎ𝑚𝑚−1𝑏𝑏

𝑎𝑎 (y) ℎ̀(y) [𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘  [𝐹𝐹(𝑦𝑦)]𝑘𝑘dy =∫ ℎ𝑚𝑚(𝑦𝑦)𝑏𝑏
𝑎𝑎  f(y) [𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘  [𝐹𝐹(𝑦𝑦)]𝑘𝑘−1d y  

                                                                        - d∫ ℎ𝑚𝑚−1𝑏𝑏
𝑎𝑎 (𝑦𝑦)f(y) [𝐹𝐹(𝑦𝑦)]𝑘𝑘−1[𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘  dy 

Therefore, 
 
∫ ℎ𝑚𝑚−1𝑏𝑏
𝑎𝑎 (y) [𝐹𝐹(𝑦𝑦)]𝑘𝑘−1[𝐺𝐺(𝑦𝑦)]𝑛𝑛−𝑘𝑘 ��𝑑𝑑 − ℎ(𝑦𝑦)�𝑓𝑓(𝑦𝑦) + 𝑐𝑐ℎ̀ (𝑦𝑦)𝐹𝐹(𝑦𝑦)�𝑑𝑑𝑑𝑑 =0 

 
Using the Munt- Szasz theorem (see Boas [8]), one gets: 
 
(d-h(y)) f(y) +c ℎ̀(y) F(y) =0 
 
Adding to both sides – [c ℎ̀(y) F(y) ], then dividing both sides by [ d –h(y)] F(y), one gets:  
 
𝑓𝑓(𝑦𝑦)
𝐹𝐹(𝑦𝑦)

 =  −𝑐𝑐 ℎ̀(𝑦𝑦)
𝑑𝑑−ℎ(𝑦𝑦) 

 
Integrating both sides from x to b and using the fact that F (b) =1, we get: 
 
F(x) = [𝑑𝑑 − ℎ(𝑥𝑥)]𝑐𝑐  
 
The proof is complete. 
 
Remarks (2.2). 
(1) Set k=n-1 in equation (2.4), we have a recurrence relation concerning the maximum. 
(2) Set n=2r+1, and k= r+1, we obtain a recurrence relation concerning the median. 
(3) Set k =1 in equation (2.4), we get a recurrence relation concerning the minimum.  

 
The next Theorem gives a recurrence relation between conditional moments of ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘) given 𝑌𝑌𝑘𝑘  < t 
 
Theorem (2.3).Let X be an absolutely continuous random variable with cumulative distribution function F(·),and 
density function f(·). Let 𝑋𝑋1, 𝑋𝑋2, …, 𝑋𝑋𝑛𝑛  be a random sample from F(·). Denote by 𝑌𝑌1<𝑌𝑌2< …< 𝑌𝑌𝑛𝑛  the corresponding 
ordered sample. Then under the same conditions posed on the function h(·), the random variable X has the distribution 
defined by equation (1.1) iff for any natural number m, the following recurrence relation is satisfied : 
 
E(ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘)| 𝑌𝑌𝑘𝑘< t)= 𝑘𝑘𝑘𝑘

𝑚𝑚+𝑘𝑘𝑘𝑘
  ℎ𝑚𝑚 (t) + 𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘+𝑚𝑚
  E(ℎ𝑚𝑚−1(𝑌𝑌𝑘𝑘)|𝑌𝑌𝑘𝑘  < t) ,       k=1,2,…,n                                                                 (2.6) 
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Proof. Necessity. 
 
The conditional density function of the 𝑘𝑘𝑡𝑡ℎ  order statistic 𝑌𝑌𝑘𝑘 | 𝑌𝑌𝑘𝑘  <t (see, Ahsanullah [3]) is given by:  
 
𝑓𝑓𝑛𝑛 (𝑌𝑌𝑘𝑘 |𝑌𝑌𝑘𝑘<t) =   𝑘𝑘

[𝐹𝐹(𝑡𝑡)]𝑘𝑘
 f(y)[𝐹𝐹(𝑦𝑦)]𝑘𝑘−1  , y∈(a, t)                                                                                                               (2.7) 

 
Therefore 
 
E (ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘)|𝑌𝑌𝑘𝑘  <t) = 𝑘𝑘

[𝐹𝐹(𝑡𝑡)]𝑘𝑘
  ∫ ℎ𝑚𝑚𝑡𝑡
𝑎𝑎 (y) f(y) [𝐹𝐹(𝑦𝑦)]𝑘𝑘−1d y = 

                            = 1
[𝐹𝐹(𝑡𝑡)]𝑘𝑘

  ∫ ℎ𝑚𝑚𝑡𝑡
𝑎𝑎 (y) d[𝐹𝐹(𝑦𝑦)]𝑘𝑘 

 
Integrating by parts, noting that F (a) = 0, we get: 
 
E(ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘)|𝑌𝑌𝑘𝑘<t) = ℎ𝑚𝑚 (t) - 𝑚𝑚

[𝐹𝐹(𝑡𝑡)]𝑘𝑘
  ∫ ℎ𝑚𝑚−1𝑡𝑡

𝑎𝑎 (y) ℎ̀(y) [𝐹𝐹(𝑦𝑦)]𝑘𝑘dy 
 
Using equation (2.3) to eliminate ℎ̀(y) from the 2𝑛𝑛𝑛𝑛  term, one gets:         
                          
E (ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘)|𝑌𝑌𝑘𝑘< t) = ℎ𝑚𝑚 (t) - 𝑚𝑚

𝑐𝑐[𝐹𝐹(𝑡𝑡)]𝑘𝑘
 ∫ ℎ𝑚𝑚𝑡𝑡
𝑎𝑎 (y) f(y) [𝐹𝐹(𝑦𝑦)]𝑘𝑘−1dy + 𝑚𝑚𝑚𝑚

𝑐𝑐[𝐹𝐹(𝑡𝑡)]𝑘𝑘
 ∫ ℎ𝑚𝑚−1𝑡𝑡
𝑎𝑎 (y) f(y)[𝐹𝐹(𝑦𝑦)]𝑘𝑘−1dy 

                            = ℎ𝑚𝑚 (t) - 𝑚𝑚
𝑘𝑘𝑘𝑘

 E(ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘)|𝑌𝑌𝑘𝑘<t) + 𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘

 E(ℎ𝑚𝑚−1(𝑌𝑌𝑘𝑘)|𝑌𝑌𝑘𝑘  <t) 
 
Solving the last equation for E(ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘)|𝑌𝑌𝑘𝑘< t), one gets: 
 
E(ℎ𝑚𝑚 (𝑌𝑌𝑘𝑘)|𝑌𝑌𝑘𝑘<t) = 𝑘𝑘𝑘𝑘

𝑚𝑚+𝑘𝑘𝑘𝑘
  ℎ𝑚𝑚 (t) + 𝑚𝑚𝑚𝑚

𝑚𝑚+𝑘𝑘𝑘𝑘
  E(ℎ𝑚𝑚−1(𝑌𝑌𝑘𝑘)|𝑌𝑌𝑘𝑘<t) 

 
Sufficiency. 
 
Equation (2.6) can be written in the following integral form: 
 
k (m+ k c) ∫ ℎ𝑚𝑚𝑡𝑡

𝑎𝑎 (y)f(y)[𝐹𝐹(𝑦𝑦)]𝑘𝑘−1d y = k c ℎ𝑚𝑚 (t)[𝐹𝐹(𝑡𝑡)]𝑘𝑘+ m d k ∫ ℎ𝑚𝑚−1𝑡𝑡
𝑎𝑎 (y)f(y)[𝐹𝐹(𝑦𝑦)]𝑘𝑘−1dy 

 
Differentiating both sides with respect to t, dividing both sides by k ℎ𝑚𝑚−1(𝑡𝑡) 𝐹𝐹𝑘𝑘−1(t), we get: 
 
(m+kc) h(t) f(t)= ckh(t) f(t) + cm ℎ̀(t)F(t)+ mdf(t) 
 
Cancelling out ck h(t) f(t) from both sides, adding –m h(t) f(t) – cm ℎ̀(t) F(t) to both sides, and multiplying the result by  

1
𝑚𝑚[𝑑𝑑−ℎ(𝑡𝑡)]𝐹𝐹(𝑡𝑡)

 , one gets: 
 
−𝑐𝑐ℎ̀(𝑡𝑡)
𝑑𝑑−ℎ(𝑡𝑡)

  = 𝑓𝑓(𝑡𝑡)
𝐹𝐹𝐹𝐹)

 
 
Integrating   both sides with respect to t from x to b , and recalling that F(b) = 1, we get: 
 
F(x) = [𝑑𝑑 − ℎ(𝑥𝑥)]𝑐𝑐  
 
The proof is complete. 
 
Remarks (2.3). 
 
(1) If we set k =1, we obtain a recurrence relation for the minimum. Moreover, using equation (2.7), we have: 
 
E(ℎ𝑚𝑚 (𝑌𝑌1)|𝑌𝑌1<t) =E(ℎ𝑚𝑚 (X)|X<t) 
 
Therefore, we can say that Theorem (2.3) generalizes Theorem (2.1).   
 
(2) If we put k=n, we obtain a recurrence relation for the maximum. 
(3) If we put n=2r+1 and k= r+1, we obtain a recurrence relation for the median. 
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GENERAL COMMENTS 
 
In all of the foregoing theorems, several results can be picked out for some wellknown distributions by suitable choices 
for the function h(X), the values of the parameters d and c and the domain (a, b) as follows: 
 
(1) If we set h(X)= exp – [𝑋𝑋

𝛽𝛽
]𝛼𝛼 , d=1,c=𝜃𝜃,a=0 and b=∞, we obtain recurrence relations concerning the exponentiated 

Weibull distribution with positive parameters 𝛼𝛼,𝛽𝛽 and 𝜃𝜃( see,e.g,. Nassar and Eissa [18]). For 𝜃𝜃=1, we have 
Weibull distribution. For 𝜃𝜃=1 and α=1, we have the exponential distribution. 

(2) If we set h(X)= exp – [ αX+𝛽𝛽𝑋𝑋𝜆𝜆], d=1,c=1,a=0 and b=∞ , we obtain recurrence relations concerning the modified 
Weibull distribution with parameters α,𝛽𝛽 ≥0,where α + 𝛽𝛽 >0 , and λ >0 .For λ=2, we have the linear failure rate 
distribution.(see, e.g., Zaindin and Sarhan [23]). 

(3) If we set h(X) = - exp – [𝛽𝛽
𝑋𝑋
], d=0, c=𝜃𝜃 > 0,a=0 and b=∞, we obtain recurrence relations concerning the inverse 

Weibull distribution with positive parameters 𝛽𝛽 and 𝜃𝜃. For c=2, we have inverse Rayleigh distribution. 
(4) If we set h(X)= [𝛽𝛽

𝑋𝑋
]𝛼𝛼  , d=1, c=𝜃𝜃 >0,a=𝛽𝛽, b=∞ , we obtain recurrence relations concerning exponentiated Pareto of 

the first type with positive parameters 𝛽𝛽, α and 𝜃𝜃(see, e.g., Massom and Woo [16].For 𝜃𝜃=1, we have Pareto 
distribution of the first type. 

(5) If we set h(X) = [1 + 𝑋𝑋]−𝛼𝛼  , α>0,d=1,c=𝜃𝜃>0, a=0 and b=∞ , we obtain recurrence relations concerning the 
exponentiated Pareto of the second type (see, e.g., Abu- Zinadah [1]). For 𝜃𝜃=1, we have the Pareto distribution of 
the second type. 

(6) If we set h(X)= -X, d=0, c>0, a=0  and b=1, we obtain recurrence relations concerning the power distribution with 
parameter c. For c=1, we have the uniform distribution. 

(7) If we set h(X) = [1 − 𝑋𝑋]𝜃𝜃 , c=1, d=1,a=0 and b=1, we obtain recurrence relations concerning beta distribution with 
parameters 1, 𝜃𝜃. 

(8) If we set h(x) = [1 + 𝑥𝑥𝛼𝛼 ]−𝜃𝜃   , α, 𝜃𝜃 > 0, d=1, c=1, a=0 and b =∞ , we obtain recurrence relations concerning Burr 
distribution. For α = 1, the Pareto distribution is obtained. 
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