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ABSTRACT 
An analysis is carried out to study the laminar, boundary layer flow and heat transfer of a viscous fluid over shrinking 
permeable sheet with a power-law velocity in a thermally stratified environment. The sheet is assumed to shrink in its 
own plane with power-law velocity proportional to the distance from the stagnation point. The governing partial 
differential equations are first transformed into coupled non-linear ordinary differential equation using a similarity 
transformation. From here, we are able to compute several classes of exact solutions for certain values of the physical 
parameters. For other values of the physical parameters, the coupled non-linear boundary value problem is solved 
numerically by a second order finite difference scheme known as Keller Box method. Numerical computations are 
performed for two different cases namely, impermeable ( 0wf = ) and permeable ( 0wf ≠ ) cases to get the effects of 
the thermally stratified environment on the velocity and temperature fields, at several physical situations. Numerical 
results for the skin-friction coefficient and the Nusselt number are tabulated for different values of the pertinent 
parameters. This is the first time such results for power-law nonlinearly shrinking sheets have been discussed in the 
context of a thermally stratified medium.  
 
Keywords: Stratified medium, shrinking sheet, finite differences, Keller-Box method, boundary layers, similarity 
solutions, heat transfer.  
 
 
1. INTRODUCTION 
 
The study of two-dimensional boundary layer flow and heat transfer over a continuous moving surface with a given 
temperature, moving in an otherwise quiescent fluid, has attracted considerable attention during the past two decades 
due to their extensive applications to several industrial manufacturing processes. A few examples of such technological 
processes are the extrusion of plastic sheet, hot rolling, wire drawing, glass fiber, and paper production, drawing of 
plastic films, spinning and cooling of a metallic plate in a cooling bath [1-3]. This type of flow was first initiated by 
Sakiadis [4-5] over a continuously moving surface with constant speed.  Numerous studies have been conducted 
thereafter to explore the flow characteristics for various applications. The thermal behavior of the problem was studied 
by Erickson et al. [6] and experimentally verified by Tsou et al. [7]. Crane [8] extended the work of Sakiadis [4] to the 
flow caused by an elastic sheet moving in its own plane with a velocity varying linearly with the distance from a fixed 
point.  Following the work of Crane [8], the boundary conditions on the surface were generalized by other researchers 
[9-16]. A new solution branch of both impermeable and permeable stretching sheet was found recently by Liao [17-18]: 
This indicates that multiple solutions for the stretching surface problems are possible under certain conditions.  
 
The physical situation discussed by Crane [8] is one of the possible cases. Another physical phenomenon is the flow of 
an incompressible viscous fluid over a shrinking sheet. Such situation occurs in the flow over a rising shrinking 
balloon. From the consideration of continuity, Crane’s stretching sheet solution induces a far field suction toward the 
sheet, while flow over a shrinking sheet would give rise to a velocity away from the sheet.  From a physical point of 
view, vorticity generated at the shrinking sheet is not confined within a boundary layer and a steady flow is not possible 
unless adequate suction is applied at the surface. A recent paper published by Miklavcic and Wang [19] investigates 
two-dimensional and axisymmetric viscous flows induced by a shrinking sheet in the presence of uniform surface 
suction.  Fang [20] analyzed the boundary layer flow of a continuously shrinking sheet with a power-law surface 
velocity. The unsteady viscous flow over a continuously shrinking surface with mass suction was investigated by Fang 
et al. [21] and showed that the multiple solutions exist for a certain range of mass suction and the unsteady parameters. 
The shrinking sheet problem was extended to other types of fluids by Hayat et al. [22] and Sajid et al. [23]. For the flow 
induced by a shrinking sheet, it is essentially a backward flow (discussed by Glodstein [24]); for a backward flow  
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configuration the fluid loses any memory of the perturbation induced by the leading ledge, say the slot. This flow has 
quite distinct physical phenomena from the forward stretching flow. Available literature on the flow over a shrinking 
sheet reveals that not much work is being carried out for viscous flow and heat transfer over a non-linear shrinking 
sheet in a thermally stratified environment. 
 
Motivated by these various applications, in the present paper, we analyze the effects of thermally stratified environment 
on the viscous flow and heat transfer at a permeable non-linear shrinking sheet. This is a generalization of Henkes and 
Hoogendoorn [25], to the study the viscous fluid flow and heat transfer with a power-law (nonlinear) shrinking sheet. 
Here the momentum and energy equations are coupled nonlinear partial differential equations. These coupled nonlinear 
partial differential equations are reduced to coupled nonlinear ordinary differential equations by a similarity 
transformation and are solved numerically by an implicit finite difference method known as Keller box method.    
 
2. MATHEMATICAL FORMULATION 
 
Consider a laminar steady two-dimensional viscous flow over a continuously shrinking sheet in a quiescent fluid. The 
sheet shrinks in its own plane with a velocity proportional to the power of distance from the origin. The sheet 
shrinking-velocity is assumed to be ( )wu x− where  ( )wu x  is a positive function for all values of x and the mass 

transfer velocity at the wall is ( )v v .w w x=  The x-axis runs along the shrinking surface in the direction opposite to 
the sheet motion and y-axis is perpendicular to it. Assuming that the fluid is incompressible, the governing equations 
for the flow and heat transfer (in the absence of viscous dissipation) become: 
 

v 0,u
x y
∂ ∂

+ =
∂ ∂

                                                                                                                                                                 (1) 

2 2
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where and vu  are the velocity components in the andx y directions, respectively. T is the temperature, ρ  the 
fluid density, p the fluid pressure, ν  the kinematic viscosity, and α is the thermal diffusivity of the fluid. Based on the 

boundary layer approximation the term 
2

2

T
x

α ∂
∂

has been neglected. For this boundary layer assumption, the solution is 

only valid at a sufficiently large distance from the leading point or shrinking slot. In addition, since we neglected the 
dissipation term in the energy equation, the current analysis is applicable to low Eckert number flows.   
 
The appropriate boundary conditions for the problem are; 
 

( ) ( ) ( ), v v , 0,w w wu u x x T T x at y= − = = =                                                                                 (5a) 

( )0 .u T T x as y∞= = → ∞                    (5b) 
 
In the equation (5) the negative sign indicates the shrinking sheet and ( )vw x  is the mass flux velocity, with 

( )v 0w x < for suction and ( )v 0w x >  for blowing or injection respectively. The subscript w denotes the conditions 

at the wall. Here, ( ) ( ) ( ), andw wu x T x T x∞  are functions of x (and are assumed to vary in powers of x, the distance 
from the slot) and are defined as follows (for details see Henkes and Hoogendoorn [25] and Kulkarni et al. [26]): 
 

( ) ( ) ( ) ( ) ( ), 1 ,m m
w w w cu x U Mx N T x n T Mx N T= + = + ∆ + +  

( ) ( ) ,m
cT x n T Mx N T∞ = ∆ + +                         (6) 
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where cT  is a constant, m  is a power law exponent parameter for the shrinking sheet and is positive or negative 
(indicating respectively that the shrinking surface is accelerating or decelerating from the extruded slit), n  is the wall 
temperature parameter describing the environment temperature for 0n=  and fixed wall temperature for 1n = − , M 
and N are (positive and non-negative, respectively) constants.  
 
3. SIMILARITY TRANSFORMATION 
 
Here, we are searching for solutions for the system (2)-(4) that describes the boundary layer flow over a shrinking sheet 
in a stratified environment [see the boundary conditions (5)]. Under a special situation a similarity solutions exist for 
equations (4). Such a similarity solution depends only on one coordinate η  instead of the two independent variables 

and .x y  Recently Semenov [27] has derived the conditions for all possible similarity solutions. The temperature field 
can be rewritten as, 

( )( ) m
cT n T Tθ η ξ= + ∆ + ,                       (7) 

 
and the transformed coordinates in the above expression are, 

1
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A stream function is introduced as 
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which defines the velocity components and vu  as 
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so that we can write 

( )
1

12
2

w
1v ,

2

m
w

w
Umx M f
M

ν
ξ

−+  = −  
 

 

 
where wf  is a constant [for suction ( )0wf >  and injection ( )0wf < ]. The velocity components 

( ), v ,u
y x
ψ ψ ∂ ∂

= − ∂ ∂ 
 given by equation (10) automatically satisfied the continuity equation (1). Substitution of 

these transformation expressions into equations (2) - (4), and the use of the usual boundary layer approximation, yields 
the following coupled, nonlinear ordinary differential equations for andf θ , 

 21 0,
2

mf f f m f+′′′ ′′ ′+ − =                        (11)

  

( )1Pr 0,
2

m f m n fθ θ θ+ ′′ ′ ′+ − + = 
 

                   (12) 

 
subject to the boundary conditions, 

( ) ( ) ( )0 : , 1, 1,wf f fη η η θ η′= = = − =                                            (13a) 
 

( ) ( ): 0, 0,fη η θ η′→∞ = =                                              (13b) 
 
where wf  is the lateral mass transfer parameter showing the strength of the mass at the shrinking sheet. Here, we have 

the following special situations, 0n =  for the non-stratified environment and 1n = −  for the fixed wall temperature 
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distribution. The environment is stably stratified for 0 or 0dT m M n
dx

∞ > > . Hence, if andm n  are of the same 

sign the environment is stably stratified. The physical quantities of interest are the skin friction coefficient fC  and the 

Nusselt number Nuξ , which are defined by 

 
( )2 , ,w w

f
ww

q
C Nu

k T Tu ξ
τ ξ
ρ ∞

= =
−

                  (14a)

  
where wτ  is the skin friction or shear stress along the surface and wq  is the heat flux from the surface of the shrinking 
sheet, which are given by, 
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Using (7)-(10), we obtain 
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where 
1

Re
m

wU
ξ

ξ
ν

+

=  is the local Reynolds number. 

 
4. EXACT SOLUTIONS FOR SOME SPECIAL CASES 
 
Here, we present exact solutions in certain special cases. Such solutions are useful and serve as a baseline for 
comparison with the solutions obtained via numerical schemes. Regarding the existence and uniqueness of solutions to 
the ordinary differential equation (11) subject to the boundary conditions (13), see Van Gorder et al. [28]. Regarding 
the existence of solutions to (12) subject to (13), see [29]. In such a problem, ( )θ η  is governed by a linear equation 

one the function ( )f η  is known, which makes the existence and uniqueness results easier to obtain. Hence, once a 

solution for ( )f η  is know, one can find the solution for ( )θ η  analytically or numerically. 
 
4.1. Exponential solutions for the linearly shrinking sheet case  
 
In the case of a linearly shrinking sheet (i.e., m = 1), we have an exact solution to (11) - (13) for ( )f η  of the form 

( ) 1 Cf C e
C

ηη −= + .                      (15) 

In the case that 2wf = , this reduces to ( ) 1f e ηη −= +  (see, e.g., Miklavcic and Wang [19]). Meanwhile, we have 
the solution 

( )
2

2

42 1 exp
24

w w
w

w w

f f
f f

f f
η η+

   + −   = − − −   + −     
,                (16)

  
Valid for all 2wf > . (See, e.g., Van Gorder et al. [28] for these exact solutions, and Van Gorder [30] for a general 
method of obtaining such solutions.) The shear stress at the wall is then given by 

( )
2 4

0 0
2

w wf f
f+

+ −
′′ = > .                     (17) 

Furthermore, we have a second solution of the form 
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which is physically meaningful and valid for all 2wf > . For this second solution, the shear stress at the wall is given 
by 

( )
2 4

0 0
2

w wf f
f−

− −
′′ = > .                     (19) 

 
Note that when 2wf <  we have no solutions of the form (15) (see, for instance, Van Gorder and Vajravelu [31]). 
 
4.2. Algebraic solutions for the shrinking sheet 
 
Assuming a solution of the form  

( ) Af
B C

η
η

=
+

,                      (20) 

 

we find that a solution to (11) subject to (13) may be given in this form only when 6wf = , and that such a solution 
reads 

( ) 6
6

f η
η

=
+

.                      (21) 

 

Note that such a solution exists for every value of m. That is to say, for every value of m, 6wf =  implies that (21) is 
the exact solution to (11). 
 
 
4.3. Solution for m = -1 in terms of Weierstrass's elliptic functions 
 
In the case of m = -1, note that (11) becomes 

2 0f f′′′ ′+ = .                         (22)
  
Making the substitution g f ′=  we have that  

2 0g g′′ + = ,                         (23)
  
subject to boundary conditions ( )0 1g = −  and ( ) 0g ∞ = . The solution to this boundary value problem is found to 
be  

( )
1/6

1/3
1/2

22 ,0,0
6

g η η κ
 

= − ℘ + 
 

,             (24) 

 
where ℘ denotes Weierstrass's elliptic function, and the constant κ  is defined by the implicit relation 

( )1/32 ,0,0 1κ℘ = . The value 1.122462048κ ≈ gives physically meaningful solutions. Integrating (24) once, we 
obtain the exact solution for (11): 

( )
1/6

1/3
1/20

22 ,0,0
6wf f d

η
η χ κ χ

 
= − ℘ + 

 
∫ .             (25)

  
5.  NUMERICAL METHOD 
 
The equations (11) and (12) are highly non-linear, coupled ordinary differential equations of third-order and second-
order, respectively. Exact analytical solutions are not possible for the complete set of equations (11) and (12) and 
therefore we have use an efficient numerical method with second order finite difference scheme known as Keller-Box 
method.  The coupled boundary value problem (11) and (12) of third order in f and second order in θ , respectively, has 
been reduced to a system of five simultaneous ordinary differential equations of first order for five unknowns following 
the method of superposition (Na [32]).  To solve the system of first order equations we require five initial conditions 
whilst we have only two initial conditions on f  and one initial condition on θ . The two initial condition 
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( ) ( )0 and 0f θ′′ ′
 
which are not prescribed, however the values of ( ) ( )andf η θ η′ are known at η = ∞ . 

Now, we employ numerical Keller-Box scheme where these two boundary conditions are utilized to produce two 
unknown initial conditions at 0η = . To select ,η∞  we begin with some initial guess values for the unknown initial 

conditions and solve the boundary value problem to obtain ( ) ( )0 and 0f θ′′ ′ . Let 0 0andα β  be the correct values 

of ( ) ( )3 20 and 0 ,f θ  respectively and integrate the system using the fourth order Runge-Kutta method and denote 

the values of ( ) ( )3 20 and 0f θ respectively. The solution process is repeated with another larger value of η∞  until 
two successive values of unknown conditions differ only after desired digit signifying the limit of the boundary 
alongη . The last value of η∞ is chosen as appropriate value for that particular set of parameters. Finally the problem 
has been solved numerically using a second order finite difference scheme known as Keller Box method [33-36].  
 
The numerical solutions are obtained in four steps as follows: 
 
• reduce equations (11) and (12) to a system of first-order equations; 
• write the difference equations using central differences; 
• linearize the algebraic equations by Newton’s method, and write them in matrix-vector form; and 
• solve the linear system by the block tri-diagonal elimination technique. 

 
For numerical calculations, a uniform step size of 0.01η∆ =  is found to be satisfactory and the shooting error was 

controlled with an error tolerance of 610−  in all the cases. To assess the accuracy of the present method, comparison 
of the skin friction and the wall temperature gradient between the present results and previously published results are 
used, for several special cases.  
 
6. RESULTS AND DISCUSSION 
 
Employing the above numerical method, the governing equations of the problem are solved for several sets of values of 
the parameters. The numerical results thus obtained are presented for velocity and temperature in Figures 1-4. Also the 
numerical results for the Nusselt number and the skin friction are presented in Tables 1-3. The horizontal velocity 
profiles are presented in Figures 1(a)-1(c), whereas the temperature profiles are shown in Figures 2-4. 
 
Figures 1(a)-1(c) respectively, show the effects of a lateral mass flux parameter [suction ( )0wf < , impermeability 

( )0wf = and injection ( )0 ]wf >  on the horizontal velocity component ( )ηηf  for different values of the power-law 

exponent parameter .m  From these figures, it can be seen that the velocity ( )ηηf  increases from its initial value and 
approaches monotonically to zero as the distance η  increases from the boundary. The effect of the increasing values of 
the power- law exponent parameter m is to decrease the velocity boundary layer thickness. This is due to the fact that 
the effect of negative values of the parameter m  is to decelerate the horizontal velocity and hence reduces the 
momentum boundary layer thickness.  From Figures 1(a)-1(c), it can be seen that the suction reduces the velocity 
boundary layer thickness whereas the injection has the opposite effect. These results are consistent with the physical 
situation (see Table 1). 
 
The graphs for the temperature profiles ( )θ η with the space variable η  for different values of the parameters are 
presented in Figures 2-4. The general trend here is that the temperature distribution is unity at the wall and tends 
asymptotically to zero as the distance η increases from the boundary. Figure 2(a) explores the effects of the parameter 

m  on the temperature profile ( )θ η  in the presence of lateral mass transfer parameter namely suction ( )1.0wf = − , 

with Pr = 0.72. It is observed that the effect of the parameter m   is to increase the temperature  ( )θ η  and hence 
increase the thermal boundary layer thickness.  From Figures 2(a)-2(c), we see that the thermal boundary layer is 
thicker in the case of suction ( )1wf = − as compared to the case of impermeability ( )0wf = : However, thinner in the 

case of blowing ( )1wf = .  
 
The effect of the wall temperature parameter n  on the temperature field ( )θ η in the cases of suction and 
impermeability are depicted in Figures 3(a)-3(b) for different values of the parameter m. From these figures we see that 
the temperature distribution is lower throughout the boundary layer for positive values of the  wall temperature 
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parameter n  when the environment temperature is fixed or when the environment is non-stratified ( )0 .n =  The effect 
of increasing values of the wall temperature parameter is to decrease the temperature profile and thus decrease the 
thermal boundary layer thickness. This is true even for different values of the power-law exponent parameter. From 
Figures 3(a)-3(b), we also observe that the environment is stably stratified if the power-law exponent parameter and the 
wall temperature parameter have the same sign. The variations of ( )ηθ  for different values of the Prandtl number Pr  

and the wall temperature parameter n  are displayed in Figures 4(a)-4(b) with changes in wf . The effect of increasing 

values of the Prandtl number Pr  is to decrease the temperature ( )ηθ . That is, an increase in Prandtl number Pr  
means decrease in the thermal diffusivity α  and hence it leads to a decrease of energy transfer and that decreases the 
thermal boundary layer thickness. This can be seen for all values of the lateral mass flux parameter. 
 
The impact of all the physical parameters on the skin friction [ ( )0ηηf− ] and the wall temperature gradient [ ( )0ηθ− ] 
can be analyzed from Tables 1-3. From Table 1 it can be seen that the effect of decreasing values of the power-law 
exponent parameter is to increase the skin friction as well as the wall temperature gradient. This is even true for all 
values of the lateral mass flux parameter. The effect of wall temperature parameter is to decrease the Nusselt number 
for linear shrinking (see Tables 2 and 3). The effect of the Prandtl number is to decrease the wall temperature gradient 
for ( )1n ≥ −   and a reverse phenomenon is true for ( )1n < − .  
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Table 1: Values of the skin friction and the wall temperature gradient for different values of m when n = 0 and Pr = 

0.72. 
 

m 
fw=-1.0 fw=0.0 fw=1.0 

f’’(0) θ’(0) f’’(0) θ’(0) f’’(0) θ’(0) 
-1.0 0.816586 -0.669289 0.816586 -0.669289 0.816586 -0.669289 
-1.5 1.149240 -0.919032 1.034832 -0.844707 0.936204 -0.779691 
-2.0 1.462780 -1.152343 1.216034 -0.990666 1.023405 -0.862813 
-2.5 1.762984 -1.374922 1.374025 -1.118243 1.092029 -0.929863 
-3.0 2.053773 -1.589682 1.515830 -1.232926 1.148472 -0.986130 
-3.5 2.337700 -1.798672 1.645553 -1.337934 1.196261 -1.034585 
-4.0 2.616455 -2.003292 1.765822 -1.435344 1.237567 -1.071086 
-4.5 2.891198 -2.204515 1.878436 -1.526588 1.273829 -1.114882 
-5.0 3.162755 -2.403029 1.984690 -1.612699 1.306053 -1.148877 

 
Table 2: Values of the wall temperature gradient for different values of n when m = -1.0. 
 

n Pr = 0.72 Pr = 1.0 Pr = 5.0 
-2.0 0.612231 0.777850 2.040186 
-1.5 0.291684 0.379206 1.0919861 
-1.0 -0.028863 -0.019439 -0.000464 
-0.5 -0.349409 -0.418082 -1.020786 
0.0 -0.669289 -0.816725 -2.04111 
0.5 -0.990500 -1.215370 -3.061436 
1.0 -1.311046 -1.614013 -4.081760 
1.5 -1.631593 -2.012659 -5.102085 
2.0 -1.952139 -2.411303 -6.122409 

 
Table 3: Values of the wall temperature gradient for different values of the physical parameters. 

 

m n fw = -1.0 fw = 0.0 fw = 1.0 
Pr = 0.72 Pr = 1.0 Pr = 5.0 Pr = 0.72 Pr = 1.0 Pr = 5.0 Pr = 0.72 Pr = 1.0 Pr = 5.0 

-1.5 

-2.0 0.640998 0.854176 2.950970 0.731892 0.933629 2.564400 0.740231 0.910006 2.053787 
-1.5 0.250824 0.353299 1.385238 0.337741 0.441514 1.272254 0.360250 0.448454 1.026705 
-1.0 -0.139350 -0.147577 -0.180495 -0.056408 -0.050601 -0.019894 -0.019731 -0.013099 -0.000378 
-0.5 -0.529524 -0.648454 -1.746223 -0.450558 -0.542717 -1.312038 -0.399711 -0.474652 -1.027459 
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0.0 -0.919697 -1.149330 -3.311956 -0.844707 -1.034831 -2.604185 -0.779691 -0.936204 -2.054542 
0.5 -1.309871 -1.650207 -4.877687 -1.238856 -1.526946 -3.896332 -1.159671 -1.397757 -3.081624 
1.0 -1.700045 -2.151083 -6.443422 -1.633006 -2.019062 -5.188478 -1.539652 -1.859310 -4.108706 
1.5 -2.09219 -2.651960 -8.009154 -2.027155 -2.511177 -6.480628 -1.919632 -2.320862 -5.135788 
2.0 -2.480393 -3.152837 -9.574886 -2.421306 -3.003292 -7.772775 -2.299613 -2.782416 -6.162871 

-2.0 

-2.0 0.545626 0.748536 3.129663 0.797044 1.023700 2.943483 0.829383 1.002078 2.0499726 
-1.5 0.121074 0.195704 1.196668 0.350117 0.463766 1.440418 0.406334 0.495706 1.024775 
-1.0 -0.303477 -0.357130 -0.736323 -0.096811 -0.096167 -0.062648 -0.016716 -0.010664 -0.000176 
-0.5 -0.728027 -0.909961 -2.669315 -0.543739 -0.656101 -1.565713 -0.439764 -0.517034 -1.025126 
0.0 -1.152578 -1.462794 -4.602310 -0.990666 -1.216034 -3.068779 -0.862814 -1.023404 -2.050077 
0.5 -1.577129 -2.015626 -6.535303 -1.437594 -1.775967 -4.571844 -1.285861 -1.529775 -3.075028 
1.0 -2.001681 -2.568458 -8.468296 -1.884521 -2.335901 -6.074910 -1.708910 -2.036146 -4.099979 
1.5 -2.426263 -3.121291 -10.40128 -2.331499 -2.895835 -7.577975 -2.131960 -2.542517 -5.124930 
2.0 -2.85078 -3.67412 -12.3343 -2.77838 -3.45577 -9.08104 -2.55501 -3.04889 -6.14989 

 
Nomenclature 
  C     constant defined in equation (2.16) 

,M N coefficients in defined in equation  (2.6) 
f  similarity stream function 
f ′  the first derivative of f  with respect to η  
f ′′  the second derivative of f  with respect to η  
f ′′′  the third derivative of f  with respect to η  

wf  mass transfer parameter at the sheet 
g  the transformed function 
m power law exponent parameter  

n  wall temperature parameter  
Nu Nusselt number 
P  pressure 
Pr  Prandtl number 

wq heat flux from the surface 

Reξ the local Reynolds number 

T  temperature 

cT  constant  defined in equation (2.6) 

wT temperature of the plate 

   T∞ ambient temperature  

    T∆  characteristic temperature difference 
    u  fluid velocity in x-direction 

v  fluid velocity in y-direction 
  x coordinate along the shrinking sheet  
  y coordinate perpendicular to the x-direction 

     wU  a constant  
 
Greek symbols 

α effective thermal  diffusivity of the fluid 

0 0,α β initial guess value 
η similarity variable 
ξ  transformed x-co ordinate Mx N+  
η∆  grid size in the η  direction 

θ  nondimensional temperature 
θ ′  the first derivative of θ  with respect to η  
℘ Weierstrass's elliptic function 
κ  implicit relation 
µ  viscosity 
ν  kinematic viscosity 
ρ density 
ψ stream function 

wτ shear stress at the surface 
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