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ABSTRACT 
The Soret effect on the onset of double-diffusive convection in a sparsely packed rotating anisotropic porous layer is 
investigated analytically using linear and nonlinear stability theories. Linear theory is based on the normal mode 
technique. The Brinkman model that includes the Coriolis term is employed to describe flow through porous media. The 
expressions of Rayleigh number for stationary and oscillatory modes along with a dispersion relation for frequency of 
oscillation are obtained analytically using linear theory. The effect of anisotropy parameters, Taylor number, Soret 
parameter, Darcy number, solute Rayleigh number, Lewis number, Darcy Prandtl number and normalized porosity on 
the stationary and oscillatory convection is shown graphically. The nonlinear theory is based on the truncated 
representation of Fourier series method. The domain of nonlinear double diffusive convection ensures the 
quantification of heat and mass transfer. The effect of various parameters on heat and mass transfer is presented 
graphically. Some existing results are reproduced as the particular cases of present study. 
 
Keywords: Double diffusive convection. Rotation. Brinkman model. Anisotropy. Heat mass transfer. Soret effect.  
 
 
Nomenclature 
 a                Wavenumber 
c   Specific heat of solid 

pc  Specific heat of fluid at constant pressure 
 d Height of the porous layer 

1D                         Soret coefficient 
Da  Darcy number (modified), 2

e Z fK dµ µ  
 g  Gravitational acceleration, (0, 0,−g) 
 K               Inverse anisotropic permeability tensor, 1 1 1

x y zK K K− − −+ +ii jj kk  
 l, m Horizontal wavenumbers 
 Le Lewis number, Tz Sκ κ  
 Nu Nusselt number 
p  Pressure 

DPr  Darcy-Prandtl number, 2
z Tzd Kγεν κ  

 V Velocity vector, ( )u,v,w  

TRa  Thermal Rayleigh number, ΔT z Tzg TdKβ νκ  

SRa  Solute Rayleigh number, ΔS z Tzg SdKβ νκ  
 S Solute concentration 
 Sh Sherwood number 

TS  Soret parameter, 1 S TTzD β κ β  
 t  Time 
T  Temperature 
Ta  Taylor number, ( )22 ZK ενΩ  

S∆  Salinity difference between the walls 
T∆                       Temperature difference between the walls                            

x, y, z Space coordinates 
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Greek symbols 

Tβ  Thermal expansion coefficient 

Sβ  Solute expansion coefficient 

γ  Ratio of specific heat, ( )
( )

m

p f

c
c
ρ
ρ

 

ε   Porosity 
0ρ  Reference density  

η  Thermal anisotropy parameter, Tx Tzκ κ  

Tκ  Anisotropic thermal diffusion tensor, Tx Ty Tzκ κ κ+ +ii jj kk  

Sκ   Solute Diffusivity 

fµ   Fluid viscosity 

eµ   Effective viscosity 
ν  Kinematic viscosity 
Θ   Dimensionless amplitude of temperature perturbation 
σ  Growth rate 
Ω  Angular velocity of rotation, ( )0,0,Ω  
ξ  Mechanical anisotropy parameter, x zK K  

λ  Normalized porosity, ε γ  
Φ  Dimensionless amplitude of concentration perturbation 
ψ  Stream function 
 
Other symbols 

2
h∇   

2 2

2 2x y
∂ ∂

+
∂ ∂

 

2∇   
2

2
2h z

∂
∇ +

∂
 

 
Subscripts 
b  Basic state 
c  Critical 
f  Fluid 
h  Horizontal 
s  Solid 
m  Porous medium 
0  Reference value 
 
Superscripts 
∗   Dimensionless quantity 
 '  Perturbed quantity 
F  Finite amplitude 
Osc  Oscillatory state 
St  Stationary state 
 
1. INTRODUCTION 
 
Interest in the double diffusive convection in porous media subject to the Soret effect has recently increased in view of 
its potential occurrence in nature and wide range of applications such as high-quality crystal production, liquid gas 
storage, migration of moisture in fibrous insulation, transport of contaminants in saturated soil, solidification of molten 
alloys, and geothermally heated lakes and magmas, underground disposal of nuclear wastes, liquid re-injection, electro-
chemical and drying processes. Double-diffusive convection occurs when the faster-diffusing component has an 
unstable distribution. In the ocean, this happens when cold, fresh water sits above warmer, saltier and denser water. The 
importance of double diffusion lies in its ability to affect water mass structure with its differential transport rates for 
heat and salt.  
 
The problem of double diffusive convection in porous medium has been extensively investigated and the growing 
volume of work devoted to this area is well documented by Ingham and Pop [1], Nield and Bejan [2], Vafai [3-4] and  
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Vadasz [5]. Early studies on the phenomenon of thermohaline convection in porous media primarily focused on the 
problem of convective instability in a horizontal layer heated and salted from below. The study of the double diffusive 
generalization of the Horton–Rogers–Lapwood problem was first undertaken by Nield [6] on the basis of linear 
stability theory for various thermal and solutal boundary conditions. Soret instability in an anistropic porous medium 
with temperature-dependent viscosity has been studied by Patil and Subramanian [7].   
 
A major part of the investigations on convection in porous media dealt with isotropic materials. However, in many 
practical situations, the porous materials are anisotropic in their mechanical and thermal properties. Due to the structure 
of the solid material in which the fluid flows, there can be a pronounced anisotropy in properties such as permeability 
or thermal diffusivity. The novelties introduced by anisotropy have only recently been studied. In geothermal system 
with a ground structure composed of many strata of different permeabilities, the overall horizontal permeability may be 
up to ten times as large as the vertical component. Process such as sedimentation, compaction, frost action, and 
reorientation of the solid matrix are responsible for the creation of anisotropic natural porous medium. Anisotropy can 
also be a characteristic of artificial porous material like pelleting used in chemical engineering process, fiber materials 
used in insulating purposes. Tyvand [8] studied the thermohaline instability in anisotropic porous media. The linear 
stability analysis was used by Malashetty [9] to investigate the effect of anisotropic thermo convective currents, in the 
presence of Soret and Dufour effects, on the critical Rayleigh number for both marginal and overstable motions. The 
review of research on convective flow through anisotropic porous media has been well documented by Storesletten 
[10]. More recently, Malashetty and Swamy [11] have studied the onset of convection in a binary fluid saturated 
anisotropic porous layer. 
 
Nonlinear rotating convection in a porous medium uniformly heated from below is of considerable interest in 
geophysical fluid dynamics, as this phenomenon may occur within the Earth’s outer core. Earth’s outer core consists of 
molten Iron and lighter alloying element, sulphur in its molten form. This lighter alloying element present in the liquid 
phase is released as the new iron freezes due to supercooling onto the solid Inner core. Hence we get mushy layer near 
the inner core boundary where the problem becomes convective instability in a porous medium Roberts et al. [12]. An 
excellent review of research on thermal convection in a rotating porous media has been given by Vadasz [13]. Recently 
many authors have studied the effect of anisotropy and/or rotation on the onset of convection in a porous layer (see e.g., 
Govender [14]; Malashetty and Swamy [15]; Malashetty and Heera [16]; Malashetty et al. [17]).   
 
Further, when two transport processes take place simultaneously; they interfere with each other and produce cross-
diffusion effect. The flux of mass caused by temperature gradient is known as Soret or thermal-diffusion effect and the 
flux of heat caused by concentration gradient is knows as Dufour or diffusion-thermo effect respectively. Thermal-
diffusion is labeled "positive" when particles move from a hot to cold region and "negative" when the reverse is true. 
The Dufour coefficient is of order of magnitude smaller than the Soret coefficient in liquids, and the corresponding 
contribution to the heat flux may be neglected (see e.g. Straughan and Hutter [18]). In the past only a few studies have 
been carried out concerning the influence of the Soret effect on convection of binary fluids. A Non-Darcian effects on 
double diffusive convection in a two-component fluid in a sparsely packed porous layer has been investigated by 
Shivakumara and Smuthra [19]. Bahloul et al. [20] carried out an analytical and numerical study of the double diffusive 
convection in a shallow horizontal porous layer under the influence of Soret effect. Mansour et al. [21] have 
investigated the multiplicity of solutions induced by thermosolutal convection in a square porous cavity heated from 
below and subjected to horizontal concentration gradient in the presence of Soret effect. The conditions under which 
Soret-induced buoyancy forces may be important were discussed by these authors. Recently Gaikwad et al. [22] studied 
an analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with 
Soret effect.  
 
For the low porosity media, the viscous effects near the boundary are negligible. In such situations Darcy’s law is a 
good approximation for the momentum equation. Further, the classical Darcy model is valid for flow through regular 
structures over the whole spectrum of the porosity. This model is silent about the flow structure near the bounding 
surfaces where close packing of the porous material is not possible. Brinkman model is valid for a sparsely packed 
porous medium wherein there is more window fluid to flow so that the distortions of velocity give rise to the usual 
shear force. An analytical and numerical study of double diffusive convection with parallel flow in a horizontal 
sparsely packed porous layer under the influence of constant heat and mass flux was performed using a Brinkman 
model by Amahmid et al. [23]. It is now well known that many applications in engineering disciplines as well as in 
circumstances linked to modern porous media involve high permeability porous media and in such situations the Darcy 
equation fails to give satisfactory results. Therefore use of non-Darcian models, which takes care of boundary and/or 
inertia effects, is of fundamental and practical interest to obtain accurate results for high permeability porous media. It 
may be noted that most of the previous investigators have assumed that the fluid viscosity is same as the effective 
viscosity in their study. However, Givler and Altobelli [24] have determined experimentally that (5 ~ 12)e fµ µ=  

where eµ  is the effective viscosity and fµ  is the fluid viscosity, for water flowing through high porosity porous media. 
Therefore, consideration of the ratio of effective viscosity to the fluid viscosity different from unity is warranted to 
know its influence on the critical stability.  
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Recently, Tagare and Benerji Babu [25] have investigated the problem of nonlinear convection in a sparsely packed 
porous medium due to thermal and compositional buoyancy. The effect of rotation on the onset of double diffusive 
convection in a sparsely packed anisotropic porous layer is studied by Malashetty and Begum [26]. Although literature 
on the use of non-Darcian models to study flow and heat transfer in porous media is available extensively in the recent 
past, the works on double diffusive convection in a rotating porous layer in the presence of Soret effect based upon the 
non-Darcian models are very sparse. Therefore, the objective of the present study is to investigate the combined effect 
of rotation and anisotropy in the presence of Soret effect on the double diffusive convection in a horizontal sparsely 
packed porous layer using linear and nonlinear stability analyses. 
 
2. MATHEMATICAL FORMULATION 
 
Consider a sparsely packed, anisotropic porous layer, saturated with Boussinesq fluid of infinite horizontal extent 
confined between the planes z = 0 and z = d, with the vertically downward gravity force g  acting on it. A constant 
temperatures 0T T∆ +  and 0T  with solute concentrations 0S S∆ +  and 0S  respectively are maintained between the lower 
and upper boundaries. A Cartesian frame of reference is chosen with the origin in the lower boundary and the z-axis 
vertically upwards. The porous layer rotates uniformly about the z-axis with a constant angular velocity ( )0,0,= ΩΩ . 
We also note that we are restricting our study to liquids and hence Dofour effect is negligible. We however assume that 
Soret effect is weak and hence assume moderate values for the Soret coefficient.  
 
The basic state of the fluid is assumed to be quiescent, and we superpose infinitesimal perturbations on this basic state. 
The governing equations for the perturbations are 
 . 0∇ =V ,                                                                                                                                                      (2.1) 
 

 ( ) 2
0 0

1 2
f T S ep T S

t
∂ + × + ⋅ = −∇ − − + ∇ ∂ 
V Ω V K V g Vρ µ ρ β β µ

ε ε
,                                       (2.2) 

   ( ). ( )b
T

TT T w T
t z

∂∂
+ ∇ + =∇⋅ ⋅∇

∂ ∂
Vκγ ,                                                                                                (2.3) 

    ( ) 2 2
1. ,b

S
SS S w T D T

t z
∂∂

+ ∇ + = ∇ + ∇
∂ ∂

Vε κ                                                                     (2.4)  

 
where ( , , )u v wV =  is the velocity, p the pressure, T the temperature, S the concentration, ε  the porosity, ( )0,0,= ΩΩ  

constant angular velocity, 1 1 1
x y zK K K− − −= + +K ii jj kk  is the inverse of the anisotropic permeability tensor, 

Tx Ty Tzκ κ κ= + +Tκ ii jj kk  the anisotropic thermal diffusion tensor and 1D  is the Soret coefficient. We restrict 
consideration to horizontal isotropy in mechanical and thermal properties of the porous medium, i.e. x yK K=  and 

Tx Tyκ κ= . The permeability and thermal diffusivity tensors of the porous medium are assumed to have principal axes 

aligned with the coordinate system. The quantities 0 S, , , , andf e S Tρ µ µ κ β β  denote the density, fluid viscosity, 
effective viscosity, solute diffusivity, thermal and solute expansion coefficients respectively. 

Further ( )
( )

m

p f

c
c
ρ

γ
ρ

= , ( ) ( )( ) ( )m s p fc 1 c cρ ε ρ ε ρ= − + , pc is the specific heat of the fluid at constant pressure, c  is the 

specific heat of the solid, the subscripts ,f s and m  denote fluid, solid and porous medium values respectively. 
 
By operating curl twice on Eq. (2.2), we eliminate p′  from it and then render the resulting equation and the Eqs. 
(2.3)-(2.4) dimensionless by setting 
 ( ) ( ) ( ) ( ) ( )( )* * * * 2 * * *, , , , , ' / , , , , , ,Tz Tzx y z x y z d t t d u v w d u v wγ κ κ′ ′ ′ ′ ′ ′= = =  

 ( ) ( )' , 'T T T S S S∗ ∗= ∆ = ∆ ,                                                                                                                       (2.5)    
to obtain non-dimensional equations as       
                                                                                                                                                                                                   

( )

2 2
2 2 4 2

2 2

2 2 2

1 1 1 1

1 1

h
D D

T h S h
D

Da Da Ta w
Pr t z Pr t z

Da Ra T Ra S
Pr t

    ∂ ∂ ∂ ∂
∇ +∇ + − ∇ + − ∇ + =   ∂ ∂ ∂ ∂    

 ∂
+ − ∇ ∇ − ∇ ∂ 

ξ ξ

ξ

                              (2.6) 
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2

2
2 0h T w

t z
  ∂ ∂

− ∇ + + ⋅∇ − =  ∂ ∂  
Vη ,                                                                                                 (2.7) 

 

 2 21 .T
T

S

RaS w S T
t Le Ra
∂ − ∇ + ⋅∇ − = ∇ ∂ 

Vλ                                                                                       (2.8)    

 
The dimensionless parameters, that appear are 2

D z TzPr d Kγεν κ= , the Darcy-Prandtl number, 2
e Z fDa K dµ µ=  , 

the modified Darcy number, ( )22 ZTa K εν= Ω , the Taylor number, 1 ,T S TTzS D β κ β=  the Soret parameter 
ΔT T z TzRa g Td Kβ ν κ= , the thermal Rayleigh number,  ΔS S z TzRa g SdKβ νκ= , the solute Rayleigh number, 

Tz SLe κ κ= , the Lewis number, x zK Kξ = , the mechanical anisotropy parameter, Tx Tzη κ κ= , the  thermal 
anisotropy parameter, λ ε γ= , normalized porosity. Eqs. (2.6)-(2.8) are to be solved for the stress free, isothermal and 
isosolutal boundary conditions  

 
2

2 0ww T S
z

∂
= = = =
∂

, at 0, 1z = .                                                                                                             (2.9) 

 
3. LINEAR STABILITY ANALYSIS 
 
We predict the thresholds of both stationary and oscillatory convections using linear theory. The Eigen value problem 
defined by Eqs. (2.6)-(2.8) subject to the boundary conditions (2.9) is solved using the time-dependent periodic 
disturbances in a horizontal plane. Assuming that the amplitudes of the perturbations are very small, we write           

( )
( )
( )

( )
w W z
T z exp i lx my t
S z

  
   = + +    

      

Θ σ
Φ

,                                                                                                   (3.1) 

 
where l, m are horizontal wavenumbers and σ  is the growth rate. Infinitesimal perturbations of the rest state may either 
damp or grow depending on the value of the parameter σ . Substituting Eq. (3.1) into the linearized version of Eqs. 
(2.6)-(2.8) we obtain 
   

   

( ) ( )

( )

( )

( )

22 2 2 2 2 2
2 2

2 2 2 2 2

1 1

1
D

D

T S
D

D a a D Da D a Da D aPr PrW
Da D a Ta D Ra a Ra a

Pr

     − − + − −   + − −     =          + − − + − +      

σ
σ

ξ
ξ

σ Θ Φ
ξ

             (3.2)                                                                                                                                                                                    

 ( )2 2 0D a Wσ η Θ − − − =  ,                                                                                                                (3.3) 

 

 ( )2 2 2 21 ( ) ,T
T

S

RaD a W S D a
Le Ra

 − − − = −  
λσ Φ Θ                                                                        (3.4)

  
where D d dz=  and 2 2 2a l m= + .  
 
We assume the solutions of Eqs. (3.2)- (3.4) satisfying the boundary conditions (2.9) in the form 
 

 

( )
( )
( )

0

0

0

Sin

W z W
z n z

z

π

   
   Θ = Θ   
   ΦΦ   

, ( 1, 2,3,......)n = .                                                                                          (3.5) 
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The most unstable mode corresponds to 1n = (fundamental mode). Therefore substituting Eq. (3.5) with 1n =  into 
Eqs. (3.2)-(3.4), we obtain a matrix equation 
 

 

2 2
11 0

2
2 0

2 2 1 0

0
1 0 0

01

T S

T
T

S

M a Ra a Ra W

RaS Le
Ra

−

 
 −          − + =        

    − + 
 

σ δ Θ
Φδ λσ δ



where 2 2
11 1, ,M δ δ  and 2

2δ are given in the appendix. 
 
The condition of nontrivial solution of above system of homogeneous linear equations (3.6) yields the expression for 
thermal Rayleigh number in the form 

( )

( )
( )( ) ( )( )

2
2 2 2

12 1 22
2

2 1 2

2 1 2 1

1D
D

T

S

T T

TaDa
Pr Pr DaRa

a
Le a Ra

Le S Le S

−

−

− −

  
     + + +     +  + +  =     
 +

+ 
+ + + +  

σ πδ δ δ
σ δ σ δ

ξ

λσ δ

λσ δ λσ δ

.                                    (3.7)    

 
3.1. STATIONARY STATE 
 
For the validity of principle of exchange of stabilities (i.e. steady case), we have 0σ =  (i.e. 0r iω ω= = ) at the margin 
of stability. Then the Rayleigh number at which marginally stable steady mode exists becomes 
              

( )
( ) ( ) ( ) ( )( )

( )
( )( )

2 2 2 2222 2 1 2 2
2 2 21 2 2

.
1 1

St
T S

T T

a aTaRa a Da a Le Ra
a Le S a Le SDa a

η π η πππ ξ π
πξ π

−

−

 + +
 = + + + + +

+   + ++ + 
(3.8) 

 
The minimum value of the Rayleigh number St

TRa  occurs at the critical wave number St
ca a=  where St

ca h=  satisfies 
a polynomial equation of degree seven in h  (given in appendix).  
 
In the absence of Soret effect i.e., 0TS =  Eq. (3.8) implies 

            
( ) ( )

( )
( )
( )

2 2 2 22 222 2 2
2 2 2

2 2
.1

St
T S

a aTaRa a Da a Le Ra
a aDa a

 
 + + 

= + + + + +   +   + +
  

η π η ππ ππ
ξ ππ

ξ

   (3.9) 

 
This exactly coincides with the result of Malashetty and Begum (2010). 
 
In the limit as 0Da →  i.e., for a densely packed porous medium Eq. (3.9) reduces to  
 

             

( )
2

2 2 2 2
2 2

2 2 2 .St
T S

a a Ta
aRa Le Ra

a a

  
+ + +    +  = + + 

πη π π ξ
ξ η π

π
                                                 (3.10)   

 
This is exactly the one given by Malashatty and Heera (2008). When 0Da →  and 0Ta= , i.e. for a densely packed 
porous medium in the absence of rotation, Eq. (3.10) reduces to  
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             ( )
2 2 2

2 2 2
2 2 2

1St
T S

aRa a a Le Ra
a a

   +
= + + +   +   

π η πη π
ξ π

,                                                                  (3.11) 

 
given by Malashatty and Swamy (2009). Further, for an isotropic porous media, that is when 1ξ η= = , Eq. (3.9) gives  

              
( )34 2

2 2

1
St S
T

RaTaRa
+

= + +
π α β

α α β τ
,                                                                                                 (3.12) 

where 
12

2
2 2

1 1 aDaβ π
π π

−   = + +    
, 

2
2

2

aα
π

= , 1
Le

τ = , which is the one obtained by Rudraiah et al. (1986). 

 
3.2. OSCILLATIRY STATE 
 
We now set iiσ ω=  in Eq. (3.7) and clear the complex quantities from the denominator, to obtain 

 1 2T iRa i∆ ω ∆= + ,                                                                                                                                      (3.13) 
 
 Since TRa  is a physical quantity, it must be real. Hence, from Eq. (3.13) it follows that either 0iω =  (steady onset) or 

2Δ 0=  ( 0iω ≠ , oscillatory onset). 
 
For oscillatory onset 2Δ 0=  ( 0iω ≠ ) and this gives a dispersion relation of the form (on dropping the subscript i)  

 ( ) ( )22 2
0 1 2 0a a a+ + =ω ω ,                                                                                                                    (3.14) 

 
where the coefficients 0 1,a a  and 2a  are given in appendix.  Now Eq. (3.13) with 2Δ 0= , gives  

( )
( )

( )( )
( )( )

( )( )( )
( )( )

2 4 2 2 2 2
1 22

2 2 2 2 2 4 2 2 2 22 2 2
1 1 2 22 1

4 2 2 2 2 2 4 2 2 2 2 2 2 2 2
1 1 2

2 2 2 2 4 2
1 1

D D T

D DSOsc
T

D

D D

Pr l Le Pr S l
Ta

Le LePr l Pr l Le lRa Le l Le
Ra

l Le a l Le Pr l

Le l Da LePr Le Pr S

ω δ ξ λ ω λξ δ
π ξ

ω δ λξ ω δ λξ δ ω λ δδ δ ω λ
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4. WEAK NONLINEAR THEORY   
 
In this section we consider the nonlinear analysis using a truncated representation of Fourier series considering only 
two terms. Although the linear stability analysis is sufficient for obtaining the stability condition of the motionless 
solution and the corresponding Eigen functions describing qualitatively the convective flow, it can neither provide 
information about the values of the convection amplitudes, nor regarding the rate of heat transfer. To obtain this 
additional information, we perform the nonlinear analysis, which is useful to understand the physical mechanism with 
minimum amount of mathematics and is a step forward towards understanding the full nonlinear problem.  
 
For simplicity of analysis, we confine ourselves to the two-dimensional rolls, so that all the physical quantities are 

independent of y. We introduce stream function ψ  such that ,u w
z x
ψ ψ∂ ∂

= = −
∂ ∂

 into the perturbed form of Eq. (2.2), 

eliminate pressure and non-dimensionalize the resulting equation and Eqs. (2.3)- (2.4) using the transformations (2.5) to 
obtain 

 
2 2

2 4 1/ 2 2
2 2

1 1 0T h S
D

V T SDa Ta Ra Ra
Pr t x z z x x

 ∂ ∂ ∂ ∂ ∂ ∂
∇ + + − ∇ − + ∇ − = ∂ ∂ ∂ ∂ ∂ ∂ 

ψ
ξ

,                          (4.1) 
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ξ

 ∂ ∂ ∂
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,                                                                                         (4.2) 
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,                                            (4.3)  
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2 2
2
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,1 ( )
,

T
T

S

S RaS S S T
t Le x z x Ra x z

ψ ψλ
∂∂ ∂ ∂ ∂

− ∇ − + = +
∂ ∂ ∂ ∂ ∂

.                                                    (4.4) 

 
The first effect of non-linearity is to distort the temperature and concentration fields through the interaction of 

,Tψ and also , .Sψ The distortion of these fields will corresponds to a change in the horizontal mean, i.e. a 
component of the form sin(2 )zπ  will be generated. Thus a minimal Fourier series which describes the finite amplitude 
free convection is given by,  
 

( )sin( )sin( )A t ax zψ π= ,                                                                                                                        (4.5) 
 

( ) cos( )sin( ) ( )sin(2 )T B t ax z C t zπ π= + ,                                            (4.6) 
 

( ) cos( )sin( ) ( )sin(2 )S D t ax z E t zπ π= + ,                                                                                 (4.7) 
 

( )sin( ) cos( ) ( )sin(2 )V F t ax z G t xπ π= + ,                                                                                           (4.8) 
 

where the amplitudes ( ), ( ), ( ), ( ), ( ) and G(t)A t B t C t E t F t  are to be determined from the dynamics of the system. 
 
Substituting equations (4.5)-(4.8) into equations (4.1)-(4.4) and equating the coefficients of like terms we obtain the 
following non-linear autonomous system of differential equations   
 

  ( )2 4 1/ 2
12

D
T S
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dt

= − + − + −δ δ π
δ

,                                                    (4.9)   

       

 2
2
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dt

= − − −δ π ,                                                                                                                  (4.10) 

 

 24
2
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= − +
ππ ,                                                                                                                        (4.11) 
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,                                                                             (4.12) 
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π π π
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,                                                                                  (4.13) 

 

 2 2 1/ 2DPrdF Da F F Ta A
dt

 
= − − 

 

ππ δ π
π ξ

,                                                                                     (4.14) 

 
The non-linear system of autonomous differential equations is not suitable to analytical treatment for the general time-
dependent variable and we have to solve it using a numerical method. However, one can make qualitative predictions 
as discussed below. The system of equations (4.9)-(4.14) is uniformly bounded in time and possesses many properties 
of the full problem. Thus volume in the phase space must contract. In order to prove volume contraction, we must show 
that velocity field has a constant negative divergence. Indeed, 
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              (4.15)    

                                                                                                                                                                                                            
which is always negative and therefore the system is bounded and dissipative. As a result, the trajectories are attracted 
to a set of measure zero in the phase space; in particular they may be attracted to a fixed point, a limit cycle or, perhaps, 
a strange attractor. From Eq. (4.15) we conclude that if a set of initial points in phase space occupies a region V (0) at 
time t = 0, then after some time t, the end points of the corresponding trajectories will fill a volume  

 ( )
2

2 2 2 21
22

1( ) (0)exp 4 ( 4 )D DPr PrV t V t
Le

  
= − + + + + +  

  

δ πδ π δ π
δ λ ξ

.                         (4.16) 

 
This expression indicates that the volume decreases exponentially with time. We can also infer that, the large Darcy 
Prandtl number and very small Lewis number ( 1Le < ) tend to enhance dissipation. Finally we note that the system of 
Eqs. (4.9)-(4.14) are invariant under the symmetry transformation  
( ) ( ), , , , , , , , , , , ,A B C D E F G A B C D E F G→ − − − − − − . 
 
4.1. STEADY FINITE AMPLITUDE MOTION 
 
From qualitative predictions we look into the possibility of an analytical solution. In the case of steady motions, Eqs. 
(4.1)-(4.4) can be solved in closed form. Setting the left hand sides of Eqs. (4.9)-(4.14) equal to zero, we get     

2 4 1/ 2
1 0T SA A Da Ta F a Ra B a Ra D+ − + − =δ δ π ,                                                                      (4.17)      

    
2
2 0a A B a AC− − =δ π ,                                                                                                            (4.18)      

                                                    
28 0C a A B− =π π ,                                              (4.19) 

 
2

2 0T
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Raa A D a A E S B
Le Ra

+ + + =
δ π δ ,                                                                                  (4.20)  

 
2

28 8 0,T
T

S

RaE a A D S C
Le Ra
π π π− + =                                                                                                 (4.21)   

 
2 2 1/ 2 0.Da F F Ta Aππ δ π

ξ
− − =                                                                                                        (4.22)       

                                                                                                                                                                                                                                                                                       
Writing , , ,B C D E  and F  in terms of A, using Eqs. (4.18)-(4.22) and substituting these in Eq. (4.17), with 2 8A x÷ =  
we get 

2
1 2 3 0A x A x A+ + = ,                                                                         (4.23) 

 
The required root of Eq. (4.23) is, 

 ( )( )1/ 22
2 2 1 3

1

1 4 .
2

x A A A A
A

= − + −                                                                                                       (4.24) 

 
When we let the radical in the above equation to vanish, we obtain the expression for finite amplitude Rayleigh 
number FRa , which characterizes the onset of finite amplitude steady motions. The finite amplitude Rayleigh number 
can be obtained in the form  

( )( )1/ 22
2 2 1 3

1

1 4
2

FRa B B B B
B

= − + − ,                                                        (4.25) 

where 1 2 3 1 2, , , ,A A A B B  and 3B  are given in appendix.                               



S. N. Gaikwad* & Shaheen Kouser/ Soret Effect on Double Diffusive Convection in a Sparsely Packed Rotating Anisotropic Porous 
Layer / IJMA- 3(8), August-2012. 

© 2012, IJMA. All Rights Reserved                                                                                                                                                  3045 

 
4.2. HEAT AND MASS TRANSPORT 
 
In the study of convection in fluids, the quantification of heat and mass transport is important. This is because the onset 
of convection, as Rayleigh number is increased, is more readily detected by its effect on the heat and mass transport. In 
the basic state, heat and mass transport is by conduction alone.  
 
If H and J are the rate of heat and mass transport per unit area respectively, then 

 
0

total
Tz

z

TH
z

κ
=

∂
= −

∂
,                                                                                                                            (4.26) 

 

 1
0 0

total total
Sz

z z

S TJ D
z z= =

∂ ∂
= − −

∂ ∂
κ ,                                                                                               (4.27) 

 
where the angular bracket corresponds to a horizontal average and  

 0 ( , , )total
zT T T T x z t
d

∆= − + ,                                                                                              (4.28) 

 

 0 ( , , )total
zS S S S x z t
d

∆= − + .                                                                                   (4.29) 

 
Substituting Eqs. (4.6) and (4.7) in Eqs. (4.28) and (4.29) respectively and using the resultant equations in Eqs. (4.26) 
and (4.27), we get  
 

            ( )1 1 2 ,D TH C
d

= −
∆ π                                                                                                                                 (4.30)         

    

 ( )1 2 .Sz SJ E
d

= −
κ ∆ π                                                                                                           (4.31) 

 
The Nusselt number and Sherwood number are defined by  
 

( )
1

1 2 ,HNu C
D T d

= = − π
∆

                                                                                                                  (4.32)  

( ) ( )
`

1 2 1 2 .T
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Sz S

RaJSh E S Le C
S d Ra

 
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π π

κ ∆
                                                                (4.33)  

 
Writing C and E in terms of A, using Eqs. (4.19)-(4.21), and substituting in Eqs. (4.32) and (4.33) respectively, we 
obtain 
 

2
2
2

21 xNu
x

a
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 

+ 
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The second term on the right hand side of Eqs. (4.34) and (4.35) represent the convective contribution to heat and mass 
transport respectively. 
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5. RESULT AND DISCUSSION 
 
The effect of rotation on the onset of double-diffusive convection in a sparsely packed anisotropic porous layer, in the 
presence of Soret effect is investigated analytically using the linear and nonlinear stability theories. In the linear 
stability theory the threshold of both stationary and oscillatory Rayleigh number is obtained analytically along with the 
dispersion relation for frequency of oscillation. The nonlinear theory provides the quantification of heat and mass 
transports and also explains the possibility of the finite amplitude motions. 
 
The neutral stability curves in the TRa a−  plane for various parameter values are as shown in Figs.1-9. We fixed the 
values for the parameters except the varying parameter. From these figures it is clear that the neutral curves are 
connected in a topological sense. This connectedness allows the linear stability criteria to be expressed in terms of the 
critical Rayleigh number T cRa , below which the system is stable and unstable above. 
 
Fig. 1 shows the neutral stability curves for different values of mechanical anisotropy parameter ξ  for fixed values of 
other parameters. We observe from this figure that the convection sets in as oscillatory mode prior to the stationary 
mode. It can be observed that the critical value of the Rayleigh number increases with the increasing ξ  for both 
oscillatory and stationary convection. Thus ξ  has stabilizing effect on stationary and oscillatory convection. Fig. 2 
indicates the effect of thermal anisotropy parameter η  on the neutral stability curves for the fixed values of other 
parameters. It is observed that critical value of the Rayleigh number for stationary and oscillatory mode increases with 
increasing η , indicating that the effect of η  is to inhibit the onset of stationary and oscillatory convection. Fig. 3 
depicts the effect of Taylor number  Ta  on the neutral stability curves. We find that the effect of increasing  Ta  is to 
increase the critical value of the Rayleigh number for stationary and oscillatory modes and the corresponding 
wavenumber. Thus the Taylor number  Ta  has a stabilizing effect on the double diffusive convection in sparsely 
packed anisotropic porous medium.  Fig. 4 presents the effect of Darcy number Da  on the neutral stability curves. We 
find that critical value of the stationary Rayleigh number increases with  Da , indicating that the effect of Darcy 
number  Da  is to inhibit the onset of stationary convection. Whereas for the oscillatory convection, the critical value of 
oscillatory Rayleigh number decreases with increasing  Da , upto certain value of Da Da∗=  and with further increase 
in the value of Da , the critical Rayleigh number increases. Thus Da  has dual effect on oscillatory convection. 
 
Fig. 5 depicts the effect of solute Rayleigh number S Ra  on the neutral stability curves for stationary and oscillatory 
modes. We find that the effect of increasing S Ra  is to increase the critical value of the Rayleigh number for stationary 
and oscillatory modes and the corresponding wavenumber. Thus the solute Rayleigh number S Ra  has a stabilizing 
effect on the double diffusive convection in sparsely packed anisotropic porous medium. In Fig. 6 the marginal stability 
curves for different values of Lewis number Le are drawn. It is observed that with the increase of  Le the critical values 
of Rayleigh number and the corresponding wavenumber for oscillatory mode decrease while those for stationary mode 
increase. Therefore, the effect of Le is to advance the onset of oscillatory convection while its effect is to inhibit the 
stationary convection.  
 
The effect of normalized porosity parameter λ  is depicted in the Fig. 7. We find that an increase in λ  decreases the 
minimum of the Rayleigh number for oscillatory mode, indicating that the effect of increasing λ  is to advance the 
onset of oscillatory convection. The neutral stability curves for different values of Darcy-Prandtl number DPr  are 
presented in Fig.8, from this figure it is evident that for small and moderate values of DPr  the critical value of 
oscillatory Rayleigh number decreases with the increase of DPr , however this trend is reversed for large values of DPr . 
Fig.9 indicates the effect of Soret parameter TS  on the neutral stability curves for stationary and oscillatory modes. It is 
observed that as TS  increases positively, the critical values of Rayleigh number and the corresponding wavenumber for 
oscillatory mode increase while as TS  increases negatively, those decrease. Whereas the effect is reversed for the 
stationary mode. Thus Soret parameter has stabilizing effect on oscillatory convection and destabilizing effect on 
stationary convection. 
 
The detailed behavior of oscillatory critical Rayleigh number with respect to the Taylor number is analyzed in the 

TcRa Ta−  plane through Figs. 10-17. We observe from these figures that the critical Rayleigh number increases with 
the increase of  Ta , indicating that the effect of rotation is to inhibit the onset of thermal convection and it is in 
agreement with the corresponding problem of isotropic and pure fluid layer (Chandrasekhar, [27]).  
 
In Fig. 10, we display the variation of critical Rayleigh number TcRa  with Taylor number  Ta  for different values of 
mechanical anisotropy parameter ξ  for the fixed values of other parameters. It is important to note that TcRa  decreases  
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with the increase of ξ  for small values of  Ta , and for large value of  Ta , the critical Rayleigh number increases. Thus 
the mechanical anisotropy parameter ξ  has dual effect on oscillatory and stationary convection. Fig. 11 indicates the 
variation of TcRa  with  Ta  for different values of thermal anisotropy parameter η . It is observed that the critical 
Rayleigh number TcRa  increases with the increase of η  indicating that the effect of thermal anisotropy parameter is to 
inhibit the onset of stationary and oscillatory convection. Fig. 12 presents the variation of TcRa  with  Ta  for different 
values of Darcy number Da . We find that the critical Rayleigh number TcRa  increases with the increase of Da  for 
small values of  Ta , and for large value of  Ta , the critical Rayleigh number decreases. Thus Da  has dual effect on 
oscillatory and stationary convection.  
  
The variation of TcRa  with  Ta  for different values of solute Rayleigh number SRa  and Darcy-Prandtl number DPr  on 
the onset criteria is shown in Figs. 13 and 14 respectively. We observe from these figures that TcRa  increases with the 
increasing SRa  and DPr . Thus the effect of SRa  is to inhibit the onset of convection for both stationary and oscillatory 
modes. And the effect of the Darcy-Prandtl number is also to inhibit the onset of oscillatory convection. In Figs. 15 and 
16 the variation of TcRa  with  Ta  for different values of Lewis number Le  and normalized porosity parameter λ  is 
shown for the fixed values of other parameters. It is observed that TcRa , increases with the increase of Le , for the 
stationary convection while decreases for the oscillatory convection and it decreases with the increase of λ , indicating 
that Le  has stabilizing effect on stationary convection while destabilizing effect on oscillatory convection and λ  has 
destabilizing effect on oscillatory convection. The variation of TcRa  with  Ta  for different values of Soret parameter is 
presented in the Fig. 17. We find that as TS  increases positively, the critical values of Rayleigh number and the 
corresponding wavenumber decrease for stationary mode while as TS  increases negatively, those increase. And the 
trend is reversed for oscillatory mode. Thus positive TS  has destabilizing effect for stationary mode and stabilizing 
effect for oscillatory mode.  
 
The quantity of heat and mass transfer across the layer is computed by the thermal Nussle number and Sherwood 
number. This is depicted in the Rayleigh-Nusselt number plane through the Figs. 18-22. We observe that as TRa  
increases with its critical value, the heat and mass transports increase and as TRa  is increased further, they remain 
almost constant. In Figs. 18 and 19 the effect of mechanical anisotropy parameter and the Taylor number is displayed. 
It is found that with the increase of these parameters both the thermal Nusselt number and Sherwood number decrease, 
indicating that their effect is to enhance the heat and mass transport. From Fig. 20 it is observed that with the increasing 
thermal anisotropy parameter, the thermal Nusselt number and Sherwood number increase. Thus the heat and mass 
transport is reinforced by it. Fig. 21 shows the effect of Darcy number on heat and mass transport. We find that thermal 
Nusselt number decreases with the increasing Darcy number while Sherwood number increases. Thus the effect of 
Darcy number is to suppress the heat transport while mass transport is reinforced. The effect of Soret parameter on heat 
and mass transport is displayed in Fig.22. It is found that heat transport is suppressed (almost insignificant) while mass 
transport is reinforced by Soret parameter. 
 
6. CONCLUSIONS 
 
The effect of rotation on the onset of double-diffusive convection in a sparsely packed anisotropic porous layer, in the 
presence of Soret effect is investigated analytically using the linear and nonlinear stability theories. The usual normal 
mode technique is used to solve the linear problem. The truncated Fourier series method is used to make the finite 
amplitude analysis. The following conclusions are drawn:  
 
1.  The    mechanical    anisotropy    parameter  ξ    has    stabilizing    effect   on    stationary   and   oscillatory   modes.   
     However the convection sets in as oscillatory mode prior to the stationary mode. 
2.  The effect of thermal anisotropy parameter η  is to inhibit the onset of stationary and oscillatory convection.  
3.  The Taylor number  Ta  has a stabilizing effect on the double diffusive convection in sparsely packed anisotropic   
     porous medium.  
4.  The effect of Darcy number Da  is to inhibit the on the onset of stationary convection while it has dual effect on   
     oscillatory convection. 
5.  The  effect  of  solute  Rayleigh  number  is  to delay both  stationary  and  oscillatory  convection.  And the effect    
     of  Lewis  number  is  to  delay  the  onset  of  stationary convection while it advances the oscillatory convection. 
6.  The effect of normalized porosity is to advance the onset of oscillatory convection. And the Darcy Prandtl DPr  has   
     a dual effect on the oscillatory mode.  
7.  The  Soret  parameter  has  stabilizing  effect  on  oscillatory  convection  and  destabilizing  effect  on   stationary  
     convection. 
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8.  The effect of mechanical anisotropy parameter ξ  and Taylor number Ta is to enhance the heat and mass transport. 
9.  The heat and mass transport is reinforced by the thermal anisotropy parameterη . 
10.The Darcy number Da  and Soret parameter TS  suppresses the heat transport while they reinforce the mass transport 

is reinforced by it  
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Fig. 13. Variation of critical Rayleigh number for
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Fig.21. Variation of Nusselt number and Sherwood number with
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APPENDIX 

( ) 12 1 2 4 2 1 1 2
11 1D DM Pr Da Ta Pr Da

−− − −= + + + + +δ σ δ δ π σ ξ δ  
2 2 2aδ π= + , 2 2 1 2

1 a−= +δ π ξ  and 2 2 2
2 aδ π η= + . 

 



S. N. Gaikwad* & Shaheen Kouser/ Soret Effect on Double Diffusive Convection in a Sparsely Packed Rotating Anisotropic Porous 
Layer / IJMA- 3(8), August-2012. 

© 2012, IJMA. All Rights Reserved                                                                                                                                                  3053 

 
7 6 5 4 3 2

0 1 2 3 4 5 6 7

3
0

0

2 ,

S y S y S y S y S y S y S y S
where
S D aη

+ + + + + + + =

=
 

 
2 2

1

2 2 2 2

2 2

2 2 2 4

2

3 2

2 2 2

4

(4 ( (1 10 )) ,

2 ( ( (1 8 )) 2 ( (1 5 )) ) ,

(1 6 (6 (5 24 )) ( (6 5
(1 4 ) ( ))) ) ,

2 ( ( ( ) ) (1 )

s s

s s

D a DaS

Da Da Da DaS

Da Da Ta Da Da
Le Ra RaS

Da LeRa Da Le Ra Ta Da

S

η η π η ξ
ξ

η η π η ξ π η π η ξ
ξ

η π η η π η ξ π η π
η η ξ

ξ
π ξ π ξ η π ξ

+ + +
=

+ + + + + +
=

+ + + + + + − + +
+ + −

=

+ − + +

=
4 2 2

2

(1 (5 (3 2 )))) ,sDa Da LeRaπ ξ ξ π ξ
ξ

+ − + +

 

( ) ( )

( )

2 3 10 3

6 2 2 8 2
5 3

4

26 2 2

6 3

38 2

7 3

( 1 ) ( 5 2 )
1 ( 6 2 2 ( 1 ,

10 4 1 2 1

2 1 1 2
&

1
.

s

s

s

Le Ra D a
S Da Ta DaLeRa D a

DaLeRa

Da Da
S

Da
S

π η ξ π η ξ
π ξ η ηξ ηξ π ξ

ξ
η ξ π ξη ηξ

π π ξ π ξ

ξ

π π ξ

ξ

 − − + + − +
 = + − + + − + − + + 
 − + + + − + − − + 

− + +
=

− +
=

 

( ) ( ) ( ) ( ) ( )2 2 4 2 2
1 2 3 1 3 5 3 41 , 1 , , 1 , .Tl LeS l Da l Da l Da l l l Taδ ξ δ δ ξ δ π ξ= + = + = + = − = −  

( )( )4 2 2 2
1 2

0 3 ,T D D

D

S Da Pr Pr
a

Pr
λ δ λ λδ δ λδ− + + +

=  

( ) ( )( )( )
( )( )

( ) ( )
( )

2 2 2
1 2 2 2 2 2 2

1 22 3

4 4 2 2 2
1 2

4 2 2 2 2 2 2 4 2 2
1 2 12 3 2

4 2 2 2 2 2 2
2 1 2

1 1

1

S
D D D T D

D D

D D T D

D D D
D

T D D T

Ra a l Le
a Ta LePr Pr LePr S Da LePr Le

LePr LePr
Pr Da l Pr S Da Pr Le l

Pr l Le Pr l l Le Pr
Le Pr

Da S Pr l Le Pr S

δ λδ
π λ λ δ ξ λξδ

ξ

δ δ ξ λ λ

δ ξ λ δ δ ξ λ
ξ

δ ξ λ λξ δ δ

−
= + + − + + + −

+ − + +

+ + + +

+ +

,

 
 
 
 
 
 

 

( )( )
( )( )( )( )( )

( )( )( )( )( )

2 2 2 2
2 1 2 2 2 2 2 2 2

2 1 2 22 2

2 2 2 4 2 2 2
2 1 3 1 1 22 2

1 1 1

1 1 .

S
D D T T D

D

D D D T
D

Ra a l l Le
a Ta Pr l l Le Pr S LeS Da LePr

Le Le Pr

l Pr l l l Da LePr Le Pr S
Le Pr

δ λδ
π δ δ λ δ λ ξ δ

ξ ξ

δ δ δ λ λδ δ
ξ

−
= + + + − + − +

+ + + +

 
4 2

1 5 ,A a Le l=  

( ) ( )2 2 2 2 4
2 5 2 4 1 ,T SA l a Le a Lel LeRa Ra lδ δ= + − +  

( )( )2 2 2 2 2 2
3 5 2 4 2 .S T TA l a l Ra Le S Raδ δ δ δ δ= + − −  

8 4 2
1 4 ,B a Le l=  



S. N. Gaikwad* & Shaheen Kouser/ Soret Effect on Double Diffusive Convection in a Sparsely Packed Rotating Anisotropic Porous 
Layer / IJMA- 3(8), August-2012. 

© 2012, IJMA. All Rights Reserved                                                                                                                                                  3054 

 

( ) ( )( )

( )( )
2 2

1 2 26 2
2 4 2 2 2 2 4 2

1 1

1
2 ,

Sa LeRa l Da Le Le
B a Le l

Ta Da Da

δ ξ δ δ δ δ

δ π ξ δ δ δ ξ δ ξ

 − + − +
 =
 − − + − + + 

 

( )( ) ( )( )
( )( ) ( ) ( )

( )( )

8 2 2 2 2 6 2 2 2
3 1 4 2 4

2 22 2 2 2 4 2 4
1 1 2 2

2
2 2 2 2

1 3

2 1 1 2 1

.

S S T TB a Le Ra l l a LeRa Le Le S Le LeS l

Ta Da Da a Le Le

Ta Da l

δ δ

δ π ξ δ δ δ ξ δ ξ δ δ δ δ

δ π ξ δ δ ξ

= + + + + − +

− − + − + + + − +

+ + −

 

 
 
 

Source of support: Maulana Azad National Fellowship for Minority and partially by UGC New Delhi, India, 
Conflict of interest: None Declared 
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	Temperature

	Taylor number,
	By operating curl twice on Eq. (2.2), we eliminate   from it and then render the resulting equation and the Eqs. (2.3)-(2.4) dimensionless by setting


