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ABSTRACT
In this paper, 1™ —continuous functions, g~ °1 —continuous functions, strongly g” >l —continuous

functions, weakly g**sl —continuous functions are introduced and their properties are investigated.
g~ | —compact, g °l—compact, g~ |—connected, g °l—connected, g~ |-normal and
g”°1 — normal spaces are defined and studied

Keywords: 1°° —continuous functions, g~ °1 —

continuous functions, strongly g”~* | —continuous functions,
weakly g~ °l —continuous functions g~ | —compact, g °l —compact, g~ | —connected,

g”°1 —connected, g”'I —normal and g~*| —normal spaces

1. INTRODUCTION

Ideals in topological spaces have been considered since 1930. In 1990, Jankovic and Hamlett [2] once again
investigated applications of topological ideals. M.E.Abd EI Monsef,E.F.Lashien and A.A. Nasef [1] in 1992 and quite
recently Khan and Noiri  have studied semi-local functions in ideal topological spaces. In this paper

| ** —continuous functions, g”°1 —continuous functions, strongly g~ > 1 —continuous functions, weakly
g"° | —continuous functions , g~ | —compact, g~ °1 —compact, g~ | —connected, g~ °1 —connected,
g~ I —normal and g~°1 —normal spaces are introduced and their properties are investigated.

2. PRELIMINARIES

Definition 2.1: An ideal[3] | on a non empty set X is a collection of subsets of X which satisfies the following
properties.(i) Ael, Bel = AuBel (ii)Ael, Bc A = Bel A topological space (X,7)
with an ideal 1 on X is called an ideal topological space and is denoted by (X,z, 1) .Let Y be a subset of X .

I, = {I NY/l e I} isan ideal on Y and by (Y,z'/Y, I, ) we denote the ideal topological subspace.

Definition 2.2: Let P(X) be the power set of X , then a set operator ( )*: P(X)— P(X) called the local
function[7] of A with respect to 7 and | is defined as follows: For Ac X, A"(l,7) = {X e XIUNAgI for

every open set U containing x}. We simply write A instead of A*(I ,7) in case there is no confusion.
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A Kuratowski closure operator ¢l (') for a topology 7z (l,7) , called the ;* - topology is defined by
CI"(A)= AU A For A, B in (X,7,1) we have

(i)If Ac B then A" c B”

i) (A7) < A"

(i) A"UB =(AUB)”

(iv) (AnB) ' c A"nB"

W) If 1 ={g}, A" =cl(A) and cl”(A) = cl(A)

(vi) If 1 = P(X) then A" =g and cl"(A) = A(vii) A" =cl(A") c cl(A) and A” isaclosed subset of cl(A).

Definition 2.3: A subset A of a space (X, 7) is said to be semi-open [4] if A < cl(int(A))

Definition 2.4: A set operator [1] ( )™ : P(X) — P(X) called a semi local function and ¢l ™( ) of A with
respect to 7 and | are defined as follows: For Ac X , A (l,7) = {X e X/U N Ag | for every semi open set
U containing x}. and CI"® (A) = AU A™ . For a subset A of X, cl(A) (resp. scl(A)) denotes the closure
(resp. semi closure) of A in (X, 7). Similarly cI”(A) and int” (A) denote the closure of A and interior of A in
(X,77).

Definition 2.5: A subset A of X is called * closed [6] (resp.*s closed[1]) if A" = A (resp. A < A). Their
complements are called * open (resp.*s open)

Lemma 2.6: [1] For A, B in (X,7,1) we have

(i) If Ac B then A® c B™®

(i) (A°)° < A"

(iii) A® UB™® o (AUB)™®

(iv) (ANB)® c A® nB™ (v) If | ={g}, A" =scl(A) and cl™ (A) =scl(A) (vi) If | =P(X) then
A™S = ¢ and ¢l (A) = Avii) A" =scl(A™) < scl(A) and A™ is semi closed.

In general A® UB™ = (AUB)™®

Definition 2.7: An ideal space (X, 7, 1) is said to be

*

S n
= U (A)™ for every positive integer N.
i=1

(iii) *s — finitely additive if {U A }

i=1

o0 *S o0
(iv) * S — countably additive if {U A } = J(A)®
i=1

i=1

*S
(v) *S — additive if {UAQ} = J(A,)™ forall indexing sets Q2.

aeQ) asQ)

In *s — finitely additive space cl™> (Aw B) =cl”(A)ucl (B)

Definition 2.8: A subset A of an ideal space (X, 7, ) is said to be g- closed [5], if cI(A) c U whenever Ac U
and U is open in X . The complement of g —closed set is said to be g —open .

Definition 2.9:A subset A of an ideal space (X,7,1)is said to be g~ — closed [8], if ¢l (A) U whenever
AcUand U is g —open in X . The complement of g" — closed set is said to be g~ —open.
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Definition 2.10:A subset A of an ideal space (X,7,1)is said to be g~ — closed [6], if cI (A) = U whenever
AcU andU is g" —open in X . The complement of g~ —closed setissaidtobe g~ —open

Definition 2.11:A subset A of an ideal space (X, 7, 1) is said to be g” | — closed [5], if cl"(A) cU whenever
AcU andU is g" —open in X . The complement of g~ | —closed setissaidtobe g~ | —open

Definition 2.12:A subset A of an ideal space (X,7,1)issaid tobe g~ °I — closed [5], if cI™(A) cU whenever
AcU andU is g" —open in X . The complement of g1 —closed set is said to be g™*| —open

Remark 2.13:
1. In an ideal topological space (X, 7,1) unionoftwo g’ | —closed setsis g~ | —closed

2. In a finitely additive ideal topological space (X, 7, 1) unionoftwo g *l —closed setsis g °l —closed

3. g I —continuous functions, g~ | — continuous functions

We introduce the following definitions
Definition 3.1: A function f : (X,7,1) = (Y, o, J) is said to be (i) *—continuous if f (V) is * open in X

wherever V is open in Y. (i) *S —continuous if f (V) is*s- openin X whenever V is open in'Y.

Definition 3.2: A function f : (X,z,1) — (Y, o, J) is said to be weakly | *—continuous if for each X € X
and for every open set V in Y containing f(X) , there exists an open set U containing X such that

fU)ccl (V).

Definition 3.3: A function f :(X,z,1) = (Y,o) is said to be weakly | ° —continuous if for each X € X
and for every open set V in Y containing f(X) , there exists an open set U containing X such that

fU)cc™V).

Definition 3.4: A function f :(X,7,1) = (Y,o,J) is said to be g" | —continuous if for every V ingo,
f (V) is g~ 1 —open in X . Equivalently for every closed set V inY , f (V) is g~ I —closed inX .

Definition 3.5: A function f :(X,z,1) — (Y,o,J) is said to be g~ °| —continuous if for every V in o,
f (V) is g"°1 —open in X . Equivalently for every closed set V in Y, f*(V)is g >l —closed inX.
Definition 3.6: A function f :(X,7,1) — (Y,o,J) is said to be strongly g~ J —continuous if for every
g**J —open setV inY, f (V) is open in X . Equivalently for every g~ J —closed set V in Y ,
f (V) is closed in X .

Definition 3.7: A function f :(X,7,1) = (Y,o,J) is said to be strongly g~ °J —continuous if for every
g™°J —open set V in Y, f (V) is open in X . Equivalently for every g~>J —closed set V in Y ,
f (V) isclosed in X .

Definition 3.8: A function f :(X,z,1)— (Y,o,J) is said to be weakly g~ | —continuous if for every
X € X and for every V in o containing f(X), there exists an g~ | —open set U in X such that X e U and

fU)ccl (V).

Definition 3.9: A function f : (X,z,1) — (Y,o) is said to be weakly g ° | —continuous if for every X € X
and for every V in o containing f(x), there exists an g~ °| —open sets U in X such that X €U and

fU)ccl™V).
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Definition 3.10: A function f : (X,7,1) = (Y,o,J) issaidtobe g~ | —irresolute if for every g~ J —open
set VinY, f(V)is g” | —open in X . Equivalently for every g~ J —closed set V in Y, f (V) is
g1 —closed inX .

Definition 3.11: A function f :(X,z,1) —(Y,o,J) is said to be g °l —irresolute if for every
g —opensetV inY, f*(V)is g °l —open in X . Equivalently for every g~ °J —closed set V in'Y
, (V) is g”°l —closed in X .

Remark 3.12:
(i) Every * —continuous function is g **I — continuous.

(i) Every * s —continuous functionis g~° | — continuous.
The converse is not true as seen in the following example.
Example 3.13: Let (X,7) be an indiscrete and | = {¢, XO}. Y = X, 0 =P(X) the discrete topology and J =1 .

In X, all subsets are g1 —open and g™° | —open. *—open setsare *S —open setsare {p, X, X —{x, }}.

Let f:X —Y be identity function. Then f is g~ | —continuous , g~°l —continuous  but not
*—continuous and not *s—continuous.

Remark 3.14: Every continuous function is g~ | —continuous (resp.g”°| — continuous).

The converse is not true as seen in the following example.

Example 3.15: Let X = {a, b,C}, T= {¢ {a}, X}, o= {¢ {b},Y} and 1=J ={¢}.

Let f:(X,z,1)— (Y,0,J) betheidentity map. Then fis g~ | —continuous but not continuous.

Remark 3.16: Every strongly g~ | —continuous (resp.g™°I —continuous) function is continuous and hence it
is g~ | —continuous (resp.g”°1 —continuous)

The converse is not true as seen in the following example.

Example 3.17: Let (X,7) be an indiscrete topological space Y = X, r=0c and | ={¢, xo}zJ . Let
f:(X,z,1) > (Y,0,J) be the identity map. In (X,z,1) all the subsets are g~ | —closed and
971 —closed . *S —open sets are {p, X, X — X, } and *—open sets are {p, X, X — X, }. The map f is
continuous, g~ | —continuous , g >l —continuous , g | —irresolute and g~ °l —irresolute |,
*continuous , * S —continuous but not strongly g~ | — continuous and not strongly g~ ° | — continuous.

Here any proper subset A of Yis g~ | —open and g~ °1 —open. But f *(A) is not open in X.

Remark 3.18: Every ¢ | —continuous function is weakly g | —continuous and every

g °1 —continuous function is weakly g*| — continuous.
The converse is not true as seen in the following example.

Example 3.19: Let X =Y = {a,b,c,d}, T=0= {¢ {a,b},X}, | = {(15}: J . Define f: X —Y issuch that
f(@=c . f(b)=d f(c)=a f(d)=c Then f is weakly g | —continuous and. weakly
g™ I —continuous but A={c,d} isclosedin Yand f*(A)={a,b}isnot g™l —closed.
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Remark 3.20: Every weakly |~ —continuous function is weakly g~ | —continuous and every weakly
| ™ —continuous function is weakly g "*| — continuous

The converse is not true as seen in the following example.

Example 3.21: Let (X,7) be an indiscrete topological space Y = X, o =P(X) and | ={¢, xo}z J Let
f:(X,z,1) > (Y,0,J) be the identity map. In (X,z,1) all the subsets are g | —closed and
g”°1 —closed . Then f is weakly g**I-continuous and weakly g~ —continuous. Now f(x¢) = X, & ={x,}
which is open in Y. But there is no open set U containing X such that f(U)ccl'(V)and f(U)ccl™ (V)
Therefore f is not weakly 1~ — continuous and not weakly | —continuous

Remark 3.22: Every strongly g~ | —continuous (resp.g” | —continuous) function is g” | —irresolute
(resp.g”°1 —irresolute) .

The converse is not true as seen in the following example.

Example 3.23: Let X =Y = {a,b,c,d}, T= {¢, {a,b},X}:a, 1=J= {¢} Let f : X — Y be the identity
function. Then f is g™l —irresolute and g™°I —irresolute . A={b,c} is g”l—closed and
g™ I —closed inY.But f *(A)={b,c} isnot closed in X. Therefore f is not strongly g™ | — continuous and
not strongly g > | — continuous.

Remark 3.24: Every g~ | —irresolute function is g~ | —continuous and every g °I —irresolute function is
g*l —continuous

The converse is not true as seen in the following example.

Example 3.25: Let X :{a,b,c,d} , T={¢,{a,b},X} o ={¢} ., Y=X, 17=0, | =J . Define
f:(X,z,1)>(Y,0,J) is such that f(a)=d , f(b)=a , f(c)=c , f(d)=b . Then f is
9”1 —continuous and g1 —continuous A={d} is g™l —closed and g™ —closed in Y. But
f*(A)={a}is not g”I —closed and g™*I —closed in X. Therefore f is not g™ | —irresolute and not
g >l —irresolute.

Remark 3.26: Every strongly g~ | —continuous (resp.g” °l —continuous) function is weakly
g~ | —continuous (resp.g”°1 —continuous).

The result follows from remark (3.16) and (3.18).

The converse is not true as seen in example (3.17).

Theorem 3.27: Let f : (X,7,1) > (Y,0,J) and g :(Y,0,J) = (Z,1,K) then g,fis

(i) continuous if f is strongly g~ | —continuous andgis g~ | —continuous .

(i) g1 —continuous iffisstrongly g | —irresolute andgis g | —continuous .

(iii) g~ I —irresolute iffis g~ | —continuous and g is strongly g~ | —irresolute.

(iv) g~ 1 —continuous iffis g~ | —continuous and g is continuous.

(v) strongly g~ | —continuous if fis strongly g™ | —continuous and gis g~ | —irresolute.
(vi) g7 I —irresolute ifboth fandgare g | —irresolute.

(vii) strongly g”" | —continuous if both fand g are strongly g~ | — continuous .

(viii) g~ I —irresolute iffis g~ | —irresolute and gisstrongly g~ | —continuous .
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Proof follows from the definitions.

Definition 3.28: An ideal topological space (X, 7, 1) is said to be g | (resp. g~ °1) - multiplicative if arbitrary
intersection of g” I (resp.g” °1)-closed setis g™ I (resp. g °1) - closed .

In such spaces arbitrary union of g~ I (resp. g~ °1)-o0pen setis g~ | (resp.g” 1) -open.

Definition 3.29: Let N be a subset of (X,7,1) and X & X . A subset N of X is called a g" | —open
neighbourhood ( g1 —open neighbourhood) of X if there exists g~ | —open (g™°| —open sets) U
containing X such thatU < N .

Theorem 3.30: Let (X,7,1) be a g | (resp. g °1)- multiplicative ideal topological space. For a function

f:(X,z,1) — (Y,o) the following conditions are equivalent.

(i) fis g™l (resp. g"°1)- continuous .

(ii) For each X € X and each openset V in Y with f (X) eV , thereexistsa g~ | (9" > 1) —open set U
containing X suchthat f(U) < (V).

(iii) For each X € X and each open set V in Y with f(x) eV, f (V) isan g | (resp. g"°1) - open
neighbourhood of X.

Proof:
(i) = (ii) Let fbe g~ | —continuous, X € X and V' be open set contained in Y such that f (X) €V . Then

U=f"*(V)is g"l-open, xe X and f(U)cV.

(ii) = (iii) Let X € X and V' be an open set in Y containing f (X) . By (ii) there existsa g™ | —open set U such
that XeU and f(U) <V . Therefore f (V) isaneighbourhood of X.

(i) = (i) Let V be an open setin Y . Let x e f (V). Then by (iii), there existsa g~ | —open set U, such

that xeU, < f (V). Therefore f *(V)= U U, .since (X,z,1)is "l - multiplicative f *(V)
xef (V)

is g~ 1 —open.
Proof is similar in the case of g* °1 —continuous function.

Theorem 3.31: Let (X,7,1) be a g~ | —multiplicative ideal topological space in which every open set is

*—closed . Then a function f : (X,7,1) — (Y,o) is g~ | —continuous ifand only ifitis g~ | —weakly
continuous

Proof: Obviously g~ I —continuity = g~ | —weak continuity . Conversely, let f be Let X€U and
f(x) eV  which is open in Y. Then there exists a g | —open set U in X such that XeU and
f(U)ccl (V) =V,since Vis *—closed . Therefore by theorem (3.30), f is g~ | —continuous .

Theorem 3.32: Let (X,7,1) be a g~ °1 —multiplicative ideal topological space in which every open set is
*S —closed . Then a function f :(X,z,1) = (Y,o) is weakly g~ °1 —continuous if and only if it is
g ° 1 —continuous.

Proof is similar to the proof of theorem (4.31).
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Theorem 3.33: Let (X, 7, 1) bean ideal topological space. Let f : (X,z,1) — (Y,Q) be g | —continuous
andUbe g~ | —open inX .Then f /U :(U,ru Ay )—> (Y,Q) is g | —continuous Proof: Let V be open
inY. Then f (V) is g | —open inX. Therefore (f /U)™"(V)=U n f (V) isalso g | —open since
intersection of two g~ | —open setsis g~ | —open. Therefore f /U is g~ | —continuous.

Theorem 3.34: Let (X, 7,1) bean *s — finitely additive ideal topological space. Let
f:(X,7,1) > (Y,Q) be g~ | —continuous and Ube g~ °I —open in X . Then
f/U:(U,z,,1,)— (Y,Q) is g"° 1 —continuous..

Proof is similar to the proof of the above theorem since in a * s — additive space intersection of g~ °1 —open sets

in g"°1 —open.

Theorem 3.35: Let (X,7,1) bea g~ | —multiplicative ideal topological space. Then f : (X,z,1) — (Y,Q)
is g | —continuous if and only if graph functions g : X — X xY defined by g(x) = (X, f (X)) for each
X e X is g~ I —continuous.

Proof: Necessity: Let X € X and W an open set in X xY containing g(X) = (X, f (X)) . Then there exists a
basic open set U xV such that g(x) eU xV <W . Then f(x)eV . By theorem (3.34), there exists a
g I —open set U, in X such that xeU, and f(U,)cV .UNU,is gl —open in X . Then
xeU, nU and g(U, "U)cUxV cW . Therefore gis g~ | —continuous .

Sufficiency: Let g: X — X xY be g~ | —continuous . Let X € X and V be an open set in Y such that
f(x) eV . Then X xV isan opensetin X xY . Since gis g~ | —continuous, there exists g~ | —open set
U in X such that XeU and g(U) < X xV . Therefore XeU and f(U) <V which proves f is
g~ | —continuous .

Theorem 3.36: If (X,7,1) is a *s— finitely additive, g~ °1 —multiplicative ideal topological space then
f:(X,z,1)—> (Y,o0) is g °I —continuous if and only if graph functions g: X — X xY defined by
g(x) = (x, f(x)) foreachXx € X is g~°1 —continuous.

Proof is similar as in the case of g~ | —continuous function because in * s — finitely additive space, intersection

oftwo g~ °1 —opensetsis g~ ° | —open

Theorem 3.37: Let {Xa/aev} be any family of topological spaces. If f :(X,z,1)—>TIIX, s
g~ 1 —continuous (resp. g~ | —continuous ) then P of : X — X_ is g~ | —continuous (resp.
g~ | —continuous) foreach ¢ € V where P, isthe projection of TIX  onto X .

Proof: Consider a fixed o, € V. Let G, be open in X . Since P, is continuous, Pa’l(Ga) is open in X .
Therefore (P, ,0f )_1(Gao) = f_l[Pa_Ol(Gao)] is g | —open (resp. g~ "I —open). Therefore P, of is
g~ | —continuous (resp. g~ ° I —continuous).

Definition 3.38: A collection {A, /o € Q} of g”| —open (resp.g™1 —open) sets is called g™ | —open

cover (resp. g~ °1 —open cover) of asubset Bof Xif B U A, .
aeQ
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Definition 3.39: An ideal topological space (X,z,1) is called g | —compact (resp. g~ °1 —compact) if for
every g1 —open cover (resp. g1 —open cover) {A, /a e Q} in (X,z,1) there exists a finite subset
Q, of Qsuchthat X = U A, .

aeQ)
Definition 3.40: An ideal topological space (X,7,1) iscalled g | —compact (resp. g~ | —compact) modulo
| if for every g1 —open cover (resp. g"°1 —open cover) {A, /a eQ} in (X,z,1) there exists a finite

subset Q, and Q suchthat X — U A, €.
aeQ)

The following examples show that spaces which are g~ | —compact, g~ | —compact modulo I and spaces
which arenot g~ | —compact, andnot g~ | —compact modulo I do exist.

Example 3.41: Let X be an infinite set and 7 a cofinite topology (i.€). 7 = {¢, X, Al A® is finite } | = {¢} Then
G710(X) = {¢, X, Al A% is finite } Let {Aa la e Q} bea g~ | —open cover for X. Fix o, € Q. Then
A, € G 10(X)andso X — A, isfinite. Let X —A = {xl,...xn} . Then there exists ¢;,i =1,2,...n such that

i=0
Therefore the space is g~ | —compact and g~ | —compact modulo I. This space isalsog ™ °| —compact and
g™l —compact modulo I.

Example 3.42: Let (X,7) be infinite indiscrete space and | = {¢, {xo }} All subsets are g~ | —open and
g”°1 —open. {{X}/X € X} isa g~ | —open cover for X. But it has no finite sub cover modulo I. Therefore this

is not g~ | —compact, not g~ | —compact modulo Lnot g~ °l —compact and not g °l —compact
modulo I.

Remark 3.43: In an ideal topological space (X, z,1)
1. g7 I —compactness = g~ | —compactness modulo I. (When | = {¢} both the concepts coincide).

2. 9" I —compactness = g~ —compactness modulo I. (When | = {#} both the concepts
coincide).
3. 971 —compactness = g | —compactness (since g~ | opensetsareg” ° | — open)

4 9 °1 —compactness modulol. = g” | —compactness modulo I. (since g™ | open setsareg ™" |

— open)
5. Every finite ideal space (X,z,1) is g | —compact, g °1 —compact g~ I —compact modulo I,

g™ 1 —compact modulo I.

Theorem3.44: A g~ | —closed (resp. g ° 1 —closed ) subset of g~ | —compact (resp. g~ ° | —compact)
ideal space is g~ | —compact (resp. g~ ° 1 — compact).

Proof: Let (X,7,1) be a g~ | —compact (resp. g ° 1 —closed ) ideal topological space and let B be a
g™ 1 —closed (resp.g”™ 1 —closed) subset of X. Then X —B is g~ | —open (resp.g”1 —open).

Let {Aa }aeQ bea g~ | —open (resp.g” 1 —open) cover for B. Then {X \B,A,/lae Q} isa g | —open

(resp.g”°1 —open) cover for X. Since X is g | —compact (resp.g”°l —compact) there exists a finite

subset A, of A such that [ U A, U(X —B)]= X. Then B U A_ . Therefore B is g~ | —compact
ael,

aelg

(resp.g°1 —compact).
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Theorem 3.45: A g | —closed (resp.g > | —closed ) subset ofa g~ | —compact (resp. g~ ° | — compact )
modulo | spaceis g~ | —compact (resp. g~ ° I —compact )modulo I .

Proof: Let (X,z,1) bea g~ | —compact (resp. g~ ° | —compact) modulo I ideal topological space and let B
bea g | —closed (resp.g > | —closed ) subset of X. Then X —B is g~ | —open (resp.g”°| —open).
Let {Aa }QEQ bea g~ | —open (resp.g”°l —open) cover for B. Then {X \B,A, /lae A} isa g |—open
(resp.g”°1 —open) cover for X. Since X is g~ | —compact (resp.g”°1 —compact) modulo I, there exists a
finite subset A, of A such that X —[aELA A, U(X —=B)] €I whichimplies [X -y A lnBel.

0 0

~[B= U A€l HenceBis g~ | —compact modulol.

aeAO

Theorem 3.46: Theimage of g* | —compact (resp. g~ °| —compact) space undera g~ | —continuous (resp.
g"°1 —continuous) function f is compact .

Proof: Let (X,7,1) be g~ | —compact (resp.g”°l —compact) and f :(X,z,1) = (Y,77) be an onto
9"l —continuous (resp.g”*l —continuous) function. Let {A_ }  be an open cover for Y. Then

a

{f*{A B}, is a g l-open (resp.g” I —open) cover for X. Since X is g~| —compact
(resp.g” 1 —compact) there exists a finite subset A, of A such that X :agA f(A).

0

Therefore Y = f(X) = LA (A, ).which implies Y is compact
ae 0

Theorem 3.47: The image of g~ | —compact (resp. g~ °| —compact ) space modulo I undera g~ | — continuous
(resp. g °1 —continuous) function f is compact modulo f (1) .

Proof: f (1) isan ideal in Y, the rest of the proof is similar to the proof of the above theorem.

Theorem 3.48: The image of g~ | —compact (resp. g~ °1 —compact) space under a g™ | —irresolute (resp.
g *l —irresolute) function fis g~ | —compact .

Proof: Similar to the proof of theorem (4.46).

Theorem 3.49: The image of g**l—compact (resp. g**sl—compact) space modulo | under a
g | —irresolute (resp. g~ °I —irresolute) function fis g~ | —compact modulo f (1)

Proof: Similar to the proof of theorem (4.46).

Theorem 3.50: The image of compact space under strongly g”l—continuous (resp.strongly
g"°l —continuous) function fis g~ | —compact (resp.g”°l —compact).

Proof: Similar to the proof of theorem (4.46).

Theorem 3.51: The image of compact modulo | space under strongly g**l —continuous (resp.strongly
g1 —continuous) function fis g~ | —compact (resp.g”°l —compact) modulo f (1)

Proof: Similar to the proof of theorem (4.46).

Definition 3.52: An ideal topological space (X, 7, 1) is said to be g | —connected (resp. g~ °| —connected )

If X cannot be written as disjoint union of g~ | —open (g~ °l —open) sets. Otherwise X is said to be
g~ | —disconnected .
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The following example shows the existence of such spaces.

Example 3.53: Let X be an infinite set and 7 a cofinite topology and I:{¢} , G™°10(X) =
GHIO(X)={¢,X,A/ A° is finite } Suppose X = AUB  where A and B are disjoint g~ | —open
(resp.g™*1 —open) sets then ANB=¢. A° UB® = X which is not true since A and B are finite.
Therefore this space is g~ | —connected (resp.g”™ | —connected) .

Example 3.54: Let (X,7) be infinite indiscrete space and | = {¢, {xo }} All subsets are g~ | —open and
g™l —open . Let A be any proper subset of X. Then X = AU A® where A and A® are g™'I —open and
g 1 —open Therefore the space is g~ | —disconnected and not g~°1 — disconnected .

Remark 3.54: Let (X, 7, 1) be an ideal topological space
1. When | = P(X), since cl"(A) = A=cl™ (A) every subset is* —open ,*s —open,*—closed
and *s —closed . Therefore all subsetsare g~ | —open, g~ °1 —open,g~ | —closed andg” 1 —closed
. Therefore (X,z,P(X)) is g~ | —disconnected and g° I — disconnected .
2. (X,z,1) is "1 —connected (resp.g” I —connected) <> there exists no subset which is both
g1 —open (resp.g”®1 —open) and g~ | —closed . (resp.g” 1 —closed)
3.Ais g °I —connected = g~ | —connected . (Sinceg ™ | —opensetsare g~ °1 —open)

Theorem 3.56: Let f :(X,7,1) > (Y,o,J) beanonto function.

1. Xis g~ | —connected (resp. g~ ° 1 —connected ) and fis g” | —continuous (resp. g~ ° | —continuous)
= Y is connected

2. Xis g1 —connected (resp. g~ ° | —connected ) and fis continuous => Y is connected

3. X is g” 1 —connected (resp. g ° 1 —connected ) and fis g | —irresolute (resp. g~ ° 1 —irresolute)
= Yis g~ J —connected (resp. g J —connected ).
4. X is connected and f is strongly g~ J —continuous (resp. g~ °J —continuous) =

Yis g~ J —connected (resp. g~ °J —connected ).

5. X is connected and f is strongly g~ J —continuous (resp. g~ °J —continuous) =
Y is connected.

Proof:
(1) Suppose Y is disconnected, there exists disjoint open sets A, B such that Y = AUB . Then

frY)=f (AU f*B). f*(A)and f *(B) aredisjoint g~ | —open sets in X
which is a contradiction since X is ¢ ™1 — connected .
Proof of (2), (3), (4), (5) and (6) are similar to the proof of (1)

Definition 3.57: An ideal topological space (X, 7, 1) is said to be g~ 1 —normal (respg”°l —normal) if for
every two disjoint closed sets F, and F, in X, there exists disjoint g~ | —open (respg” | —open)sets U, and
U, suchthat F cU,, F, cU,.

Definition 3.58: An ideal topological space (X, 7,1) issaidtobe g~ | —normal (respg”™*l —normal) modulo
| if for every two disjoint closed sets F, and F, in X, there exists disjoint g~ | —open (respg” 1 —open) sets
U, andU, suchthat F, cU,, F,cU, andU, nU, el.
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Example 3.59: In example (3.42), (X,z,1) is g" I —normal g~ °I —normal g” | —normal modulo I and

g °1 —normal modulo I .In example (3.41), (X,z,1) is not g” I —normal not g °l —normal not

g™ I —normal modulo I andnot g1 —normal modulo |

Remark 3.60: In an ideal space (X,7,1).

1. g”1 —normal = g™ —normal modulo I.When | = {g} both concepts coincide

2. g1 —normal = g™*1 —normal modulo I. When | = {$} both concepts coincide

3. Normal = g™'I —normal = g~*1 —normal . (Since open sets are g | —open and g1 —open sets
are g °l —open)

4. (X,7,P(X)) is always g~ | —normal and g °l —normal since all subsets are g~ | —open and
g"°1 —open

Definition 3.61: A function f : (X,z,1) — (Y,o,J) issaid to be

(iyg™J —open (resp.g”°J —open) if f(V) is g~ J —open (resp.g”*J —open)in Y wherever V is open
in X.

(i) g~ J —closed (resp.g”°J —closed) if f(V) is g~ J —closed (resp.g”°J —closed) in Y wherever
V is closed in X.

(iiiy g~ 1 —strongly (resp.g™°l —strongly) open if f(V) is open in Y wherever V is g | —open
(resp.g”°1 —open)in X.

Theorem 3.61: Let f : (X,7,1) — (Y,o,J) be abijective function.Then the following are equivalent.
1. £ is g7 J —continuous (resp. g”°J —continuous).

2. f is g~ J—open (resp. g~ °J —open).

3. f is g~ J—closed (resp. g~ °J —closed).

Theorem3.62: Let f :(X,7,1) —> (Y,o0,J) whereJ = f(I) be an injection function.

1. X is normal and f is g~ J —open (respg” °J—open) and continuous => Y is g J—normal .
(respg*I —normal)

2. X is g" I —normal (respg ™ *lI —normal), f is g~ | —strongly (respg” °l —strongly) open and
continuous = Y'is g~ | —normal (respg”°1 —normal) and normal

3. Xis g I —normal (respg” 1 —normal)modulo I, and fisg~ | —strongly (respg” | —strongly) open
and continuous =Y is g~ J —normal (respg”°J —normal) modulo J and normal modulo J

4. X is normal modulo I and f is g~ J —open (respg”°J —open) and continuous => Y is g~ J —normal .
(respg™*J —normal) modulo J

Proof:
(1) Let F, and F, two disjoint closed setsin Y. Then f *(F,) and f *(F,) are disjoint closed

sets in X. Since X is normal there exists disjoint open sets U, and U, such that
f*(F)cU, and f *(F,) cU,.Sincefis g~ J —open (respg” °J —open), f(U,) and f(U,) are
9”1 —open (respg”™*1 —open) inXsuchthat F, < f(U,) and F, c f(U,) and FNF, =¢.

Therefore fis 1 - 1. Therefore Yis g~ | —normal (respg” | —normal)

(2) Proof is similar to the proof of(1)
(3) F, and F, are two disjoint closed sets in Y

= f*(F) and f*(F,) aredisjoint closed sets in X.
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—> thereexists g~ | —open (respg” °1 —open) sets U, and U, in Xsuch that f *(F,) cU, and
f*(F,)cU,.andU,nU, el
= f(U,) and f(U,) are disjoint open sets and hence g~ J—open (respg” °J —open) sets in Y
containing F, and F, respectivelyand f (U,)nfU,)e f(1)=1J.

= Yis g~ J—normal (respg”°J —normal) modulo J and normal modulo J
(4) Proof is similar to the proof of (3)
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