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ABSTRACT 
In this paper, continuousI S −* functions, continuousIg S −** functions, strongly continuousIg S −**

functions, weakly continuousIg S −** functions are introduced and their properties are investigated. 
,** compactIg − ,** compactIg S − ,** connectedIg − ,** connectedIg S − normalIg −** and

normalIg S −** spaces are defined and studied  
 
Keywords: *SI continuous− functions, **Sg I continuous− functions, strongly continuousIg S −** functions, 

weakly continuousIg S −** functions ,** compactIg − ,** compactIg S − ,** connectedIg −
,** connectedIg S − normalIg −** and normalIg S −** spaces  

 
 
1. INTRODUCTION 
 
Ideals in topological spaces have been considered since 1930. In 1990, Jankovic and Hamlett [2] once again 
investigated applications of topological ideals. M.E.Abd EI  Monsef,E.F.Lashien and A.A. Nasef [1] in 1992 and quite 
recently Khan and Noiri  have studied semi-local functions in ideal topological spaces. In this paper

continuousI S −* functions, continuousIg S −** functions, strongly continuousIg S −** functions, weakly 

continuousIg S −** functions , ,** compactIg − ,** compactIg S − ,** connectedIg − ,** connectedIg S −
normalIg −** and normalIg S −** spaces  are introduced and their properties are investigated.  

 
2. PRELIMINARIES 
 
Definition 2.1: An ideal[3] I  on a non empty set X  is a collection of subsets of X  which satisfies the following 
properties.(i) IA∈ , IB∈  ⇒  IBA ∈∪  (ii) IA∈ , AB ⊂  ⇒  IB∈ .A topological space ),( τX  
with an ideal I  on X  is called an ideal topological space and is denoted by ),,( IX τ .Let Y be a subset of X . 

{ }IIYIIY ∈∩= /  is an ideal on Y  and by ( )YIYY ,/,τ  we denote the ideal topological subspace.  
 
Definition 2.2: Let )(XP  be the power set of X , then a set operator (  )*: )()( XPXP →  called the local 

function[7] of A with respect to τ  and I  is defined as follows: For XA ⊂ , { IAUXxIA ∉∩∈= /),(* τ  for 

every open set U  containing }x . We simply write *A instead of ),(* τIA  in case there is no confusion.  
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A Kuratowski closure operator )(*cl  for a topology ),(* ττ I , called the *τ - topology is defined by 
** )( AAACl ∪= For A , B  in ),,( IX τ  we have   

(i) If BA ⊂  then ** BA ⊂   
(ii) ( ) *** AA ⊆  
(iii) *** )( BABA ∪=∪  
(iv) ***)( BABA ∩⊆∩  
(v) If { }φ=I , )(* AclA =  and )()(* AclAcl =  

(vi) If )(XPI =  then  φ=*A  and AAcl =)(* (vii) )()( ** AclAclA ⊂=  and *A  is a closed  subset of cl(A). 
 
Definition 2.3: A subset A of a space ),( τX  is said to be semi-open [4] if ))(int(AclA ⊂  

Definition 2.4: A set operator [1] )()(:)( * XPXPS →  called a semi local function and )(*scl  of A  with 

respect to τ  and I  are defined as follows: For XA ⊂ , { IAUXxIA S ∉∩∈= /),(* τ  for every semi open set 

U  containing }x . and SS AAACl ** )( ∪= . For a subset A  of X , )(Acl  (resp. ))(Ascl  denotes the closure 

(resp. semi closure )  of A  in ),( τX . Similarly )(* Acl  and )(int* A  denote the closure of A  and interior of A  in 

),( *τX .  
 
Definition 2.5: A subset A  of X  is called * closed [6] (resp. s* closed[1]) if AA ⊆* (resp. AA S ⊆* ). Their 
complements are called * open  (resp. s*  open) 
 
Lemma 2.6: [1] For A , B  in ),,( IX τ  we have     

(i) If BA ⊂  then SS BA ** ⊂      
(ii) ( ) SSS AA *** ⊆      
(iii) SSS BABA *** )( ∪⊇∪  
(iv) SSS BABA ***)( ∩⊆∩ (v) If { }φ=I , )(* AsclA S =  and )()(* AsclAcl S = (vi) If )(XPI =  then  

φ=SA*  and AAcl S =)(* (vii) )()( ** AsclAsclA SS ⊂=  and SA*  is semi closed. 
 
In general SSS BABA *** )( ∪≠∪  
 
Definition 2.7: An ideal space ),,( IX τ is said to be  

(iii) finitelys −*  additive if 


n
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(iv) −S* countably additive  if 
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(v) −S*  additive  if 


Ω∈Ω∈

=



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



α
α

α
α

S
S

AA *
*

)(  for all indexing sets Ω . 

In finitelys −* additive space )()()( *** BclAclBAcl S ∪=∪  
 
Definition 2.8: A subset A  of an ideal space ),,( IX τ is said to be g- closed [5], if UAcl ⊆)(  whenever UA ⊆  

and U  is open  in X . The complement of closedg −  set is said to be openg − . 
 
Definition 2.9:A subset A  of an ideal space ),,( IX τ is said to be −*g  closed [8], if UAcl ⊆)(  whenever 

UA ⊆ and U  is openg −  in X . The complement of closedg −* set is said to be openg −* . 
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Definition 2.10:A subset A  of an ideal space ),,( IX τ is said to be −**g  closed [6], if UAcl ⊆)(  whenever 

UA ⊆  and U  is openg −*  in X . The complement of closedg −**  set is said to be openg −**
 

 
Definition 2.11:A subset A  of an ideal space ),,( IX τ is said to be −Ig **  closed [5], if UAcl ⊆)(*  whenever 

UA ⊆  and U  is openg −*  in X . The complement of closedIg −**  set is said to be openIg −**
 

 
Definition 2.12:A subset A  of an ideal space ),,( IX τ is said to be −Ig s**  closed [5], if UAcl s ⊆)(*  whenever 

UA ⊆  and U  is openg −*  in X . The complement of closedIg s −**  set is said to be openIg s −**
 

 
Remark 2.13: 
1. In an ideal topological space ),,( IX τ ,union of two closedIg −**  sets is closedIg −**

 
2. In a finitely additive  ideal topological space ),,( IX τ ,union of two closedIg s −**  sets is closedIg s −**

 
3. continuousIg −** functions, continuousIg S −** functions 
 
We introduce the following definitions 
Definition 3.1: A function ),,(),,(: JYIXf στ →  is said to be (i) continuous−*  if )(1 Vf −  is * open in X   

wherever V is open in Y. (ii) s* continuous−  if )(1 Vf −  is *s- open in X   whenever V is open in Y. 
 
Definition 3.2: A function ),,(),,(: JYIXf στ →  is said to be weakly continuousI −*   if for each Xx∈  

and for every open set V  in Y  containing )(xf , there exists an open set U  containing x  such that 

)()( * VclUf ⊆ . 
 
Definition 3.3: A function ),(),,(: στ YIXf →  is said to be weakly continuousI S −*  if for each Xx∈  

and for every open set V  in Y  containing )(xf , there exists an open set U  containing x  such that 

)()( * VclUf S⊆ . 
 
Definition 3.4: A function ),,(),,(: JYIXf στ →  is said to be continuousIg −**  if for every V  inσ ,  

)(1 Vf −  is openIg −**
  in X . Equivalently for every closed set V  inY ,  )(1 Vf −  is closedIg −**

  in X . 
 
Definition 3.5: A function ),,(),,(: JYIXf στ →  is said to be continuousIg S −** if for every V  in σ , 

)(1 Vf −  is openIg S −**  in X . Equivalently for every closed set V  in Y ,  )(1 Vf −  is closedIg S −**
  in X . 

Definition 3.6: A function ),,(),,(: JYIXf στ →  is said to be strongly continuousJg −** if for every 

openJg −**  set V  in Y ,  )(1 Vf −  is open in X . Equivalently for every closedJg −** set V  in Y ,  

)(1 Vf −  is closed   in X . 
 
Definition 3.7: A function ),,(),,(: JYIXf στ →  is said to be strongly continuousJg S −**  if for every 

openJg S −**
 set V  in Y , )(1 Vf −  is open in X . Equivalently for every closedJg S −** set V  in Y ,  

)(1 Vf −  is closed  in X . 
 
Definition 3.8: A function ),,(),,(: JYIXf στ →  is said to be weakly continuousIg −**  if for every 

Xx∈  and for every  V  in σ  containing )(xf , there exists an openIg −**  set U  in X such that Ux∈  and 

)()( * VclUf ⊆ . 
 
Definition 3.9: A function ),(),,(: στ YIXf →  is said to be weakly continuousIg S −**  if for every Xx∈  

and for every  V  in σ  containing )(xf , there exists an openIg S −**  sets U  in X such that Ux∈  and 

)()( * VclUf s⊆ . 
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Definition 3.10: A function ),,(),,(: JYIXf στ →  is said to be irresoluteIg −**  if for every openJg −**
 

set V  in Y , )(1 Vf −  is openIg −**  in X . Equivalently for every closedJg −** set V  in Y ,  )(1 Vf −  is 

closedIg −**
 in X . 

 
Definition 3.11: A function ),,(),,(: JYIXf στ →  is said to be irresoluteIg s −**  if for every 

openJg s −**
 set V  in Y , )(1 Vf −  is openIg s −**  in X . Equivalently for every closedJg s −** set V  in Y

,  )(1 Vf −  is closedIg s −**
 in X . 

 
Remark 3.12:  
(i) Every continuous−*  function is continuousIg −** . 

(ii) Every continuouss −*  function is continuousIg S −** . 
 
The converse is not true as  seen in the following example. 
 
Example 3.13: Let ),( τX  be an indiscrete and { }0, xI φ= . XY = , )(XP=σ  the discrete topology and IJ = . 

In X, all subsets are openIg −**
 and openIg S −** . open−*   sets are openS −*   sets are { }{ }0,, xXX −φ .  

 
Let YXf →:  be identity function. Then f is continuousIg −** , continuousIg S −**   but not 

continuous−*   and  not continuouss −* . 
 
Remark 3.14: Every continuous function is continuousIg −** )..( ** continuousIgresp s −  
 
The converse is not true as seen in the following example. 
 
Example 3.15: Let { }cbaX ,,= , { }{ }Xa ,,φτ = , { }{ }Yb ,,φσ =   and I= }{φ=J . 
 
 Let ),,(),,(: JYIXf στ →  be the identity map. Then f is  continuousIg −**  but not continuous. 
 
Remark 3.16: Every strongly continuousIg −** ).( ** continuousIgresp s −  function is continuous and hence it 

is continuousIg −** ).( ** continuousIgresp s −   
 
The converse is not true as seen in the following example. 
 
Example 3.17: Let ),( τX  be an indiscrete topological space Y = X, στ =  and { } JxI == 0,φ . Let 

),,(),,(: JYIXf στ →  be the identity map. In ),,( IX τ  all the subsets are closedIg −**
 and

closedIg S −** . openS −*   sets are  { }0,, xXX −φ  and open−*   sets are { }0,, xXX −φ . The map f is 

continuous, continuousIg −** , continuousIg S −** , irresoluteIg −** and irresoluteIg S −** , 

continuous* , continuousS −*  but not strongly continuousIg −**
 and not strongly continuousIg S −** .  

 
Here any proper subset A of Y is openIg −**

 and openIg S −** . But )(1 Af −
 is not open in X. 

 
Remark 3.18: Every continuousIg −**

 function is weakly continuousIg −**
 and every 

continuousIg s −**
 function is weakly continuousIg s −** . 

The converse is not true as seen in the following example. 
 
Example 3.19: Let { }dcbaYX ,,,== , { }{ }Xba ,,,φστ == , { } JI == φ  . Define YXf →:  is such that 

caf =)( . dbf =)( acf =)( cdf =)(  Then f is weakly continuousIg −**
 and. weakly 

continuousIg s −**
  but { }dcA ,=  is closed in Y and { }baAf ,)(1 =−

 is not closedIg −** . 
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Remark 3.20: Every weakly continuousI −*
 function is weakly continuousIg −**  and every weakly 

continuousI s −*
 function is weakly continuousIg s −**

 
 
The converse is not true as seen in the following example. 
 
Example 3.21: Let ),( τX  be an indiscrete topological space Y = X, )(XP=σ and { } JxI == 0,φ  Let 

),,(),,(: JYIXf στ →  be the identity map. In ),,( IX τ  all the subsets are closedIg −**
 and 

closedIg S −** . Then f is weakly g**I-continuous and weakly continuousIg S −** . Now f(x0) = xo∈ }{ 0xV =
which is open in Y. But there is no open set U  containing x  such that )()( * VclUf ⊆ and )()( * VclUf S⊆
Therefore f is not weakly continuousI −* and not weakly  continuousI s −*  
 
Remark 3.22: Every strongly continuousIg −**

 ).( ** continuousIgresp s − function is irresoluteIg −**

).( ** irresoluteIgresp s − . 
 
The converse is not true as seen in the following example. 
 
Example 3.23:  Let { }dcbaYX ,,,== , { }{ } σφτ == Xba ,,, , { }φ== JI . Let YXf →:  be the identity 

function. Then f is irresoluteIg −**  and irresoluteIg S −** . { }cbA ,=  is closedIg −**  and 

closedIg S −**  in Y. But { }cbAf ,)(1 =−
 is not closed in X. Therefore f is not strongly continuousIg −**

 and 

not strongly continuousIg S −** . 
 
Remark 3.24: Every irresoluteIg −**

 function is continuousIg −**
 and every irresoluteIg s −** function is 

continuousIg s −**  
 
The converse is not true as seen in the following example. 
 
Example 3.25: Let { }dcbaX ,,,= , { }{ }Xba ,,,φτ = , { }φ=I , XY = , στ = , JI = . Define 

),,(),,(: JYIXf στ →  is such that daf =)( , abf =)( , ccf =)( , bdf =)( . Then f is 

continuousIg −** and continuousIg s −** { }dA =  is closedIg −**  and closedIg S −**  in Y. But 

{ }aAf =− )(1
 is not closedIg −**  and closedIg S −**  in X. Therefore f is not irresoluteIg −**

 and not 

irresoluteIg S −** . 
 
Remark 3.26: Every strongly continuousIg −** ).( ** continuousIgresp S −  function is weakly 

continuousIg −** ).( ** continuousIgresp s − .  
 
The result follows from remark (3.16) and (3.18). 
 
The converse is not true as seen in example (3.17). 
 
Theorem 3.27: Let ),,(),,(: JYIXf στ →   and ),,(),,(: KZJYg ησ →  then gof is 

(i) continuous if f is strongly continuousIg −**  and g is continuousIg −** . 

(ii) continuousIg −**  if f is strongly irresoluteIg −**  and g is continuousIg −** . 

(iii) irresoluteIg −**  if f is continuousIg −**  and g is strongly irresoluteIg −** . 

(iv) continuousIg −**  if f is continuousIg −**  and g is continuous. 

(v) strongly continuousIg −**  if f is strongly continuousIg −**  and g is irresoluteIg −** . 

(vi) irresoluteIg −**  if both f and g are irresoluteIg −** . 

(vii) strongly continuousIg −**  if both f and g are strongly continuousIg −** . 

(viii) irresoluteIg −**  if f is irresoluteIg −**  and g is strongly continuousIg −** . 
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Proof follows from the definitions. 
 
Definition 3.28: An ideal topological space ),,( IX τ  is said to be Ig **  (resp. )** Ig S - multiplicative if arbitrary 

intersection of Ig ** (resp. )** Ig S - closed set is Ig ** (resp. )** Ig S - closed . 
 
In such spaces arbitrary union of Ig ** (resp. )** Ig S - open  set is Ig ** (resp. )** Ig S - open . 
 
Definition 3.29: Let N be a subset of ),,( IX τ  and Xx∈ . A subset N of X is called a openIg −**  

neighbourhood ( openIg S −**  neighbourhood) of x  if there exists openIg −**  ( openIg S −**
 sets) U  

containing x  such that NU ⊆  . 
 
Theorem 3.30: Let ),,( IX τ  be a Ig **  (resp. )** Ig S - tivemultiplica  ideal topological space. For a function  

),(),,(: στ YIXf →  the following conditions are equivalent. 

(i)   f is Ig **  (resp. )** Ig S - continuous . 

(ii) For each Xx∈  and each open set V  in Y  with Vxf ∈)( , there exists a Ig ** ( Ig S** ) –open set U    
      containing x   such that )()( VUf ⊆ . 

(iii) For each Xx∈ and each open set V  in Y  with Vxf ∈)( , )(1 Vf −  is an Ig **  (resp. )** Ig S - open   
       neighbourhood of x . 
 
Proof:  
(i) ⇒  (ii) Let f be continuousIg −** , Xx∈ and V  be open set contained in Y  such that Vxf ∈)( . Then 

)(1 VfU −=  is  openIg −** , Xx∈   and VUf ⊆)( . 
 
(ii) ⇒  (iii) Let Xx∈ and V  be an open set in Y containing )(xf . By (ii) there exists a openIg −**   set U  such 

that Ux∈   and VUf ⊆)( . Therefore )(1 Vf −  is a neighbourhood of x . 
 
(iii) ⇒  (i) Let V  be an open set in Y . Let )(1 Vfx −∈ . Then by (iii), there exists a openIg −**   set xU  such 

that )(1 VfUx x
−⊆∈ . Therefore x

Vfx
Vf 

)(

1
1

)(
−∈

− =  . Since  ),,( IX τ  is Ig **  - tivemultiplica )(1 Vf −  

is openIg −** . 
 
Proof is similar in the case of continuousIg s −** .function  
 
Theorem 3.31: Let ),,( IX τ  be a tivemultiplicaIg −**

 ideal topological space in which every open set is  

closed−* . Then a function ),(),,(: στ YIXf →   is continuousIg −**
 if and only if it is weaklyIg −**

continuous  
 
Proof: Obviously  continuityIg −**

 ⇒   continuityIg weak ** − . Conversely, let f  be  Let Ux∈  and 

Vxf ∈)(   which is open in Y. Then there exists a openIg −**  set U in X  such that Ux∈  and 

VVclUf =⊂ )()( * , since V is closed−* . Therefore by theorem (3.30), f  is  continuousIg −** . 
 
Theorem 3.32: Let ),,( IX τ  be a tivemultiplicaIg S −**

 ideal topological space in which every open set is  

closedS −* . Then a function ),(),,(: στ YIXf →   is weakly continuousIg S −**
 if and only if it is 

continuousIg S −** . 
 
Proof is similar to the proof of theorem (4.31). 
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Theorem 3.33: Let ),,( IX τ  be an  ideal topological space. Let ),(),,(: Ω→ YIXf τ  be continuousIg −**
 

and U be  openIg −**  in X . Then ( ) ),(,,:/ Ω→ YIUUf UUτ  is continuousIg −** Proof: Let V be open 

in Y. Then )(1 Vf −  is openIg −**
  in X. Therefore )()()/( 11 VfUVUf −− ∩=  is also openIg −**

 since 

intersection of two openIg −**
 sets is openIg −** .  Therefore  Uf /   is continuousIg −** . 

 
Theorem 3.34: Let ),,( IX τ  be an finitelys −*  additive ideal topological space. Let 

),(),,(: Ω→ YIXf τ  be continuousIg −**
 and U be  openIg S −**  in X . Then 

( ) ),(,,:/ Ω→ YIUUf UUτ  is continuousIg S −** . 
 
Proof is similar to the proof of the above theorem since in a additives −*  space intersection of openIg S −**

  sets 

in openIg S −** . 
 
Theorem 3.35: Let ),,( IX τ  be a tivemultiplicaIg −**

 ideal topological space. Then ),(),,(: Ω→ YIXf τ   
is continuousIg −**

 if and only if graph functions YXXg ×→: defined by ))(,()( xfxxg =  for each

Xx∈  is continuousIg −** . 
 
Proof: Necessity: Let Xx∈  and W  an open set in YX ×  containing ))(,()( xfxxg = . Then there exists a 

basic open set VU ×  such that WVUxg ⊆×∈)( . Then Vxf ∈)( . By theorem (3.34), there exists a 

openIg −**  set 1U  in X  such that 1Ux∈   and VUf ⊆)( 1  . 1UU ∩  is openIg −**
  in X .  Then 

UUx ∩∈ 1   and WVUUUg ⊂×⊂∩ )( 1 . Therefore g is continuousIg −** . 
 
Sufficiency: Let YXXg ×→:  be continuousIg −** . Let Xx∈  and V  be an open set in Y  such that 

Vxf ∈)( . Then VX ×  is an open set in YX × . Since g is continuousIg −** , there exists openIg −**  set 

U  in X  such that Ux∈  and VXUg ×⊆)( . Therefore Ux∈  and VUf ⊆)(  which proves f is 

continuousIg −** .  
 
Theorem 3.36: If ),,( IX τ  is a finitelys −*  additive, tivemultiplicaIg S −**

 ideal topological space then 

),(),,(: στ YIXf →  is continuousIg s −**
 if and only if graph functions YXXg ×→: defined by 

))(,()( xfxxg =  for each Xx∈  is continuousIg s −** . 
 
Proof is similar as in the case of continuousIg −**

 function because in finitelys −*  additive space, intersection 

of two openIg S −** sets is openIg S −**  
 
Theorem 3.37: Let { }∇∈αα /X   be any family of topological spaces. If ατ XIXf Π→),,(:   is 

continuousIg −**
 (resp. continuousIg −** ) then αα XXofP →:  is continuousIg −**

 (resp. 
continuousIg −** )  for each ∇∈α   where αP   is the projection of  αXΠ   onto αX .  

 
Proof: Consider a fixed ∇∈0α . Let αG  be open in αX . Since αP   is continuous, )(1

αα GP −  is open in αX . 

Therefore [ ])()()(
000

111
0 αααα GPfGofP −−− =   is openIg −**   (resp. openIg S −** ). Therefore ofP

0α
  is 

continuousIg −**
 (resp. continuousIg S −** ). 

 
Definition 3.38: A collection { }Ω∈αα /A  of  openIg −**

  (resp. openIg S −** ) sets is called openIg −**
  

cover (resp. openIg S −**
  cover) of a subset B of X if α

α
AB

Ω∈
⊆ 

. 
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Definition 3.39: An ideal topological space ),,( IX τ  is called compactIg −**

 (resp. compactIg s −** )  if for 

every  openIg −**
  cover (resp. openIg S −**

  cover) { }Ω∈αα /A   in ),,( IX τ   there exists a finite subset 

0Ω   of Ω  such that α
α

AX
Ω∈

=  . 

Definition 3.40: An ideal topological space ),,( IX τ  is called compactIg −**
 (resp. compactIg −** )  modulo 

I if for every  openIg −**
  cover (resp. openIg S −**

  cover) { }Ω∈αα /A   in ),,( IX τ   there exists a finite 

subset 0Ω   and Ω  such that α
α

AX
Ω∈

−   ∈I. 

The following examples show that spaces which are compactIg −** , compactIg −**   modulo I and spaces 

which are not compactIg −** , and not compactIg −**   modulo I do exist. 
 
Example 3.41: Let X be an infinite set and τ  a cofinite topology (i.e). { cAAX /,,φτ = is finite }, { }φ=I , Then 

{ cAAXXIOG /,,)(** φ= is finite }.  Let { }Ω∈αα /A   be a openIg −**
  cover for X. Fix Ω∈0α . Then 

)(**
0

XIOGA ∈α and so 
0α

AX −  is finite. Let { }
0 1,... nX A x xα− = . Then there exists , 1, 2,...i i nα = such that 

i
Axi α∈ . Then  

0 1
.....

n
A A A Xα α α∪ ∪ ∪ = . Therefore IAX

n

i
i

∈=−
=

φα

0

.  

Therefore the space is compactIg −**
 and compactIg −**   modulo I. This space is also compactIg s −**

 and 

compactIg s −**   modulo I.  
 
Example 3.42: Let ),( τX  be infinite indiscrete space and { }{ }0, xI φ= . All subsets are openIg −**

 and 
openIg S −** . { }{ }Xxx ∈/  is a openIg −**

  cover for X. But it has no finite sub cover modulo I. Therefore this 

is not ,** compactIg −  not compactIg −**   modulo I,not compactIg s −**
 and not compactIg s −**   

modulo I.  
 
Remark 3.43: In an ideal topological space ),,( IX τ   

1. scompactnesIg −** ⇒  scompactnesIg −**
  modulo I. (When { }φ=I   both the concepts coincide). 

2. scompactnesIg S −** ⇒  scompactnesIg S −**
  modulo I. (When { }φ=I   both the concepts 

    coincide). 
3. scompactnesIg S −** ⇒ scompactnesIg −**  (since Ig ** open sets are −Ig S**  open)    

4. scompactnesIg S −**  modulo I. ⇒ scompactnesIg −**  modulo I. (since Ig ** open sets are −Ig S**  open) 
5. Every finite ideal space ),,( IX τ   is compactIg −** , compactIg S −**

,  compactIg −**   modulo I, 

compactIg S −**   modulo I.  
 
Theorem3.44: A  closedIg −**  (resp. closedIg S −** ) subset of compactIg −**  (resp. compactIg S −** ) 

ideal space is compactIg −**  (resp. compactIg S −** ). 
 
Proof: Let ),,( IX τ  be a compactIg −** (resp. closedIg S −** ) ideal topological space and let B be a 

closedIg −** ).( ** closedIgresp s −  subset of X. Then BX −   is openIg −** ).( ** openIgresp s − .  
 
Let { } Ω∈ααA  be a openIg −** ).( ** openIgresp s − cover for B. Then { }Ω∈αα /,\ ABX   is a openIg −**

 
).( ** openIgresp s −  cover for X. Since X is compactIg −**

 ).( ** compactIgresp s −  there exists a finite 

subset 0∆  of ∆  such that  )]([
0

BXA −∪∪
∆∈ αα

= X. Then αα
AB

0∆∈
∪⊆ . Therefore B is  compactIg −**

).( ** compactIgresp s − . 
 
 
 



Sr. Pauline Mary Helen* et al./  continuousIg −**  functions/ IJMA- 3(8), August-2012. 

© 2012, IJMA. All Rights Reserved                                                                                                                                                                    3063 

Theorem 3.45: A closedIg −**
  (resp. closedIg S −** ) subset of a compactIg −** (resp. compactIg S −** )   

modulo I  space is compactIg −**
  (resp. compactIg S −** )modulo I . 

 
Proof: Let ),,( IX τ  be a compactIg −**

 (resp. compactIg S −** )   modulo I ideal topological space and let B 

be a closedIg −**  (resp. closedIg S −** )  subset of X. Then BX −   is openIg −** ).( ** openIgresp s − . 

Let { } Ω∈ααA  be a openIg −** ).( ** openIgresp s − cover for B. Then { }∆∈αα /,\ ABX   is a openIg −**
  

).( ** openIgresp s − cover for X. Since X is  compactIg −** ).( ** compactIgresp s −   modulo I, there exists a 

finite subset 0∆  of ∆  such that IBXAX ∈−∪
∆
∪−
∈

)]([
0

αα
which implies 

   

.][
0

IBAX ∈∩
∆
∪−
∈ αα

 
IAB ∈

∆
∪−∴
∈

][
0

αα
 Hence B is compactIg −**

  modulo I . 

 
Theorem 3.46: The image of compactIg −**

 (resp. compactIg s −** )  space under a continuousIg −**
 (resp. 

continuousIg s −** )  function f is compact . 
 
Proof: Let ),,( IX τ  be compactIg −**

 ).( ** compactIgresp s −  and ),(),,(: ητ YIXf →   be an onto 

continuousIg −** ).( ** continuousIgresp s − function. Let { } ∆∈ααA  be an open cover for Y. Then  

{ } ∆∈
−

αα }{ 1 Af  is a  openIg −**  ).( ** openIgresp s − cover for X. Since X is compactIg −**
 

).( ** compactIgresp −  there exists a finite subset 0∆  of ∆  such that  ).(1

0
αα

AfX −

∈∆
∪=

 
Therefore Y = f(X) = ).(

0
αα

A
∆
∪
∈

which implies Y is compact  

Theorem 3.47: The image of compactIg −**
 (resp. compactIg s −** )  space modulo I under a continuousIg −**

 
(resp. continuousIg s −** )  function f is compact modulo )(If  . 
 
Proof: f (I) is an ideal in Y, the rest of the proof is similar to the proof of the above theorem. 
 
Theorem 3.48: The image of compactIg −**

 (resp. compactIg s −** )  space under a irresoluteIg −**
 (resp. 

irresoluteIg s −** )  function f is compactIg −** . 
 
Proof: Similar to the proof of theorem (4.46). 
 
Theorem 3.49: The image of compactIg −**

 (resp. compactIg s −** )  space modulo I under a 

irresoluteIg −**
 (resp. irresoluteIg s −** )   function f is compactIg −** modulo )(If  

 
Proof: Similar to the proof of theorem (4.46). 
 
Theorem 3.50: The image of compact  space under strongly continuousIg −**

 (resp.strongly 
continuousIg s −** )  function f is compactIg −**  ).( ** compactIgresp s − . 

 
Proof: Similar to the proof of theorem (4.46). 
 
Theorem 3.51: The image of compact modulo I space under strongly continuousIg −**

 (resp.strongly 
continuousIg s −** )  function f is compactIg −**  ).( ** compactIgresp s − modulo )(If  

 
Proof: Similar to the proof of theorem (4.46). 
 
Definition 3.52: An ideal topological space ),,( IX τ  is said to be connectedIg −**  (resp. connectedIg s −** ) 

If X cannot be written as disjoint union of openIg −**
  )( ** openIg s − sets. Otherwise X is said to be 

eddisconnectIg −** . 
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The following example shows the existence of such spaces. 
 
Example 3.53: Let X be an infinite set and τ  a cofinite topology and { }φ=I , =)(** XIOG s  

{ cAAXXIOG /,,)(** φ= is finite } .  Suppose BAX ∪=   where A and B are disjoint openIg −**

).( ** openIgresp s − sets then φ=∩ BA . XBA CC =∪  which is not true since CA   and CB  are finite. 

Therefore this space is connectedIg −** ).( ** connectedIgresp s − .  
 
Example 3.54: Let ),( τX  be infinite indiscrete space and { }{ }0, xI φ= . All subsets are openIg −**

 and

openIg s −** . Let A be any proper subset of X.  Then CAAX ∪=  where A and Ac are openIg −** and

openIg s −**
 Therefore the space is eddisconnectIg −** and not eddisconnectIg s −** . 

 
Remark 3.54: Let ),,( IX τ  be an ideal topological space  

1. When ),(XPI =  since )()( ** AclAAcl S== , every subset is open−*  opens −,* , closed−*     

closedsand −* . Therefore all subsets are openIg −** , openIg S −** , closedIg −**     closedIandg S −**

. Therefore ))(,,( XPX τ   is eddisconnectIg −**
 and eddisconnectIg S −** . 

2. ),,( IX τ   is connectedIg −** ).( ** connectedIgresp S − ⇔ there exists no subset which is both   

    openIg −**
 ).( ** openIgresp S −  and    closedIg −** . ).( ** closedIgresp S −  

3. A is connectedIg S −** ⇒ connectedIg −** . (Since openIg −** sets are openIg S −** ) 
 
Theorem 3.56: Let ),,(),,(: JYIXf στ →   be an onto  function. 

1. X is connectedIg −**  (resp. connectedIg S −** ) and f is continuousIg −**  (resp. continuousIg S −** ) 

⇒  Y is connected   
2. X is connectedIg −** (resp. connectedIg S −** )  and f is continuous  ⇒  Y is connected   

3. X is connectedIg −**  (resp. connectedIg S −** ) and f is irresoluteIg −**  (resp. irresoluteIg S −** ) 

⇒  Y is connectedJg −**  (resp. connectedJg S −** ). 

4. X is connected and f is strongly continuousJg −**  (resp. continuousJg S −** ) ⇒   

    Y is connectedJg −**  (resp. connectedJg S −** ). 

5. X is connected and f is strongly continuousJg −**  (resp. continuousJg S −** ) ⇒   
    Y is connected. 
 
Proof:  
(1) Suppose Y is disconnected, there exists disjoint open sets A, B such that BAY ∪= . Then 

)()()( 111 BfAfYf −−− ∪= . )(1 Af −  and )(1 Bf −  are disjoint openIg −**
 sets in X  

 
which is a contradiction since X is connectedIg −** . 
 
Proof of (2), (3), (4), (5) and (6) are similar to the proof of (1) 
 
Definition 3.57: An ideal topological space ),,( IX τ  is said to be normalIg −**  )( ** normalIrespg s −  if for 

every two disjoint closed sets 1F   and 2F  in X, there exists disjoint openIg −**
  )( ** openIrespg − sets 1U   and 

2U  such that 11 UF ⊆ ,  22 UF ⊆ . 
 
Definition 3.58: An ideal topological space ),,( IX τ  is said to be normalIg −**   )( ** normalIrespg s − modulo 

I if for every two disjoint closed sets 1F   and 2F  in X, there exists disjoint openIg −**
  )( ** openIrespg s − sets 

1U   and 2U   such that 11 UF ⊆ ,  22 UF ⊆  and IUU ∈∩ 21 . 
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Example 3.59: In example (3.42), ),,( IX τ   is normalIg −**
, normalIg s −**

, normalIg −**  modulo I and 
normalIg s −** modulo I .In example (3.41), ),,( IX τ   is not normalIg −**  not normalIg s −** not,
normalIg −**  modulo I  and not normalIg s −** modulo I 

 
Remark 3.60: In an ideal space ),,( IX τ . 

1. normalIg −** ⇒  normalIg −**
  modulo I.When { }φ=I  both concepts coincide  

2. normalIg S −** ⇒  normalIg S −**
  modulo I. When { }φ=I  both concepts coincide  

3. Normal ⇒  normalIg −** ⇒ normalIg S −** . (Since open sets are openIg −**
, and openIg −**  sets 

are openIg S −** ) 

4. ))(,,( XPX τ  is always normalIg −** and normalIg S −** since all subsets are openIg −** and

openIg S −**  
 
Definition 3.61: A function ),,(),,(: JYIXf στ →  is said to be  

(i) openJg −** ).( ** openJgresp s −  if )(Vf  is openJg −**
 ).( ** openJgresp s − in Y wherever V is open 

in X. 
(ii) closedJg −**

 ).( ** closedJgresp s −  if )(Vf  is closedJg −**
 ).( ** closedJgresp s −  in Y wherever 

V is closed in X. 
(iii) stronglyIg −**

 ).( ** stronglyIgresp s − open  if )(Vf  is open in Y wherever V is openIg −**
  

).( ** openIgresp s − in X. 
 
Theorem 3.61: Let ),,(),,(: JYIXf στ →  be a bijective function.Then the following are equivalent. 

1. 1−f   is continuousJg −**  (resp. continuousJg S −** ). 

2. f   is openJg −**  (resp. openJg S −** ). 

3. f   is closedJg −**  (resp. closedJg S −** ). 
 
Theorem3.62: Let ),,(),,(: JYIXf στ →   where )(IfJ =  be an injection function. 

1. X is normal and f is openJg −** )( ** openJrespg s −   and continuous ⇒  Y is normalJg −** .

)( ** normalIrespg s −  

2. X is normalIg −** )( ** normalIrespg s − , f is stronglyIg −**
 )( ** stronglyIrespg s − open and 

continuous ⇒  Y is normalIg −** )( ** normalIrespg s − and normal  
3. X is normalIg −**  )( ** normalIrespg s − modulo I, and f is stronglyIg −** )( ** stronglyIrespg − open 

and continuous ⇒Y is normalJg −** )( ** normalJrespg s −  modulo J  and normal modulo J   

4. X is normal modulo I and f is openJg −** )( ** openJrespg s −   and continuous ⇒  Y is normalJg −** .

)( ** normalJrespg s −  modulo J 
 
Proof:  
(1) Let 1F   and 2F  two disjoint closed sets in Y. Then  )( 1

1 Ff −  and )( 2
1 Ff −   are disjoint closed  

     sets in X. Since X is normal there exists disjoint open sets 1U   and 2U   such that  

     11
1 )( UFf ⊆−   and 22

1 )( UFf ⊆− . Since f is openJg −** )( ** openJrespg s − , )( 1Uf   and )( 2Uf  are  

     openIg −**
 )( ** openIrespg s −  in X such that  )( 11 UfF ⊆   and )( 22 UfF ⊆   and φ=21 FF  .  

 
Therefore f is 1 – 1. Therefore Y is normalIg −** )( ** normalIrespg −   
 
(2) Proof  is similar to the proof of(1) 
(3) 1F   and 2F  are two disjoint closed sets in Y  

⇒  )( 1
1 Ff −   and )( 2

1 Ff −  are disjoint closed sets in X. 
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⇒  there exists openIg −**
 )( ** openIrespg s −  sets 1U   and 2U  in X such that 11

1 )( UFf ⊆−   and  

           22
1 )( UFf ⊆− . and IUU ∈∩ 21  

⇒ )( 1Uf  and )( 2Uf  are disjoint open   sets  and hence openJg −**
 )( ** openJrespg s −  sets in Y 

containing  1F   and 2F  respectively and JIfUfUf =∈∩ )()()( 21 . 

⇒  Y is normalJg −** )( ** normalJrespg s −  modulo J  and normal modulo J   
(4) Proof is similar to the proof of (3)  
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