ON R*-CLOSED SETS IN TOPOLOGICAL SPACES

C. Janaki* & Renu Thomas**

*Asst. Professor, Dept of Mathematics, L. R. G Govt. Arts College for Women, Tirupur (TN), India
**Asst. Professor, Dept. of Mathematics, Sree Narayana Guru College, Coimbatore (TN), India

(Received on: 28-07-12; Revised & Accepted on: 22-08-12)

ABSTRACT

In this paper, a new class of sets called R*-closed sets in topological spaces is introduced and their properties are discussed.

Mathematical subject classification 2000: 54AO5.

Keywords: R*-closed sets, R*-open sets, R*-continuous, R*-irresoluteness.

1. INTRODUCTION

Throughout this paper, we consider spaces on which no separation axioms are assumed unless explicitly stated. The topology of a given space X is denoted by \(\tau \) and \((X, \tau)\) is replaced by X if there is no confusion. For \(A \subseteq X \), the closure and the interior of A in X are denoted by \(\text{cl}(A) \) and \(\text{int}(A) \) respectively.

2. PRELIMINARIES

Definition 2.1. A subset A of a topological space \((X, \tau)\) is called

(1) a regular open [19] if \(A = \text{int}(\text{cl}(A)) \) and regular closed [19] if \(A = \text{cl}(\text{int}(A)) \)
(2) a pre open [13] if \(A \subseteq \text{int}(\text{cl}(A)) \) and pre closed [13] if \(\text{cl}(\text{int}(A)) \subseteq A \)
(3) a semi open [10] if \(A \subseteq \text{cl}(\text{int}(A)) \) and semi closed [10] if \(\text{int}(\text{cl}(A)) \subseteq A \)
(4) a semi-preopen [1] if \(A \subseteq \text{cl}(\text{int}(\text{cl}(A))) \) and semi-pre closed [1] if \(\text{int}(\text{cl}(\text{int}(A))) \subseteq A \)

The intersection of all regular closed(semi-closed, pre-closed, semi-pre-closed) subset of \((X, \tau)\) containing A is called the regular closure (semi-closure, pre-closure, semi-pre-closure resp.) of A and is denoted by \(rcl(A) \) (\(scl(A), pcl(A), spcl(A) \) resp.)

Definition 2.2. [6] A subset A of a space \((X, \tau)\) is called regular semi open set, if there is a regular open set \(U \) such that \(U \subseteq A \subseteq \text{cl}(U) \). The family of all regular semi open sets of \(X \) is denoted by \(\text{RSO}(X) \).

Lemma 2.3. [5] Every regular semi open set in \((X, \tau)\) is semi open but not conversely.

Lemma 2.4. [8] If \(A \) is regular semi open in \((X, \tau)\), then \(X \setminus A \) is also an regular semi open.

Lemma 2.5. [8] In a space \((X, \tau)\), the regular closed sets, regular open sets and clopen sets are regular semi open.
Definition 2.6. [8] A subset A of a space (X, τ) is said to be semi regular open if it is both semi open and semi closed.

Definition 2.7. A subset of a topological space (X, τ) is called

1. a generalized closed (briefly g-closed) [11] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
2. a semi generalized closed (briefly sg-closed) [3] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
3. a generalized semi closed (briefly gs-closed) [2] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
4. a generalized semi preclosed (briefly gsp-closed) [6] if $\text{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
5. a regular generalized (briefly rg-closed) [15] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
6. a generalized pre-closed (briefly gp-closed) [12] if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
7. a generalized pre regular closed (briefly gpr-closed) [9] if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
8. a weakly generalized closed (briefly wg-closed) [14] if $\text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
9. a weakly closed (briefly w-closed) [18] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
10. a semi weakly generalized closed (briefly swg-closed) [14] if $\text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is semi open.
11. a regular weakly generalized closed (briefly rwg-closed) [14] if $\text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
12. a regular w-closed (briefly rw-closed)[4] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi open in X.
13. a regular generalized weak closed set (briefly rgw-closed) [16] if $\text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular semi open.

The complements of the above mentioned closed sets are their respective open sets.

3. **R*-CLOSED SETS AND R*-OPEN SETS**

Definition 3.1. A subset A of a space (X, τ) is called R*-closed if $\text{rcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi open in (X, τ).

We denote the set of all R*-closed sets in (X, τ) by $R^*C(X)$.

Example 3.2. Let $X= \{a, b, c\}$ $\tau= \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$

R*-closed sets are $\{X, \phi, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$.

Remark 3.3. Closed sets and R*-closed sets are independent of each other.

Example 3.4. Let $X= \{a, b, c, d\}$ $\tau= \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$

R*-closed sets are $\{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$

Theorem 3.5.

(1) Every R*-closed set is rg-closed.
(2) Every R*-closed set is gpr-closed.
(3) Every R*-closed set is rwg-closed.
(4) Every R*-closed set is rw-closed.
(5) Every R*-closed set is pr-closed.
(6) Every R*-closed set is rgw-closed.

Proof: Straight forward.

Converse of the theorem need not be true as seen in the following example.

Example 3.6

a) Let $X= \{a, b, c, d\}$ and $\tau= \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$

Let $A= \{c\}$. A is rg-closed, gpr closed, rwg closed, but not R*-closed set.

b) Let $X= \{a, b, c, d\}$ and $\tau= \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$
Let $A = \{d\}$ is rw-closed set but not R^*-closed set.

c) Let $X = \{a, b, c, d,\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$

$R^*C(X) = \{\{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X, \emptyset\}$

Let $A = \{c\}$. A is pr-closed set but not R^*-closed set.

d) Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b\}\}$

$R^*C(X) = \{X, \emptyset, \{c\}, \{c, d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}\}$

$A = \{b\}$ is rgw closed set but not R^*-closed set.

Remark 3.7. g-closed, gs-closed, gp-closed, gsp-closed sets are independent with R^*-closed sets.

Example 3.8. In example 3.4. $A = \{a, b\}$ is R^*-closed set but it is not g-closed, gs-closed, gp-closed and gsp-closed.

$B = \{d\}$ is g-closed, gs-closed, gp-closed and gsp-closed but not R^*-closed set.

Remark 3.9. The following example shows that R^*-closed sets are independent of wg-closed, w-closed, sg-closed, swg-closed.

Example 3.10. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$.

1. Closed sets are $\{X, \emptyset, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{d\}\}$

2. R^*-closed set are $\{X, \emptyset, \{a, b\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}\}.$

3. wg-closed sets are $\{\{c\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X, \emptyset\}.$

4. w-closed sets are $\{\{d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X, \emptyset\}.$

5. sg-closed sets are $\{\{a\}, \{b\}, \{c\}, \{d\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, c, d\}, X, \emptyset\}.$

6. swg-closed sets are $\{\{c\}, \{d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, X, \emptyset\}.$

Remark 3.11. From the above discussion we have the following diagram.

![Diagram of Relationships between Set Types]

Theorem 3.12. The union of the two R^*-closed sets is an R^*-closed subset of X.

Proof: Assume that A and B are R^*-closed sets in X. Let U the regular semi open in X such that $(A \cup B) \subset U$. Then $A \subset U$ and $B \subset U$. Since A and B are R^*-closed, $rcl(A) \subset U$ and $rcl(B) \subset U$ respectively. Hence $rcl(A \cup B) \subset U$. Therefore $A \cup B$ is R^*-closed.

Remark 3.13 The intersection of two R^*-closed sets in X need not be R^*-closed in X.

Example 3.14. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}\}$. R^*-closed sets are $\{X, \emptyset, \{b\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}\}.$

© 2012, IJMA. All Rights Reserved
Let \(A = \{a, d\} \) and \(B = \{a, b\} \)

Therefore \(A \cap B = \{a\} \notin R^*\)-closed set.

Theorem 3.15. If a subset \(A \) of \(X \) is \(R^*\)-closed set in \(X \), then \(rcl(A) \setminus A \) does not contain any non-empty regular semi open set in \(X \).

Proof: Suppose that \(A \) is \(R^*\)-closed set in \(X \). Let \(U \) be a regular semi open set such that \(rcl(A) \setminus A \supset U \) and \(U \neq \emptyset \). Now \(U \subseteq X \setminus A \) implies \(A \subseteq X \setminus U \). Since \(U \) is regular semi open, by Lemma 2.4 \(X \setminus U \) is also regular semi open in \(X \). Since \(A \) is \(R^*\)-closed in \(X \), by definition \(rcl(A) \subseteq X \setminus U \). So \(U \subseteq X \setminus rcl(A) \), hence \(U \subseteq rcl(A) \cap X \setminus rcl(A) = \emptyset \). This shows that \(U = \emptyset \), which is a contradiction.

Hence \(rcl(A) \setminus A \) does not contain any non-empty regular semi open set in \(X \).

Remark 3.16. If \(rcl(A) \setminus A \) contain no non-empty regular semi open subset of \(X \), then \(A \) need not to be \(R^*\)-closed

Example 3.17. In example 3.1 \(X = \{a, b, c, d\} \) and \(\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b, c\}\} \)

Let \(A = \{a\} \). \(rcl(A) \setminus A = \{c, d\} \) does not contain a non-empty regular semi open set, but \(A = \{a\} \) is not \(R^*\)-closed.

Corollary 3.18. If a subset \(A \) of \(X \) is \(R^*\)-closed in \(X \), then \(rcl(A) \setminus A \) does not contain any non-empty regular open set in \(X \).

Proof: Follows from theorem 3.13, since every regular open set is regular semi open.

Corollary 3.19. If a subset \(A \) of \(X \) is \(R^*\)-closed set in \(X \) then \(rcl(A) \setminus A \) does not contain any non-empty regular closed set in \(X \).

Proof: Follows the theorem 3.13 and the fact that every regular closed set is regular semi open.

Theorem 3.20. For any element \(x \in X \). The set \(X \setminus \{x\} \) is \(R^*\)-closed or regular semi open.

Proof: Suppose \(X \setminus \{x\} \) is not regular semi open, then \(X \) is the only regular semi open set containing \(X \setminus \{x\} \). This implies \(rcl(X \setminus \{x\}) \subseteq X \). Hence \(X \setminus \{x\} \) is \(R^*\)-closed or regular semi open set in \(X \).

Theorem 3.21. If \(A \) is regular open and \(R^*\)-closed. Then \(A \) is regular closed and hence \(r\)-clopen.

Proof: Suppose \(A \) is regular open and \(R^*\)-closed. \(A \subseteq A \) and by hypothesis \(rcl(A) \subseteq A \). Also \(A \subseteq rcl(A) \), so \(rcl(A) \cap A \). Therefore \(A \) is regular closed and hence \(r\)-clopen.

Theorem 3.22. If \(A \) is an \(R^*\)-closed subset of \(X \) such that \(A \subseteq B \subseteq rcl(A) \), then \(B \) is an \(R^*\)-closed set in \(X \).

Proof: Let \(A \) be an \(R^*\)-closed set of \(X \) such that \(A \subseteq B \subseteq rcl(A) \). Let \(U \) be a regular semi open set of \(X \) such that \(B \subseteq U \), then \(A \subseteq U \). Since \(A \) is \(R^*\)-closed, we have \(rcl(A) \subseteq U \). Now \(rcl(B) \subseteq rcl(rcl(A)) = rcl(A) \subseteq U \), therefore \(B \) is an \(R^*\)-closed set in \(X \).

Remark 3.23. The converse of the theorem 3.22 need not be true.

Example 3.24. Consider the topological space \((X, \tau) \), where \(X = \{a, b, c, d\} \),

\[\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \]

Let \(A = \{c\}, B = \{c, d\}, rcl\{c\} = \{c, d\} \)

Then \(A \) and \(B \) are such that \(A \subseteq B \subseteq rcl(A) \) where \(B \) is \(R^*\)-closed set in \((X, \tau) \) but \(A \) is not \(R^*\)-closed set in \((X, \tau) \).

Theorem 3.25. Let \(A \) be the \(R^*\)-closed in \((X, \tau) \). Then \(A \) is regular closed if and only if \(rcl(A) \setminus A \) is regular semi open.

Proof: Suppose \(A \) is regular closed in \(X \). Then \(rcl(A) = A \) and so \(rcl(A) \setminus A = \emptyset \), which is regular semi open in \(X \).

Conversely, suppose \(rcl(A) \setminus A \) is regular semi open in \(X \). Since \(A \) is \(R^*\)-closed by theorem 3.13 \(rcl(A) \setminus A \) does not contain any non-empty regular semi open set in \(X \). Then \(rcl(A) \setminus A = \emptyset \). Hence \(A \) is regular closed in \(X \).
Theorem 3.26. If a subset A of a topological space X is both regular semi open and R^*-closed, then it is regular closed.

Proof: By hypothesis, we have $rcl(A) \subseteq A$. Hence A is regular closed.

Theorem 3.27. In a topological space X, if $RSO(X) = \{X, \emptyset\}$, then every subset of X is an R^*-closed set.

Proof: Let X be a topological space and $RSO(X) = \{X, \emptyset\}$. Let A be any subset of X. Suppose $A = \emptyset$, then \emptyset is an R^*-closed set in X. Suppose $A \neq \emptyset$, then X is the only regular semi open set containing A and so $rcl(A) \subseteq X$. Hence A is R^*-closed set in X.

Remark 3.28. The converse of theorem 3.27 need not to be true in general as seen from the following example.

Example 3.29. Let $X = \{a, b, c, d\}$ be with the topology $\tau = \{X, \emptyset, \{a, b\}, \{c, d\}\}$. Then every subset of X is R^*-closed set in X. But $RSO(X) = \{X, \emptyset, \{a, b\}, \{c, d\}\}$.

Definition 3.30. A subset A in X is called R^*-open if A^c is R^*-closed in X.

Theorem 3.31. A subset A of X is said to be R^*-open if $F \subseteq rint(A)$ whenever F is regular semi open and $F \subseteq A$.

Proof: Necessity. Let F be regular semi open such that $F \subseteq A$. $X - A \subseteq X - F$. Since $X - A$ is R^*-closed, $rcl(X - A) \subseteq X - F$. Thus $F \subseteq rint(A)$.

Sufficiency. Let U be any regular semi open set such that $X - A \subseteq U$. We have $X - U \subseteq A$ and by hypothesis $X - U \subseteq rint(A)$. That is $rcl(X - A) = X - rint A \subseteq U$. Therefore $(X - A)$ is R^*-closed and hence A is R^*-open.

Theorem 3.32. Finite intersection of R^*-open sets is R^*-open.

Proof: Let A and B be R^*-open sets in X. Then $A^c \cup B^c$ is R^*-closed set. This implies $(A \cap B)^c$ is R^*-closed set. Therefore $A \cap B$ is R^*-open.

Theorem 3.33. If A is R^*-closed subset of (X, τ) and F be a regular closed set in $rcl(A) \setminus A$, then R^*-open set.

Proof: Let A be an R^*-closed subset of (X, τ) and F be a regular closed set such that $F \subseteq rcl(A) - A$. By corollary 3.19, $F = \emptyset$ and thus $F \subseteq rint(rcl(A) - A)$.

By Theorem 3.31, $rcl(A) - A$ is R^*-open.

Lemma 3.34. If the regular open and regular closed sets of X coincide, then all subset of X are R^*-closed (and hence all are R^*-open).

Proof: Let A be a subset of X which is regular open such that $A \subseteq U$ and U is regular open, then $rcl(A) \subseteq rcl(U) \subseteq U$.

Therefore A is R^*-closed.

4. R^*-CONTINUOUS AND R^*-IRRESOLUTE FUNCTIONS

Definition 4.1. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called R^*-continuous function if every $f^{-1}(V)$ is R^*-closed in (X, τ) for every closed set V in (Y, σ).

Definition 4.2. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called R^*-irresolute if $f^{-1}(V)$ is R^*-closed in (X, τ) for every R^*-closed set V in (Y, σ).

Example 4.3. Let $X = \{a, b, c, d\}$ $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}$ and $Y = X$ $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity mapping, then f is R^*-continuous.
Example 4.4. \(X = \{a, b, c, d\} \) \(\tau = \{X, \phi, \{a\}, \{a, b, c, d\}, \{a, b\}, \{a, b, c\}\} \) \(Y = X \) and \(\sigma = \{Y, \phi, \{a\}, \{a, c\}, \{a, b\}\} \)

Define the function \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = d, f(b) = a, f(c) = b, f(d) = c \).

The inverse image of every \(R^* \)-closed sets is \(R^* \)-closed under \(f \). Hence \(f \) is \(R^* \)-irresolute.

Remark 4.5. The composition of two \(R^* \)-continuous function need not be \(R^* \)-continuous.

Example 4.6. Let \(X = \{a, b, c, d\} = Y = Z \) \(\tau = \{X, \phi, \{a\}, \{a, c\}, \{a, b\}\} \) \(\sigma = \{X, \phi, \{a\}, \{a, b\}, \{a, c, d\}\} \).

Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = a, f(b) = d, f(c) = b, f(d) = c \) and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) by \(g(a) = a, g(b) = d, g(c) = b, g(d) = c \). Here both \(f \) and \(g \) are \(R^* \)-continuous but \(g \circ f \) is not \(R^* \)-continuous.

Remark 4.7. \(R^* \)-continuity and continuity are independent concepts.

Example 4.8. Let \(X = \{a, b, c, d\} \) \(\tau = \{X, \phi, \{a\}, \{a, c\}, \{a, b\}\} \) and \(Y = \{a, b, c\} \) \(\sigma = \{Y, \phi, \{a\}, \{a, c\}\} \).

Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = a, f(b) = b, f(c) = d, f(d) = c \).

The function \(f \) is \(R^* \)-continuous but not \(R^* \)-irresolute.

Example 4.9. Let \(X = \{a, b, c, d\} \) \(\tau = \{X, \phi, \{a\}, \{a, b\}\} \) \(\sigma = \{Y, \phi, \{a\}, \{b\}\} \).

Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = a, f(b) = b, f(c) = d, f(d) = c \).

The function \(f \) is \(R^* \)-continuous but not \(R^* \)-irresolute.

Theorem 4.12.

(a) Every \(R^* \)-continuous mapping is \(rw \)-continuous

(b) Every \(R^* \)-continuous mapping is \(rg \)-continuous.

(c) Every \(R^* \)-continuous mapping is \(pr \)-continuous

(d) Every \(R^* \)-continuous mapping is \(rwg \)-continuous

(e) Every \(R^* \)-continuous mapping is \(rgw \)-continuous

(f) Every \(R^* \)-continuous mapping is \(gpr \)-continuous.

Proof: Obvious

The converse of the above need not be true as seen in the following examples.

Example 4.13. Consider \(X = \{a, b, c, d\} \) \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b, c\}\} \) and \(Y = \{a, b, c, d\} \) \(\sigma = \{Y, \phi, \{a, b, c\}\} \).

Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) the identity mapping.

The mapping \(f \) is both \(rw \)-continuous and \(rg \)-continuous but not \(R^* \)-continuous.

Example 4.14. \(X = \{a, b, c, d\} \) \(\tau = \{X, \phi, \{a\}, \{b, c\}\} \) and \(Y = \{a, b, c, d\} \) \(\sigma = \{Y, \phi, \{a, b, c\}\} \).

Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = a, f(b) = b, f(c) = d, f(d) = c \).

The function \(f \) is \(pr \)-continuous, \(rwg \)-continuous, \(rgw \)-continuous and \(gpr \)-continuous but not \(R^* \)-continuous.
Remark 4.15. From the above theorem the following diagram is implicated.

Theorem: 4.16.
Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) be any two functions, then

1. \(g \circ f \) is \(R^* \)-continuous if \(g \) is \(\alpha \)-continuous and \(f \) is \(R^* \)-continuous.
2. \(g \circ f \) is \(R^* \)-irresolute if \(g \) is \(R^* \)-irresolute and \(f \) is \(R^* \)-irresolute.
3. \(g \circ f \) is \(R^* \)-continuous if \(g \) is \(R^* \)-continuous and \(f \) is \(R^* \)-irresolute.

Proof:
(1). Let \(V \) be closed set in \((Z, \eta) \). Then \(g^{-1}(V) \) is closed set in \((Y, \sigma) \), since \(g \) is continuous and \(R^* \)-continuity of \(f \) implies \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \) is \(R^* \)-closed in \((X, \tau) \). That is \((g \circ f)^{-1}(V) \) is \(R^* \)-closed in \((X, \tau) \). Hence \(g \circ f \) is \(R^* \)-continuous.

(2). Let \(V \) be \(R^* \)-closed set in \((Z, \eta) \). Since \(g \) is irresolute, \(g^{-1}(V) \) is \(R^* \)-closed set in \((Y, \sigma) \). As \(f \) is \(R^* \)-irresolute \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \) is \(R^* \)-closed in \((X, \tau) \). Hence \(g \circ f \) is \(R^* \)-irresolute.

(3). Let \(V \) be closed in \((Z, \eta) \). Since \(g \) is \(R^* \)-continuous, \(g^{-1}(V) \) is \(R^* \)-closed in \((Y, \sigma) \). As \(f \) is \(R^* \)-irresolute \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \) is \(R^* \)-closed in \((X, \tau) \). Therefore \(g \circ f \) is \(R^* \)-continuous.

REFERENCES

© 2012, IUMA. All Rights Reserved

Source of support: Nil, Conflict of interest: None Declared