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ABSTRACT

A recently introduced graph — invariant is ‘Szeged index’ of a graph and it has considerable applications in molecular
chemistry. In this paper, the Szeged indices related to the tensor product of standard graphs of same category are
calculated.
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1. INTRODUCTION

An important concept of a molecular graph associated with alkanes or more generally of a simple, connected graph is
termed as the Wiener number (see [6]). A refined concept of this is coined as Szeged Index (see [2 & 3]). As in the case
of Wiener number, no standard formula is available to calculate Szeged Index of a (connected) graph. In the succeeding
articles, the Szeged indices of K, A K, C, A C, and P, A P, (whenever possible) are obtained. Some interesting
observations are also made.

For the standard notations and results, we refer Bondy and Murthy (see [1]). For any positive integer n, N, stands for
the set of all positive integers <n.

For ready reference, we give the following:

Definition 1.1[6]: G is a connected graph. Then the Wiener Number W (G) of G is defined to be ¥ z d(u,v),

u,veV
where V = V(G) is the vertex set of G and d(u, v) = dg(u, V) is the shortest distance between the vertices u, v of G.

Definition 1.2 [3]: Let G be a simple graph. Let e = uv be any edge of G. Denote
N, [e | G]={w eV (G):d(w,u)) <d(w, Vv)} (wis closer tou thanto v in G),
N [e | G]={w eV (G):d(w,V))<d(w,u))} (wis closer to v than to u in G);

and
n (elG) = |Ni (e[G) |, n2 (elG) = [N (e|G) | (/| denotes the cardinality function).

The Szeged index of G, denoted by Sz(G), is defined to be Z n,(e/G).n,(e/G) (E(G) being the edge-set of G).
ecE(G)
(when there is only one graph G under consideration instead of e|G, we write ‘e’ only)

Consequences 1.3 [4]:

a) For the complete graph K, (n > 2), Wz(K,) = n(n-1)/2.

b) For the path P, (n >2), Sz(P,) = n(n® - 1)/6.

c) For the cycle C, (n >3), Sz(C,) = n [n/2]? ([ ] denotes the integer part).
d) For the graph Ky,n, Sz(Ky,n) = n%.

e) For the complete bipartite graph K, n, Sz(Kmn) = (Mn)?.

f)  For the wheel K; V C, (n > 3), Sz(K; V C,) = n(n-2) + [n/2]°.
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Definition 1.4 [5]: G,H are disjoint, simple graphs. The tensor product of G and H, denoted by G A H (isomorphic to
H A G) is the graph whose vertex set is V(G) x V(H) and edge set being, the set of all edges of the form (u, v) (u’, V"),
where u, U € V(G), v,V' € V(H), ul’ € E(G) and vV’ € E(H).

OBSERVATION 1.5:

a) Ifone of G,H is an empty graph (i.e has no edges) then G A H is also empty.

b) If G, H are finite, simple graphs with m, n vertices respectively, then G A H is a finite, simple graph with mn
vertices. Further, ifu € V (G) and v € V (H) then deggan (U, v) = {dege(u)} x {degn(v)}.

Result 1.6 [5]: Gy, G; are connected graphs, then G; A G, is connected if and only if (iff) either G; or G, contains an
odd cycle.

Result 1.7 [5]: If G, G, are connected graph with no odd cycle, then G; A G, has exactly two components.
2. RESULTS RELATED TO K, A K, (m, n being positive integers)
Initially we have,

Observation 2.1: If atleast one of m, n is 1, then K, A K, is an empty graph. So we consider m,n > 2 and take disjoint
graphs Ky, Kp.

Notation 2.2: Denote V(K) = { U1, Uz,..., Un} and V(Kn) = { v, Va,..., Vo} ; then V(K A Ki) ={(ui, vj) 1 1=1,2,..., m;
=1,2,.., n} and the edge set being the set of all edges of the form  (u;, v), (U;, VJ.,) where i,i' € {1,2,..,.,m}; j, '€
{1,2,...,n}and i" =i, |'#]j.

Result 2.3[4]: For m, n > 2, K, A K, is a simple, finite and (m-1) (n-1) — regular graph with mn vertices and
% mn (m-1) (n-1) edges.

Observation 2.4 [5]: K, A K is a disconnected graph with two components (clearly it is 1-regular bipartite graph with
four vertices).

A diagrammatic representation of K, A K; (in the usual notation) is

(1. v1) (w1, vz)

{1z 1) {1z i)
Figure -1

Theorem 2.5: K, A K, (n > 2) is a connected, bipartite graph with Sz (K, A K,,) = (n-1) n®. (It is a (n-1)-regular graph
with 2n vertices and n (n-1) edges).

Proof: K,, K, are disjoint, connected graphs and K, contains the odd cycle Ks; by result (1.6) follows that K, A K, is
connected. Let V (K3) = {ug, U} and V (Kp) = {vi, Vo, ..., Vo}. Now {V1, Vo}, where Vi = {(us, vj) : j=1,2, ..., n }and
Vo ={(U, vj) 1 j=1,2,..., n}is a bipartition of the vertex set of K, A K,. Thus K; A K, is a bipartite graph. By result
(2.3), clearly this is a (n-1)-regular graph with 2n vertices and hence with n(n-1) edges. A diagrammatic representation
of this graph is
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For,1<j< | <n,

N1 [(Us, Vi) Uz, V)I(Ko A Ka)] = {(us, v), (un, V) FU{(Ua vi) ke No= 4, J'3}
and
N, [(Us, Vi) (U2, V(Ko A K)] = {(us, vi) 1 k= No =i, J' 3 {(uz, vp), (uz, V)3

So ny [(uy, vj) (us, \7 )1 =2+ (n-2) = nand ny[(us, vj) (uz, vy N=(0M-2)+2=n.

By definition,
Sz(Ko A K) = Z Z nl[(ul,vj)(UZ'Vj')]nz[(ul’vj)(uz’Vj’)]
N5
=22, (n)(n)
=1 =1

=i

=n?(n) (n-1) = (n-1) n®
This completes the poof of the theorem.
OPEN PROBLEM 2.6: To find the Sz (K, * K,) for m, n > 3.
3. RESULTS RELATED TO Cy, A C,, (m, n being integers > 3).
Since C; = Kj, it follows that C; A C3 = K3 A K3 and this is discussed in §2.
Hence, we consider the case when one of m, n is > 4. As usual, we consider disjointgraphs Cy & C, and denote
V (Cp) ={ug, Uy, ..., Uun} & V(Cyp) = {v1, V2, ..., Vu}-
Result 3.1[4]: C, A C,, is a simple, 4-regular graph with mn vertices (and hence with 2mn edges).
Result 3.2[4]: C, A C,, is a bipartite graph iff atleast one of m, n is even.
Remark 3.3[4]: Since C,,, C, are connected graphs, by result (1.6), it follows that C, A C, is connected iff C,, or C,
contains an odd cycle < atleast one of m, n is odd. Since Cy, C, are connected graphs, when none of them contains
an odd cycle, by result (1.7), it follows that C, A C,, has exactly two components.

Thus, when both m and n are even C, A C;, is a disconnected graph with two components.

For convenience, we first prove the following.
4
Theorem 3.4: For the disjoint graphs Cs, C4, Sz(Cs A C4) = 2(3x4)(3x {E} )% = 864 = 108(2)°.

Proof: Let V (Cg) = {Ul, Uy, U3 } and V(C4) = {V1,V2,V3,V4}.
SoV(Cs A Cg) ={(ui, vy : 1=1, 2, 3;j=1,2,3,4}.

By the previous results, it follows that C; A C, is a simple, connected, 4-regular, bipartite graph with 12 vertices and
24 edges.

A bipartition of this graph is {X, Y} where X = {(u;, v;j.1): 1= 1, 2, 3; j =1, 2} and
Y ={(u,vy):1=123;j=12}

Further, the vertex (u;, voj1) of X is adjacent with (U, V) and (U, ,V.2) Where 1 < i#'<3 and 1 < j <2 with the
convention vy = Va.
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A diagrammatic representation of C; A C4(i.e C4 A C3) iS

AL,

Figure - 3

In the usual notation, we have

I (i) (a) the edge (ug, V1) (U2, V2):

{(u,v),

(UZ’Vl) (UZ’VS) (u2'v4) ,
(Us’vz) (u3,v4)},

Na[(U, V))(U,, V) [ (C5 A C,)]

{(ul’VZ) (ul’Vs) (ul’VA)’
(Uy,v,).
(u3’vl)’ (u3’V3) 2

N2 [(Uy, v,)(U,, V) [ (C5 A C,)]

This implies n; [(u,, v, )(u,,V,) | (C; AC,)]= 1+3+2 =6 and
nz[(u;,v,)(U,,V,) [ (C; AC,)]=3+1+2=6.

I (i) (b) the edge (uy, V1) (Us, V2):
{ug,v),
Nl[(ul’v1)(U3'V2) |(C, /\C4)] = (UyV,) (Uyv,)

(US’Vl) (u3’V3) (u3’V4) 1

{(ul’vz) (ul’VS) (ul’VA)’
NZ[(Ul’V1)(U3’V2) | (C, /\C4)] = (U V) (Uy, V),

(U, V,) 3.
(Observe that these are obtained by interchanging u, and uz in 1 (i) ()
I (i) (c) The edge (u,,Vv;) (u,,v,):
{ (ul’ Vl) ’
(UZ ! Vl) (uz ' VZ) (UZ ! V3) '
(U3,V2) (U3,V4)},

Na[(Uy, v)(U,V,) [ (C5 A C,)]

{(ul’vz) (ul’Vs) (ul’VA)’
(Uz,v,).
(US’Vl) (us’vs) 2

N2 [(Uy, v,)(U,,V,) [ (C5 A C,)]

© 2012, IMA. All Rights Reserved

3088



K. V.S. Sarma* & I. V. N. Uma**/ ON SZEGED INDICES RELATED TO TENSOR PRODUCT OF STANDARD GRAPHS OF SAME
CATEGORY/ IIMA- 3(8), August-2012.
(Since v, and v, are adjacent with the same vertices v, and v, the above sets are obtained by interchanging v, and v, in

(i) (2)

I (i) (d) The edge (u,,V;) (U,,V,)

(U vy),

(Uy,V,) (Uy,V,),

(US’Vl) (US’VZ) (US’VS) }’

Na[(Uy, V) (U, V) [ (C5 ACL)]

{(ul’VZ) (ul’v3) (ul’v4)’
(UZ’Vl) (uz’vs)’
(U3,V,)

N2 [(U, V,)(U, V) [ (C5 A C,)]

(These sets are obtained by interchanging u, and ug in I (i) (c))

I (ii) (2) The edge (u,V,) (U,,V,):

{(u,v3),

(uy,vy) (Uy,V3) (Uz:V,)
(U3, v,) (U, V) 3,

N [ Uy, V5)(Uy,V,) [ (Cy A CY)]

{(ul’vl) (ul’Vz) (ul’VA)’
(U, V),
(u3’vl) (u3,V3) 2

N [ Uy, V;)(Uy,V,) [ (Cy A CY)]

(These sets are obtained by interchanging v, and vz in I (i) (a))

I (ii) (b) The edge (u;,V;) (Us,V,):

£, vs),

(u,,v,) (u,,v,),

(U3, ;) (Ug,V3) (U3,V,) 3,

Ni[(Uy,V5)(Us, V,) [ (C5 A C,)]

{(u,vy) (U, v,) (U, v,),
NZ[(Ulavs)(usrvz) 1 (C, /\C4)] = (UV) (U, V),

(Ug, V)3

(These sets are obtained from the above by interchanging u, and us).

I (ii) (c) The edge (uy,V,) (U,,V,):

{(u,,v;),

(U,Vy) (Uy, V) (Uy,V5),
(u3,v2) (U3,V4)},

Nu[(Uy, V5) (U, V) | (C4 A C,)]

{(ul’vl) (ul’VZ) (ul’v4)’
(U, V),

(US’Vl) (us’vs) 2

N2 [(Uy,5) (U, V) | (Cy A C,)]
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(These sets are obtained by interchanging v, and vy in 1 (ii) (a)).

| (ii) (d) The edge (u;,V;) (U3, V,):

{(uy,v3).

(U, V,) (Uy,V,)

(US’VZL) (US’VZ) (US’VS) }’

Nu[(Uy,V5)(Us, V) [ (C5 A C,)]

{(ul’vl) (ul’VZ) (ul’v4)’
(UZ’Vl) (UZ’V3)’
(U, v,) -

N2 [(Uy, V5)(Us, V,) [ (C5 A C,)]

(These sets are obtained from the above by interchanging u, and us).

11 (i) () The edge (u,,Vv;) (U,V,):

£y, vy) (ug,vs) (U, v,),
(u,,v,),

(Us,V,) (Us,V,) 3,

Ni[(Up V)(Uy, V) [ (C5 A C)]

{(u,,v,).
NZ[(UZ'VI)(ul’VZ) | (C, /\C4)] = (U, Vvy) (Uy,vg) (Uy,vy,),
(ug,vy) (Us,v3) 3.

(These sets are obtained from I(i) (a) by interchanging u; and uy).

11 (i) (b) The edge (u,,V;) (Us,V,):
{(ul’VZ) (ul’v4)’
(U, V),

Na[(Uy V) (Us, V) 1 (Cy A C))]

(U, V1) (U, v3) (U, V) 3,

LU v) (U, v3),

NZ[(UZ’Vl)(US’VZ) | (C, /\CA)] = (U, V) (Uy,Vvs) (Uy,V,),

(s, v,) 3
(These sets are obtained from the above by interchanging u; and uz).
11 (i) (c) The edge (u,,Vv;) (U,,V,):
{(ul’vl) (ul’vz) (Ul,V3),
(Uz, 1),

(u3,v2) (Us!v4)},
{ug,v,).

Nu[(U V)(Uy, V) [ (C5 A CL)]

NZ[(UZ’Vl)(ul’VA) | (Cs /\C4)]
(US’Vl) (U3,V3) 3
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(These sets are obtained from 11(i) (a) by interchanging v, and vy).
11 (i) (d) The edge (u,,V;) (Us,V,):
{(ul’vz) (ul’v4) !

(U, ),
(u3’vl) (US’VZ) (US’V3) }’

Nu[(U V) (U3, V) | (Cy A C))]

(U, V) (U, vs),
NZ[(UZ'\/l)(uS’VA) |(C, /\C4)] = (U, V) (Uy,vg) (Uy,v,),
(Us, V) 3

(These sets are obtained from the above by interchanging u; and us).

11 (i) (a) The edge (U,,V;) (U, V,):

{(u,vy) (ug,vs) (uy,vy),
Nl[(US’Vl)(ul’VZ) | (C, /\C4)] = (U, V,) (Uyv,),

(U3, vp)

{(u,,v,).
NZ[(U3’V1)(U1’V2) |(C, /\C4)] = (up,vy) (Uy,vs),

(U, V,) (Ug,V5) (U3, V) 3

(These sets are obtained from 11(i) (a) by interchanging u, and us).
111 (i) (b) The edge (u,,V,) (U,,V,):
{(ul’vz) (ul’VA) !

(Uy, V) (Up,V5) (Uy, V),
(Us, V1) 3,

Ny [ (U3, v,)(U,, V) [ (C; A C)]

{(u,vy) (ug,vs),
NZ[(US!Vl)(UZ’VZ)l(C3/\C4)] = (Upvy),

(us’Vz) (US’VB) (US’V4) }
(These sets are obtained from the above by interchanging u; and uy).
111 (i) (c) The edge (U,,V,) (uy,V,)

{(uy,vy) (ug,vy) (uy,vs),
Nl[(US’Vl)(ul’V4)|(C3/\C4)] = (U,,Vv,) (Uyv,),

(U3,V1) +
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{(Ul,V4),
Nz[(ug,Vl)(U1,V4) | (Cs /\C4)] = (UZ’Vl) (uz’Vs)’

(us!Vz) (us’vs) (us’v4)}-

(These sets are obtained from 111 (i) (a) by interchanging v, and v,).
111 (i) (d) The edge (u,V,) (U,,V,):
{(ul’VZ) (ul’v4)’

(U, V) (Up, V) (Up,Vs),
(Us, V1) 3,

Nu[(Ug, V)(U,V,) [ (C5 A C)]

(U, v) (U, vs),
Nz[(u3,vl)(u2,v4)|(C3ACA)] = (uyv,),
(U,Vv,) (Ug,v5) (Us, V) 3

(These sets are obtained from the above by interchanging u, and uy).
11 (i) (a) The edge (U, V;) (U, V,):
{(ul’vl) (ul’v3) (ul’VA)’

(UZ'VZ) (UZ'V4) '
(U, v3) 3,

Ni[(Us, V) (U, ,) [ (C4 A C)]

{(u;,v,),
(UZ’Vl) (uz,Vg),
(U3, V) (Ug, V) (Ug, V) 3

N[ (Us, V3 ) (Ug,V,) [ (C5 AC)]

(These sets are obtained from 111 (i) (a) by interchanging v; and vs).
11 (i) (b) The edge (U,,V,) (U,,V,):
{(ul’VZ) (ul’v4) !

Na[(U3,V3) (U Vo) [ (Co AC,)] = (U Vh) (Uy, V) (U V),
(U3, V)

{(u,v) (U, ),
NZ[(ua’Vs)(uz’Vz) [(Cs A C4)] = (u,,Vv,),
(Ug, V) (Ug,Vv,) (U3, v,) 3

(These sets are obtained from the above by interchanging u; and uy).

11 (i) (c) The edge (us,V,) (U,V,):

{(u,vy) (ug,vy) (U, vs),
Nl[(u3,V3)(U1,V4) 1 (C, ACA)] = (U,V,) (UyV,),
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(U3,V5)

{(u;,v,),
NZ[(US’V3)(U1rV4) | (C, /\C4)] = (U, V) (Uy,vs),
(Ug, V) (Ug,V,) (U3, v,) 3

(These sets are obtained from I11(ii) (a) by interchanging v, and vy).
111(ii) (d) The edge (U,,V;) (U,,V,):
{(ul’VZ) (ul’v4) !

(Uz, V) (U, V,) (U, V5),
(U, V) 3.

Nu[ (U, V) (U, V,) [ (C5 A C)]

{(u,v) (U, v;),
(Uy,v,).,
(US’Vl) (us’vz) (US,V4) 2

N2 [(Us, V) (U, V,) [ (C5 A C)]

(These sets are obtained from the above by interchanging u; and uy).

Thus, we observe that for any edge e of C; AC,, ni[e| (C, AC,)1=6=n,[e| (C,AC,)].

Since, there are 24 edges, we get that Sz(C3 A C;) = Z n,(e).n,(e)
ecE(CnC,)
=(6.6) |E(CsACy) |

2
=36 x 24 = 864 = 2(3 X 4) (3ED = 108(2)°

We extend this theorem by replacing C, by Ca, (n > 3).
on Y’
Theorem 3.5: For the disjoint graph Cs, Can (0 > 3), Sz(Cs A Czn) =2(3 X 2n) (3{?D =108 n®.

Proof: In the usual notation, Let V (C3) = {uy, Uy, Uz } and V(Cy,) ={ vy, Vs, ..., Von}.

Now, V(C3 A Con) ={(u;, v)) :1=1,23;)=1,2, ..., 2n}.

Clearly, (Cs A Cyp) is a simple, connected, 4-regular graph with 6n vertices and so with 12n edges. Further it is a
bipartite graph with a bipartition {X, Y}, where {(uj, v1) : 1=1,23;j=12,...,n}and Y ={(uj, vy) : 1=123 ;] =
1,2, ...,n}

So X |=]Y|=3n

Further, in this graph the vertex (ui, v,;.1) is adjacent with (U;,, V,;) and (U;, V,; ,), fori=1,2,3,i"€{1, 2,3} -
{i},j=1,2, ...,n with the convention vo = V.

Since vy is adjacent with Vo1 ¢ Vaj.3 and v2j is adjacent with Vo1 & Voje1 in Can, the sets Ny [(ui, Voi1) (U;, Viyia )

can be obtained from Ny [(ui, V3i.1) (U, V, i )] by interchanging va; & Vaj.o and Vaoji1 & Vo3 With the convention v = Vo,
1and Vogig = V.

Hence follows that for any edges ey, e, of this graph, Ny(e;) = Ni(e;) and Nx(e;) = Na(ey).
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So we calculate these numbers for the edge (uy, Vi), (Uz, V).

N:[(Uy, V(U V) [ (C5 A Cyp)]
=) Y UL, vy) rj= o2 2013 UL Uz V) s (U V) FUL (U, V) =2, o 20

U{(us,v,) 3 UL(u;,v,):j=n+2... 2n}.

(= n[ (U, v,)(U,,V,) [ (C; AC,,) | = 1+ (2n-n-2) + 2+ (2n+1-n-2) + 1+(2n+1-n-2)

=(n-1) + (2+n-1) +n =3n)
and

NZ[(ul’Vl)(UZ’VZ) | (C, /\CZn)] =

{(ul’vj) =2, (n+1)}U{(u1’V2n)}U{(UZ’VZ)}U{(UZ’Vj) J=4, ..., n+l} U{(u3’vl)}U{(u3’Vj):j=
3, ..., (n+1)}

(= o[ (U, V) (U,,V,) [ (C; ACy,) | = (n42-2)+ 1414 (n+2-4)+ 1+ (n+2-3)
= (n+1) + (1+n-2) + (1+n-1) = 3n).

Thus for any edge of (C3 A Can), nife | (Cs A Can)] =3n =nyfe | (C3 A Cap)l.
SS2CsACy) = Y ny(e)ny(e)

ecE(C3AC,)
(Cs A Can)| (3n) = (12n)(3n)%

2n ?
2 (3)(2n) | 3 o

108n°.

Corollary 3.6: Taking n = 2 in Th.(3.5), we get the result given in Th.(3.4) (Here the convention is that the set {a;: j=r,
., S}= Jifs<r).

2n+1
Theorem 3.7: For any integer n > 2, Sz(G A Conia) = 2(3)(2n+1) {3. { > }}2

=54(2n+1) n2.

Proof: By results (3.1) & (3.2), it follows that C3 A Cynsq iS @ simple, connected and 4-regular graph with 3(2n+1)
vertices and 6(2n+1) edges. Further it is not bipartite.

Let V(Cs) = {uy, Uy, Uz} and V(Cype1) = {V1, Va,..., Vans1 }. The edge set of this graph is

{(u1’V2j—l) (uivvzj,z):i =2,3;j € N} U {(u1’V2j—l) (ui’VZj): i1=2,3] € Nn+1}U{(ul’V2j) (ui’VZj—l):
i=2, 3; je N UL (U, V) (U,V,;,,) 1122, 3 jeNJU{ (U,,V)) (U,V;) ¥} j€ Napaand j' = j-1or j+1 (with

the convention Vo = Vage1, Vonsz = V1).

As in the proof of Th.(3.5) it follows that for any edge e of C; A Cane1 , We get that ny(e) as well as n,(e) are the same
number.

So we calculate these sets for the edge (ug, V1) (Uz, V).
Nl[(ul’v1)(U2'Vz) |(C, /\CZn)] =
{(uy,v) Y UL, vy) j=n+3, 203 UL (Uy,v), (Uy, V) FUL(U,,v;) 1j=n+3 ..., 2n+1}
U{(us,v,) 3 UL(u;,v)):i=n+3, ..., (2n+1)}
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(= m[(Uy, )y, V,) [ (C5 AC,, )] = (0-1) + (n1) +1n = 3n)
and
N[ (U, V) (U, V,) [ (C3 AC,,)] = (U, V) =2 (04D} UL (U, v, ) FUL(U,,v,) YU L (U, V)
=4, ..., (n+1)} U{(usavl)}U{(U3,Vj):j
=3, ..., (n+1)}
(= o[ (U, v,)(U,,V,) [ (C; AC,,)] = (01+1) + (n-1) +n = 3n).

Observe that the vertices (u;, Vans+2), 1=1, 2 are at the same distance from (uy, vi)as well as (u,, v»). Hence these vertices
are not entering either in Ny[(uy,V;)(U,,V,) | (C; AC,,)]or in No[(uy,V;)(U,,V,) | (C; AC,,)]. So is the case
with the remaining edges as well.

Thus ny [ (U;,V;)(U,,V,) [ (C5 AC,,) ] = 30 = o[ (u;,v,)(U,,V,) [ (C5 AC,, )] and this is true for all the (12n + 6)
edges of C3 A Coneg. SO

Sz2(CsACa) = D, Ni(e).n,(e)
eeE(C3ACs0.)
= (12n+6) (3n)?

2n+1
=2(3)(2n+1) {3. {T} ¥ = 54(2n+1)n?.

Corollary 3.9: For the graph C; A Cs, Sz(C3 A Cs) = 1080 = 54(4+1)22.
A diagrammatic representation of C3 A Csis given under.

i, V1) (11, vs) (uz, v1) (02, va) (02, v1) (02, va)

Figure - 3

OPEN PROBLEM 3.10: If m, n are integers > 4and one of them is odd, then to find the Szeged index of C,, A C,.
4. RESULTS RELATED TO P, A P, (M, n being positive integers):
When atleast one of m, n is one, clearly P, A Py, is an empty graph. So, we consider m, n > 2.

Further, if m =n = 2, then P, AP, = K, A K. This is discussed in § 2. So, we consider the case when m, n> 2 and
atleast one of m, nis > 3.

We assume that Py, P,are disjoint and V(Py,) = { U, Uy, ..., Un} and V(P,) = {vi, Vs, ..., Vo }-

Remarks 4.1 [4]:
a) Pn, P, are simple, finite graphs with m, n vertices respectively and further

O0if i=Llormand j=1orn,

demaen {(Ui, V)} =
2if i=lorm and2<j<n-lor2<i<m-landj=1lorn,

4if2<i<m-1&2<j<n-l
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b) Both Py, and P, are connected graphs and none of them contains an odd cycle (infact, any cycle) by result (1.7)
it follows that P, AP, is a disconnected graph with exactly two components (further each component is
bipartite).

Result 4.2 [4]: For n > 3, P, A P, (which is isomorphic to P, A P,) is a graph which is a union of two (vertex) disjoint
paths of length (n-1) each. So, by the Consequence (1.3)(b), it follows that Szeged index of each component is (n-1)(n
—2n)/6 = n(n-1)(n-2)/6.

Remark 4.3: As the graph Py A P, is disconnected, the problem of discussing its Szeged index does not arise when
both m, n > 3.
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