International Journal of Mathematical Archive-3(8), 2012, 3108-3112

Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

Strongly g-closed sets and strongly g**-closed sets

Sr. Pauline Mary Helen*
Associate Professor, Nirmala College, Coimbatore, India

Mrs. Ponnuthai Selvarani

Associate Professor, Nirmala College, Coimbatore, India

Mrs. Veronica Vijayan Associate Professor, Nirmala College, Coimbatore, India

Mrs. Punitha Tharani

Associate Professor, St. Mary's College, Tuticorin, India

(Received on: 06-07-12; Accepted on: 16-08-12)

ABSTRACT

 ${m I}$ n this paper we introduce and investigate the concept of strongly g-closed set and strongly g^{**} -closed set.

Keywords: Strongly g-closed set, strongly g**-closed set.

1. INTRODUCTION

N. Levine [2] introduced generalized closed sets in 1970, M.K.R.S. Veera Kumar [7] introduced the genralised g*-closed sets in 2000. R. Parimelazhagan and V. Subramania Pillai[5] introduced the strongly g*-closed set in 2012. In this paper we introduce and study the concept of strongly g-closed sets and strongly g**-closed sets.

2. PRELIMINARIES

Throughout this paper (X, τ) represents non-empty topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) and $C((X, \tau))$ denote the closure of A, interior of A and the closed sets of (X, τ) respectively.

Let us recall the following definitions, which are useful in this sequel.

Definition 2.1: A subset A of a space(X, τ) is called a

- 1. semi-open set [1] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.
- 2. regular-open set [1] if A = int(cl(A)) and a regular-closed set if int(cl(A)) = A
- 3. pre-open set [3] if $A \subset int(cl(A))$ and pre-closed set if $cl(int(A) \subset A$.

Definition 2.2: A subset A of a space(X, τ) is called a

- 1. regular generalized closed (briefly rg-closed) set [4] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .
- 2. generalized closed (briefly g-closed) set [2] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 3. generalized g star(briefly g*-closed) set [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .
- 4. generalized g star star(briefly g^{**} -closed) set [6] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^{*} -open in (X, τ) .
- 5. strongly g star closed(briefly strongly g*-closed) set [5] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .

3. BASIC PROPERTIES OF STRONGLY g-closed sets and strongly g**-closed sets

We introduce the following definitions.

Definition 3.1: Let (X, τ) be a topological space and A be its subset. Then A is said to be a strongly g-closed set if $cl(int(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 3.2: Let (X, τ) be a topological space and A be its subset. Then A is said to be a strongly g^{**} -closed set if $cl(int(A) \subseteq U$ whenever $A \subseteq U$ and U is g^* -open in X.

Proposition 3.3: Every closed set is strongly g-closed.

Proof follows from the definitions.

Proposition 3.4: Every closed set is strongly g**-closed.

Proof follows from the definitions.

The converse of the above propositions need not true in general as seen in the following examples.

Example 3.5: Let $X = \{a, b, c\}$, $\tau = \{\varphi, \{a\}, \{a, c\}, X\}$. Then $A = \{a, b\}$ is a strongly g-closed set but not a closed set of (X, τ) .

Example 3.6: Let $X = \{a, b, c\}$, $\tau = \{\varphi, \{a\}, X\}$. Then $A = \{b\}$ is a strongly g^{**} -closed set but not a closed set of (X, τ) .

Proposition 3.7: Every strongly g*-closed set is strongly g-closed.

Proof follows from the definitions.

The converse of the above propositions need not true in general as seen in the following examples.

Example 3.8: Let $X = \{a, b, c, d\}$ and $\tau = \{\varphi, \{a\}, X\}$. Then $A = \{a, b\}$ is strongly g-closed but not strongly g^* -closed in (X, τ) .

Proposition 3.9: Every strongly g**-closed set is strongly g-closed.

Proof follows from the definitions.

Proposition 3.10: Every strongly g*-closed set is strongly g**-closed but not conversely.

Proof follows from the definitions.

Example 3.11: In example (3.8), $A = \{a, b\}$ is strongly g^{**} -closed but not strongly g^{*} -closed in (X, τ) .

Proposition 3.12: Every g-closed set is strongly g-closed but not conversely.

Proof follows from the definitions.

Example 3.13: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then $A = \{b\}$ is strongly g-closed but not g-closed in (X, τ) .

Proposition 3.14: Every g**-closed set is strongly g**-closed but not conversely.

Proof follows from the definitions.

Example 3.15: Let $X = \{a, b, c\}$ and $\tau = \{\varphi, \{a\}, \{a, b\}, X\}$. Then $A = \{b\}$ is strongly g-closed but not g-closed in (X, τ) .

Proposition 3.16: Every g*-closed set is strongly g-closed but not conversely.

Proof follows from the definitions.

Example 3.17: In example (3.6) $A = \{b\}$ is strongly g-closed but not g^* -closed in (X, τ) .

Sr. Pauline Mary Helen* et al./ Strongly g-closed sets and strongly g**-closed sets/ IJMA- 3(8), August-2012.

Proposition 3.18: Every g*-closed set is strongly g**-closed but not conversely.

Proof follows from the definitions.

Example 3.19: In example (3.6) $A = \{b\}$ is strongly g^{**} -closed but not g^{*} -closed in (X, τ) .

Remark 3.20: g**-closedness and strongly g*-closedness are independent as seen in the following examples.

Example 3.21: In example (3.5) $A = \{c\}$ is strongly g^* -closed but not g^{**} -closed in (X, τ) and in example (3.8) $B = \{a, b\}$ is g^{**} -closed but not strongly g^* -closed in (X, τ)

Remark 3.22: g-closedness and strongly g*-closedness are independent as seen in the following examples.

Example 3.23: In example (3.13) $A = \{b\}$ is strongly g^* -closed but not g-closed in (X, τ)

Example 3.24: In example (3.8) $A = \{a,\}I$ s g-closed but not strongly g^* -closed in (X,τ)

Remark 3.25: g-closedness and strongly g**-closedness are independent as seen in the following examples.

Example 3.26: In example (3.13) $A = \{b\}$ is strongly g^{**} -closed but not g-closed in (X, τ)

Example 3.27: In example (3.10) $A = \{a, b\}$ is g-closed but not strongly g^{**} -closed in (X, τ)

Proposition 3.28: Every g**-closed set is strongly g-closed but not conversely.

Proof follows from the definitions.

Example 3.29: In example (3.5) $A = \{c\}$ is strongly g-closed but not g^{**} -closed in (X, τ) .

Theorem 3.30: If A subset of a topological space (X, τ) is both open and strongly g-closed then it is closed.

Proof: Suppose A is both open and strongly g-closed. Since A is strongly g-closed $cl(int(A) \subseteq A$. That is $cl(A) = cl(int(A) \subset A$. \therefore A is closed.

Corollary 3.31: If A subset of a topological space (X, τ) is both open and strongly g-closed then it is both regular open and regular closed in X.

Corollary 3.32: If A subset of a topological space (X, τ) is both open and strongly g-closed then it is rg-closed in X.

Theorem 3.33: If A subset of a topological space (X, τ) is both open and strongly g^{**} -closed then it is closed.

Proof is similar to theorem (3.30).

Corollary 3.34: If A subset of a topological space (X, τ) is both open and strongly g^{**} -closed then it is both regular open and regular closed in X.

Corollary 3.35: If A subset of a topological space (X, τ) is both open and strongly g^{**} -closed then it is rg-closed in X.

Theorem 3.36: If A subset of a topological space (X, τ) is both strongly g-closed and semi-open then it is g-closed.

Proof: Since A is strongly g-closed $cl(int(A) \subset A$ whenever $A \subset U$ and U is open in X.

 $cl(int(A) \supseteq A \text{ since } A \text{ is semi-open. Then } cl(A) \subseteq cl(int(A) \subseteq U. \text{ Hence } A \text{ is g-closed.}$

Corollary 3.37: If A subset of a topological space (X, τ) is both strongly g-closed then it is g-closed in X.

Proof: Since every open set is semi-open the result follows from the above theorem.

Theorem 3.38: If A subset of a topological space (X, τ) is both strongly g^{**} -closed and semi-open then it is g^{**} -closed.

Corollary 3.39: If A subset of a topological space (X, τ) is both strongly g^{**} -closed then it is g^{**} -closed in X.

Theorem 3.40: If A subset of a topological space (X, τ) is both strongly g-closed then cl(int(A)) - A contains no non empty closed set.

Proof: Suppose F is a closed set such that $F \subseteq cl(int(A)) - A$. Then $F \subseteq cl(int(A)) \cap A^c$, which implies $F \subseteq cl(int(A))$ and $F \subseteq A^c$ implies $A \subseteq F^c$ where F^c is open. Therefore $cl(int(A)) \subseteq F^c$ since A is strongly g-closed.

Then $F \subseteq (cl(int(A)))^c$. Hence $F \subseteq (cl(int(A))) \cap (cl(int(A)))^c = \varphi$.

Therefore cl(int(A)) – A contains no non empty closed set.

Theorem 3.41: If A subset of a topological space (X, τ) is both strongly g^{**} -closed then cl(int(A)) - A contains no non empty closed set.

Proof: Since every open set is g*-open the result follows from the previous theorem.

Theorem 3.42: If A is strongly g-closed and $A \subseteq B \subseteq cl(int(A))$, then B is strongly g-closed.

Proof: Let $B \subseteq U$ where U is open which implies $A \subseteq U$ where U is open.

 \therefore cl(int(A)) \subseteq U, since A is strongly g-closed. cl(int(B)) \subseteq cl(B) \subseteq cl(int(A)) \subseteq U. \therefore B is strongly g-closed.

Theorem 3.43: If A is strongly g^{**} -closed and $A \subseteq B \subseteq cl(int(A))$, then B is strongly g^{**} -closed.

Proof is similar to the above theorem.

Proposition 3.44: Every pre-closed set is (i) strongly g-closed (ii) strongly g**-closed but not conversely.

Proof follows from the definitions.

Example 3.45: In example (3.5) $A = \{a, b\}$ is strongly g-closed and strongly g^{**} -closed but it is not pre-closed since $cl(int(A)) = X \not\subset A$

The above results can be represented in the following figure.

Where A _____ B (resp. A \leftarrow B) represents A implies B (resp. A and B are independent).

REFENRENCES

- [1] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [2] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.
- [3] A. S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Egypt, **53**(1982), 47-53.
- [4] N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33(2) (1993), 211-219.
- [5] R. Parimelazhagan and V. Subramania Pillai, Strongly g*-closed sets in Topological spaces, Int. Journal of Math. Analysis, Vol. 6,(30) (2012), 1481-1489.
- [6] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, g**-closed sets in topological spaces, IJM A 3(5), (2012),1-15.
- [7] M. K. R. S. Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Koch. Univ. Ser. A, Math., 17(1996), 33-42.

Source of support: Nil, Conflict of interest: None Declared