COMMON FIXED POINT THEOREMS OF COMPATIBLE MAPPINGS OF TYPE (A-1) AND TYPE (A-2)

L. Dwijendra Singh*

Department of Mathematics, M.B. College, Imphal, Pin-795001, Manipur, India &

Leenthoi Ningombam

CMJ University, Shillong, Meghalaya, India

(Received on: 27-06-12; Revised & Accepted on: 17-08-12)

ABSTRACT

In this paper we prove some common fixed point theorems for compatible mappings of type (A-1) and type (A-2) in fuzzy metric spaces. Our results modify and extend some results in the literature.

Mathematics subject classification: 54H25, 54E50.

Key words: Compatible mappings, Compatible mappings of type (A), Compatible mappings of type (A-1), Compatible mappings of type (A-2), Common fixed point, Fuzzy metric space.

1. INTRODUCTION

The first important result in the theory of fixed point of compatible mappings was obtained by Gerald Jungck in 1986 [8] as a generalization of commuting mappings. In 1993 Jungck, Murthy and Cho [9] introduced the concept of compatible mappings of type (A) by generalizing the definition of weakly uniformly contraction maps. Pathak and Khan [14] introduced the concept of A-compatible and S-compatible by splitting the definition of compatible mappings of type (A). Pathak *et. al.* [10] renamed A-compatible and S-compatible as compatible mappings of type (A-1) and compatible mappings of type (A-2) respectively and introduced it in fuzzy metric space.

Zadeh [20] introduced the concept of fuzzy sets. The idea of fuzzy metric space was introduced by Kramosil and Michalek [13] which was modified by George and Veeramani [3, 4]. Bijendra Singh and M. S. Chauhan [18] introduced the concept of compatibility in fuzzy metric space and proved some common fixed point theorems in fuzzy metric spaces in the sence of George and Veeramani with continuous t-norm * defined by a*b=min{a, b} for all $a, b \in [0,1]$.

The aim of the paper is to prove some common fixed point theorems of compatible mappings of type (A-1) and type (A-2). These results modify and extend the results in [10, 14, 15, 16, 19].

2. PRELIMINARIES

Definition 2.1. [17] A binary operation $*:[0,1]\times[0,1]\to[0,1]$ is a continuous *t*-norm if it satisfies the following conditions

- (i) * is associative and commutative.
- (ii) * is continuous.
- (iii) a*1 = a for all $a \in [0, 1]$.
- (iv) $a*b \le c*d$ whenever $a \le c$ and $b \le d$, for each $a, b, c, d \in [0, 1]$.

Definition 2.2. [3] The 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary (non-empty) set, * is continuous t-norm, and M is a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions:

- (1) M(x, y, t) > 0,
- (2) M(x, y, t) = 1 if and only if x = y,
- (3) M(x, y, t) = M(y, x, t),

- (4) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$,
- (5) $M(x, y, .): (0, \infty) \rightarrow [0,1]$ is continuous

for all x, y, $z \in X$ and t, s > 0.

Let (X, d) be a metric space, and let a*b = ab or $a*b = \min \{a, b\}$. Let $M(x, y, t) = \frac{t}{t+d(x,y)}$ for all $x, y \in X$ and t > 0. Then (X, M, *) is a fuzzy metric M induced by d is called the standard fuzzy metric space [3].

Definition 2.3. [5] A sequence $\{x_n\}$ in a fuzzy metric space (X, M, *) is said to be convergent to a point $x \in X$ (denoted by $\lim_{n \to \infty} x_n = x$), if for each $\varepsilon > 0$ and each t > 0, there exists $n_0 \in \mathbb{N}$ such that

 $M(X_n, x, t) > 1 - \mathcal{E}$ for all $n \ge n_0$.

The completeness and non completeness of fuzzy metric space was discussed in George and Veeramani [3] and M. Grabiec[5].

Definition 2.4. [3] A sequence $\{x_n\}$ in a fuzzy metric space (X, M, *) is called Cauchy sequence if for each $\varepsilon > 0$ and each t > 0, there exists $n_0 \in \mathbb{N}$ such that $M(x_n, x_m, t) > 1 - \varepsilon$ for all $n, m \ge n_0$.

Definition 2.5. [10] Self mappings *A* and *S* of a fuzzy metric space (X, M, *) is said to be compatible if $\lim_{n\to\infty} M(ASx_n, SAx_n t) = 1$ for all t > 0, whenever $\{x_n\}$ is a sequence in *X* such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = z$ for some $z \in X$.

Definition 2.6 [10] Self mappings A and S of a fuzzy metric space (X, M, *) is said to be compatible of type (A) if $\lim_{n\to\infty} M(ASx_n, SSx_n, t) = \lim_{n\to\infty} M(SAx_n, AAx_n, t) = 1$ for all t > 0, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = z$ for some $z \in X$.

Definition 2.7. [10] Self mappings A and S of a fuzzy metric space (X, M, *) is said to be compatible of type (A-1) if $\lim_{n\to\infty} M(SAx_n, AAx_n, t) = 1$ for all t > 0, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = z$ for some $z \in X$.

Definition 2.8. [10] Self mappings A and S of a fuzzy metric space (X, M, *) is said to be compatible of type (A-2) if $\lim_{n\to\infty} M(ASx_n, SSx_n, t) = 1$ for all t > 0, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = z$ for some $z \in X$.

Lemma 2.9. [5] Let (X, M, *) be a fuzzy metric space. Then for all x, y in X, M(x, y, .) is non-decreasing.

Lemma 2.10. [19] Let (X, M, *) be a fuzzy metric space. If there exists $q \in (0, 1)$ such that $M(x, y, qt) \ge M(x, y, t/q^n)$ for positive integer n. Taking limit as $n \to \infty$, $M(x, y, t) \ge 1$ and hence x = y.

Lemma 2.11. [12] The only *t*-norm * satisfying $r^*r \ge r$ for all $r \in [0,1]$ is the minimum *t*-norm, that is, $a^*b = \min \{a, b\}$ for all $a, b \in [0,1]$.

Proposition 2.12. [10] Let (X, M, *) be a fuzzy metric space and let A and S be continuous mappings of X then A and S are compatible if and only if they are compatible of type (A).

Proposition 2.13. [10] Let (X, M, *) be a fuzzy metric space and let A and S be compatible mappings of type (A-1) and Az=Sz for some $z \in X$, then SAz=AAz.

Proposition 2.14. [10] Let (X, M, *) be a fuzzy metric space and let A and S be compatible mappings of type (A-1) and Az=Sz for some $z \in X$, then ASz=SSz.

Proposition 2.15. [10] Let (X, M, *) be a fuzzy metric space and let A and S be compatible mappings of type (A-1) and let $Ax_n, Sx_n \to z$ as $n \to \infty$ for some $z \in X$ then $AAx_n \to Sz$ if S is continuous at z.

Proposition 2.16. [10] Let (X, M, *) be a fuzzy metric space and let A and S be compatible mappings of type (A-2) and let $Ax_n, Sx_n \to z$ as $n \to \infty$ for some $z \in X$ then $SSx_n \to Az$ if A is continuous at z.

3. MAIN RESULTS

We prove the following theorem.

Theorem 3.1. Let (X, M, *) be a complete fuzzy metric space and let A, B, S and T be a self mappings of X satisfying the following conditions:

- (i) $A(X) \subset T(X)$, $B(X) \subset S(X)$,
- (ii) S and T are continuous
- (iii) the pairs $\{A, S\}$ and $\{B, T\}$ are compatible mapping of type (A-1) on X.
- (iv) there exists $q \in (0, 1)$ such that for every $x, y \in X$ and t > 0,

$$M(Ax, By, qt) \ge M(Sx, Ty, t) *M(Ax, Sx, t *M(By, Ty, t) *M(Ax, Ty, t)$$

Then A, B, S and T have a unique common point in X.

Proof: Since $A(X) \subset T(X)$ and $B(X) \subset S(X)$, for any $x_0 \in X$, there exists $x_1 \in X$ such that $Ax_0 = Tx_1$ and for this $x_1 \in X$, there exists $x_2 \in X$ such that $Bx_1 = Sx_2$. Inductively, we define a sequence $\{y_n\}$ in X such that

$$y_{2n-1} = Tx_{2n-1} = Ax_{2n-2}$$
 and $y_{2n} = Sx_{2n} = Bx_{2n-1}$, for all $n = 0, 1, 2, \dots$

From (iv),

 $M(y_{2n+1}, y_{2n+2}, qt) = M(Ax_{2n}, Bx_{2n+1}, qt).$

$$\geq M (Sx_{2n}, Tx_{2n+1}, t) * M (Ax_{2n}, Sx_{2n}, t) * M (Bx_{2n+1}, Tx_{2n+1}, t) * M (Ax_{2n}, Tx_{2n+1}, t)$$

$$= M (y_{2n}, y_{2n+1}, t) * M (y_{2n+1}, y_{2n}, t) * M (y_{2n+2}, y_{2n+1}, t) * M (y_{2n+1}, y_{2n+1}, t)$$

$$\geq M (y_{2n}, y_{2n+1}, t) * M (y_{2n+1}, y_{2n+2}, t)$$

From lemma 2.9 and 2.10, we have

$$M(y_{2n+1}, y_{2n+2}, qt) \ge M(y_{2n}, y_{2n+1}, t)$$
 (3.1.1)

Similarly, we have

$$M(y_{2n+2}, y_{2n+3}, qt) \ge M(y_{2n+1}, y_{2n+2}, t)$$
 (3.1.2)

From (3.1.1) and (3.1.2), we have

$$M(y_{n+1}, y_{n+2}, qt) \ge M(y_n, y_{n+1}, t)$$
 (3.1.3)

From (3.1.3), we have

$$M(y_{n}, y_{n+1}, t) \ge M(y_{n}, y_{n-1}, \frac{t}{q})$$

$$\ge M(y_{n-2}, y_{n-1}, \frac{t}{q^{2}})$$

$$\ge \dots \ge M(y_{1}, y_{2}, \frac{t}{q^{n}}) \to 1 \text{ as } n \to \infty.$$

So, $M(y_n, y_{n+1}, t) \to 1$ as $n \to \infty$ for any t > 0. For each $\varepsilon > 0$ and each t > 0, we can choose $n_0 \in \mathbb{N}$ such that

$$M(y_n, y_{n+1}, t) > 1 - \mathcal{E}$$
 for all $n > n_0$.

For $m, n \in \mathbb{N}$, we suppose $m \ge n$. Then we have that

$$M(y_n, y_m, t) \ge M(y_n, y_{n+1}, \frac{t}{m-n}) * M(y_{n+1}, y_{n+2}, \frac{t}{m-n}) * \dots * M(y_{m-1}, y_m, \frac{t}{m-n})$$

$$\geq (1-\varepsilon)^*(1-\varepsilon)^*$$
(m-n) times.

$$\geq (1-\varepsilon)$$

and hence $\{y_n\}$ is a Cauchy sequence in X.

Since (X, M, *) is complete, $\{y_n\}$ converges to some point $z \in X$, and so

 $\{Ax_{2n-2}\}, \{Sx_{2n}\}, \{Bx_{2n-1}\}\$ and $\{Tx_{2n-1}\}\$ also converges to z.

From proposition 2.15 and (iii), we have

$$AAx_{2n-2} \to Sz \tag{3.1.4}$$

and
$$BBx_{2n-1} \rightarrow Tz$$
 (3.1.5)

From (iv), we get

$$M(AAx_{2n-2}, BBx_{2n-1}, qt) \ge M(SAx_{2n-2}, TBx_{2n-1}, t) * M(AAx_{2n-2}, SAx_{2n-2}, t) * M(BBx_{2n-1}, TBx_{2n-1}, t) * M(AAx_{2n-2}, TBx_{2n-1}, t)$$

Taking limit as $n \rightarrow \infty$ and using (3.1.4) and (3.1.5), we have

$$M(Sz, Tz, qt) \ge M(Sz, Tz, t)*M(Sz, Sz, t)*M(Tz, Tz, t)*M(Sz, Tz, t)$$

$$\geq M(Sz, Tz, t) * 1 * 1 * M(Sz, Tz, t)$$

$$\geq M(Sz, Tz, t).$$

It follows that
$$Sz = Tz$$
. (3.1.6)

Now, from (iv),

 $M\left(Az,BBx_{2n-1},qt\right) \geq M\left(Sz,TBx_{2n-1},t\right) * M\left(Az,Sz,t\right) * M\left(BBx_{2n-1},TBx_{2n-1},t\right) * M\left(Az,TBx_{2n-1},t\right)$

Again, taking limit as $n \to \infty$ and using (3.1.5) and (3.1.6), we have

$$M(Az, Tz, qt) \ge M(Sz, Sz, t) * M(Az, Tz, t) * M(Az, Tz, t) * M(Az, Tz, t)$$

$$\geq M(Az, Tz, t).$$

and hence
$$Az = Tz$$
. (3.1.7)

From (iv), (3.1.6) and (3.1.7),

 $M(Az, Bz, qt) \ge M(Sz, Tz, t)*M(Az, Sz, t)*M(Bz, Tz, t)*M(Az, Tz, t)$

$$= M (Az, Az, t)*M (Az, Az, t)*M (Bz, Az, t)*M (Az, Az, t)$$

$$\geq M(Az, Bz, t)$$
.

and hence
$$Az = Bz$$
. (3.1.8)

From (3.1.6), (3.1.7) and (3.1.8), we have

$$Az = Bz = Tz = Sz. \tag{3.1.9}$$

Now, we show that Bz = z.

From (iv),

$$M(Ax_{2n}, Bz, qt) \ge M(Sx_{2n}, Tz, t)*M(Ax_{2n}, Sx_{2n}, t)*M(Bz, Tz, t)*M(Ax_{2n}, Tz, t)$$

And, taking limit as $n \to \infty$ and using (3.1.6) and (3.1.7), we have

$$M(z, Bz, qt) \ge M(z, Tz, t) * M(z, z, t) * M(Bz, Tz, t) * M(z, Tz, t)$$

$$= M(z, Bz, t) * 1 * M(Az, Az, t) * M(z, Bz, t)$$

$$\ge M(z, Bz, t).$$

And hence Bz = z. Thus from (3.1.9), z = Az = B z = Tz = Sz and z is a common fixed point of A, B, S and T.

In order to prove the uniqueness of fixed point, let w be another common fixed point of A, B, S and T. Then

$$M(z, w, qt) = M(Az, Bw, qt)$$

 $\geq M(Sz, Tw, t)*M(Az, Sz, t)*M(Bw, Tw, t)*M(Az, Tw, t)$
 $\geq M(z, w, t).$

From lemma 2.10, z = w. This completes the proof of theorem.

Corollary 3.2. Let (X, M, *) be a complete fuzzy metric space and let A, B, S and T be a self mappings of X satisfying (i) - (iii) of theorem 3.1 and there exists $q \in (0,1)$ such that

$$M(Ax, By, qt) \ge M(Sx, Ty, t) *M(Ax, Sx, t) *M(By, Ty, t) *M(By, Sx, 2t) *M(Ax, Ty, t)$$

for every x, $y \in X$ and t > 0. Then A, B, S and T have a unique common point in X.

Corollary 3.3. Let (X, M, *) be a complete fuzzy metric space and let A, B, S and T be a self mappings of X satisfying (i) - (iii) of theorem3.1 and there exists $q \in (0,1)$ such that

$$M(Ax, By, qt) \ge M(Sx, Ty, t)$$

for every $x, y \in X$ and t > 0. Then A, B, S and T have a unique common point in X.

Corollary 3.4. Let (X, M, *) be a complete fuzzy metric space and let A, B, S and T be a self mappings of X satisfying (i) - (iii) of theorem3.1 and there exists $q \in (0,1)$ such that

$$M(Ax, By, qt) \ge M(Sx, Ty, t) * M(Sx, Ax, t) * M(Ax, Ty, t)$$

for every $x, y \in X$ and t > 0. Then A, B, S and T have a unique common point in X.

Theorem 3.5. Let (X, M, *) be a complete fuzzy metric space. Then continuous self mappings S and T of X have a common fixed point in X if and only if there exists a self mapping A of X such that the following condition are satisfied:

- (i) $A(X) \subset T(X) \cap S(X)$,
- (ii) the pairs $\{A, S\}$ and $\{A, T\}$ are compatible mapping of type (A-1) on X,
- (iii) there exists $q \in (0,1)$ such that for every $x, y \in X$ and t > 0,

$$M(Ax, Ay, qt) \ge M(Sx, Ty, t) *M(Ax, Sx, t) *M(Ay, Ty, t) *M(Ax, Ty, t)$$

In fact A, S and T have a unique common point in X.

Proof: We shown that the necessity of the conditions (i)-(iii). Suppose that S and T have a common fixed point in X, say z. Then Sz = z = Tz.

Let Ax = z for all $x \in X$. Then we have $A(X) \subset T(X) \cap S(X)$ and we know that [A, S] and [A, T] are compatible mapping of type (A-1), in fact $A \circ S = S \circ A$ and $A \circ T = T \circ A$, and hence the conditions (i) and (ii) are satisfied.

For some $q \in (0, 1)$, we get

$$M(Ax, Ay, qt) = 1 \ge M(Sx, Ty, t) * M(Ax, Sx, t) * M(Ay, Ty, t) * M(Ax, Ty, t)$$

for every $x, y \in X$ and t > 0 and hence Tthe condition (iii) is satisfied.

Now, for the sufficiency of the conditions, let A = B in theorem 3.1. Then A, S and T have a unique common fixed point in X.

Corollary 3.6. Let (X, M, *) be a complete fuzzy metric space. Then continuous self mappings S and T of X have a common fixed point in X if and only if there exists a self mapping A of X satisfying (i) – (ii) of theorem 3.5 and there exists $q \in (0, I)$ such that for every $x, y \in X$ and t > 0

$$M(Ax, Ay, qt) \ge M(Sx, Ty, t) *M(Ax, Sx, t) *M(Ay, Ty, t) *M(Ax, Sx, 2t) *M(Ax, Ty, t)$$

In fact A, S and T have a unique common point in X.

$$M(Ax, Ay, qt) \ge M(Sx, Ty, t)$$

In fact A, S and T have a unique common point in X.

Corollary 3.8. Let (X, M, *) be a complete fuzzy metric space. Then continuous self mappings S and T of X have a common fixed point in X if and only if there exists a self mapping A of X satisfying (i) – (ii) of theorem 3.5 and there exists $q \in (0, I)$ such that for every $x, y \in X$ and t > 0

$$M(Ax, Ay, qt) \ge M(Sx, Ty, t) *M(Sx, Ax, t) *M(Ax, Ty, t)$$

In fact A, S and T have a unique common point in X.

Remark: Corresponding results for compatible mappings of type (A-2) can also be obtained.

ACKNOWLEDGEMENT

The first author is supported by University Grants Commission, India vide project no. F 5-98/2010-11/MRP/NERO/5149. Authors are also thankful to Yumnam Rohen for his valuable suggestions towards the improvement of this paper.

REFERENCES

- [1] Deng Zi- Ke, Fuzzy pseudo metric spaces, J. Math. Anal. Appl. 86 (1982), 74-95.
- [2] M. A.Erceg., Metric spaces in Fuzzy set theory, J. Math. Anal. Appl., 69 (1979), 205-230.
- [3] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy sets and Systems, 64 (1994), 395-399.
- [4] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, *Fuzzy sets and Systems*, **90** (1997), 365-368.
- [5] Grabiec M., Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385-389.
- [6] V. Gregori and Almanzor Sapena, On fixed point theorems in fuzzy metric spaces, *Fuzzy Sets and Systems*, **125** (2002), 245-252.
- [7] D. O. Hebb. Organization of Behaviour, Wiley, New York, 1949.
- [8] G. Jungck, Compatible mappings and common fixed points. *Internat. J. Math. and Math. Sci.*, **9** (4), (1986), 771-779.
- [9] G. Jungck, P.P. Murthy and Y.J. Cho, Compatible mappings of type (A) and common fixed points, *Math. Japon.* **38** (1993), 381-390.
- [10] M.S. Khan, H.K. Pathak and Reny George, Compatible mappings of type (A-1) and type (A-2) and common fixed points in fuzzy metric spaces, *International Math. Forum*, **2**(11): 515-524, 2007.

- [11] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215-229.
- [12] E.P. Klement, R. Mesiar and E. Pap, *Triangular Norms*, Kluwer Academic Publishers.
- [13] Kramosil and J. Machalek, Fuzzy metric and statistical metric spaces, Kybernetika 11 (1975), 336-344.
- [14] H.K. Pathak and M.S. Khan, A comparison of various types of compatible maps and common fixed points, *Indian J. pure appl. Math.*, **28**(4): 477-485, April 1997.
- [15] Rohen Y. and L. Dwijendra, Common fixed point theorems of compatible mappings of type (A) in fuzzy metric spaces, *IJMSEA*, Vol. 5, No. VI (Nov. 2011), 307-316.
- [16] Rohen Y. and M. Koireng, Common fixed point theorems of compatible mappings of type (P) in fuzzy metric spaces, *International Journal of Mathematical Analysis*, Vol. **6**, No. 4 (2012), 181-188.
- [17] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 314-334.
- [18] B. Singh and M. S. Chauhan, Common fixed points of compatible maps in fuzzy metric spaces, *Fuzzy sets and Systems*, **115** (2000), 471-475.
- [19] Seong Hoon Cho, On common fixed points in fuzzy metric spaces, Inter. Math. Forum, 1 (10) (2006), 471-479.
- [20] Zadeh L.A., Fuzzy sets, Inform and Control, 8 (1965), 338-353.

Source of support: University Grants Commission, India, Conflict of interest: None Declared