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ABSTRACT 

A partial hypergraph (of a given simple hypergraph) has the property that each hyperedge is contained in the smaller 
vertex set on which this partial hypergraph is built.  But this property does not hold for arbitrary subsets of the vertex 
set of the given simple hypergraph.  This gives scope for a generalized notion of restricted hypergraphs, so that partial 
hypergraphs really turn out to be special cases of restricted hypergraphs. 
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1.  INTRODUCTION 
 
Let V be a nonempty finite set.  The cardinality (or, size) of V is denoted by │V│.  The set of all subsets (including the 
empty set φ) of V is denoted by 2V which is called the power set [4] of V.  The set of all nonempty subsets of V is 
denoted by 2V*; that is, 2V* = 2V – {φ}. 
 
A hypergraph [1] on V is a pair H = (V, E) where E is a family of nonempty subsets of V with ∪ X ϵ E X = V.  The set V 
is called the vertex set of H and each member of E is called a hyperedge of H.  If the members of E are all distinct (that 
is, no two members are equal as subsets of V; or, E ⊆ 2V*) then H is called simple.  If no member of E is a subset 
(proper or otherwise) of another, then H is called a Sperner hypergraph.  Some authors (instances: [1] and [2]) take 
Sperner hypergraphs to be simple and vice versa but there is distinction between the two: Sperner hypergraphs are 
necessarily simple but simple hypergraphs need not be Sperner [3].  If {y} ∈ E for some vertex y, then {y} is called a 
loop at y. 
 
All the hypergraphs in the coming discussion are assumed simple unless there is some unambiguous indication to the 
contrary.  The motivation for this research work comes principally from the concept of partial hypergraphs [1].   
 
2. PARTIAL HYPERGRAPHS AND PATCHES 
 
Let H = (V, E), F ∈ 2E* and W = ∪ X ϵ F X.  Then W ∈ 2V*; and HW = (W, F) is a hypergraph on W, and is called the 
partial hypergraph (of H) on W.   
 
2.1: Proposition.  Let H = (V, E), A ∈ 2V*, e (A) = {X ∈ E│X ⊆ A} and p(A) = A – ∪ X ϵ e(A)  X.   
 
Then for A, B ∈ 2V*, we have:   
(i) A ⊆ B ⟹ e (A) ⊆ e (B); 
(ii) A ∩ B = φ ⟹ e (A) ∩ e (B) = φ; 
(iii) e (A) = φ  ⟺ p(A) = A; 
(iv) p(A) = φ ⟺ ∪ X ϵ e(A)  X = A;  
(v) A ∈ E ⟹ p (A) = φ; and 
(vi) p(A) = φ ⟹ (A, e(A)) is the partial hypergraph (of H) on A.    
 
Proof.   
(i) Assume A ⊆ B.  Then X ∈ e (A) ⟹X ⊆ A ⟹X ⊆ B ⟹X ∈ e (B).   
 
(ii) Were X ∈ e (A) ∩ e (B), then X ⊆ A and X ⊆ B, contradicting A ∩ B = φ. 
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(iii) e (A) = φ ⟹ p(A) = A is immediate.  On the other hand, suppose e (A) ≠ φ.  Then it is clear that ∪ X ϵ e(A)  X ≠ φ.   
And clearly ∪ X ϵ e(A)  X ⊆ A .  From these we have that p(A) ≠ A.  
 
(iv), (v) and (vi) are obvious.                                                                                                                                                       
 
The set p (A) seen in 2.1 is called the patch on A in H (or, the patch on A in V under H).  If p (A) ≠ φ then A is called a 
patched set in H (or, a patched set in V under H).  If p(A) = A (equivalently, if e (A) = φ), then A is a patch in H.                                                                                                                          
 
2.2: Example.  The converse of 2.1(i) is not true.  Let H = (V, E), where V = {1, 2, 3, 4, 5, 6}, E = {X1, X2, X3, X4} 
with X1 = {1}, X2 = {2, 3}, X3 = {3, 5} and X4 = {4, 6}. Let A = {1, 3, 5, 6} and B={1, 2, 3, 4, 5}. Then e (A) = {X1, 
X3} and e (B) = {X1, X2, X3}.  Then e (A) ⊆ e (B) but A ⊈ B. 
 
2.3: Example. The converse of 2.1(ii) is not true.  Let H = (V, E), where V = {1, 2, 3, 4} and E = {X1, X2, X3, X4}, 
with X1 = {1, 2}, X2 = {2, 3}, X3 = {3, 4} and X4 = {4, 1}.  Let A = {1, 3, 4} and B = {2, 3}.  Then e (A) = {X3, X4} 
and e (B) = {X2}.  Then e (A) ∩ e (B) = φ but A ∩ B ≠ φ.  
 
2.4: Example.  The converse of 2.1(v) is not true.  Let V and E be as in 2.2, and A = {1, 2, 3}.  Then we have  
e(A) = {X1, X2} and ∪ X ϵ e(A)  X = X1 ∪ X2 = A, from which p(A) = φ follows.  Yet A ∉ E. 
 
2.5: Proposition.  Let H = (V, E) be Sperner and for A ∈ 2V*, let e (A) be as defined in 2.1. Let A, B ∈ 2V*.  Then: 
(i) e (A ∩ B) = e (A) ∩ e (B) 
(ii) e (A) ∪ e (B) ⊆ e (A ∪ B) 
(iii) e (A – B) ⊆ e (A) – e (B); so e (Ac) = e (A)c, where Ac = V – A and e (A)c = E – e (A).   
 
Proof.   
(i) X ∈ e (A ∩ B) ⟹ X ∈ E and X ⊆ A ∩ B; so X ∈ e (A) and X ∈ e (B) follow.  On the other hand if X  ∈ e (A) ∩ e 
(B), then X ⊆ A ∩ B, and at once we have X ∈ e (A ∩ B). 
 
(ii) X ∈ e (A) ∪ e (B) ⟹ X ∈ E and either X ⊆ A or X ⊆ B, whence X ∈ e (A ∪ B). 
 
(iii) X ∈ e (A – B) ⟹ X ∈ E, X ⊆ A and X ∩ B = φ.  Hence X ∈ e (A) and X ∉ e (B).  Replacing A and B by V and A, 
respectively, we get the second part of (iii).                                                                                                                             
 
2.6: Example.  Equality need not hold in 2.5(ii).  Let H be as in 2.3.  Let A = {1, 2, 4} and B = {1, 2, 3}.  Then  
e (A) = {X1, X4}, e (B) = {X1, X2} and e (A ∪ B) = {X1, X2, X3, X4}.   
 
2.7: Example.  Equality need not hold in 2.5(iii).  Let H be as in 2.3 and A, B be as in 2.6.  Then A – B = {4},  
e (A – B) = φ and e (A) – e (B) = {X4}. 
 
2.8: Example.  In general, e (A ∆ B) and e (A) ∆ e (B), where ∆ denotes symmetric difference [4] of sets, are not 
comparable by set inclusion.   
 
If H = (V, E), let M (H) = {A ∈ 2V*│ p(A) = φ} and P (H) = {A ∈ 2V*│ p(A) ≠ φ}.  Then M (H) ≠ φ because it 
contains every member of E.  Also, M (H) ∩ P (H) = φ and M (H) ∪ P (H) = 2V*.  
 
2.9: Proposition.  Let H = (V, E).  If A, B ∈ M (H) then A ∪ B ∈ M (H) – i.e., M (H) is closed under set union. 
 
Proof.  By hypothesis, ∪ X ϵ e(A)  X = A and ∪ X ϵ e(B)  X = B.  Invoking 2.5(ii), we have at once that  ∪ X ϵ e(C)   X = C, 
where C = A ∪ B.   Invoking 2.1(iv), we have p(A ∪ B) = φ, whence A ∪ B ∈ M (H).                                                                                                                                                                                                                                          
 
2.10: Examples.  M (H) is not closed under set intersection, set difference, symmetric difference or complementation.   
Let V = {1, 2, 3, 4, 5, 6, 7, 8}, X1 = {1, 3}, X2 = {2, 3, 4}, X3 = {4, 5, 6}, X4 = {7, 8} and E = {X1, X2, X3, X4} and  
H = (V, E).   
 
(i) Let A = {1, 2, 3, 4} and B = {1, 3, 4, 5, 6, 7, 8}.  Then e (A) = {X1, X2} and e (B) = {X1, X3, X4}; and A, B ∈ M 
(H).  Further, A ∩ B = {1, 3, 4}≠ φ and e (A ∩ B) = {X1}.  So p(A∩ B) ≠ φ, whence A∩ B ∉ M (H).  
   
(ii) A = {1, 2, 3, 4} and B = {4, 5, 6, 7, 8}.  It is easy to see that A, B ∈ M (H).  Further, A − B = {1, 2, 3}, and  
e (A – B) = {X1}, so A – B ∉ M (H). 
 
(iii) A, B as in (ii).  Here A ∆ B = {1, 2, 3, 5, 6, 7, 8} ∉ M (H) because e (A ∆ B) = {X1, X4}.   
 
(iv) A = {1, 2, 3, 4} ∈ M (H).  But AC = {5, 6, 7, 8} ∉ M (H) because e (AC) = {X4}.  
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2.11: Proposition.  Let H = (V, E).  Then P (H) = φ ⟺ {x} ∈ E for each x ∈ V. 
 
Proof.  (⟹) Let x ∈ V be given and A = {x}.  By hypothesis, A ∈ M (H).  So ∪ X ϵ e(A)  X = A.   
 
But then e (A) = e ({x}) = {X ∈ E│X ⊆ {x}}, whence {x} ∈ E. 
 
(⟸) Suppose {x} ∈ E for each x ∈ V.  Let B ∈ 2V* be given and let S = {{x} │ x ∈ B}.  Clearly S ⊆ E and ∪ X ϵ S X = 
B, whence B ∈ M (H).  Consequently 2V* ⊆ M (H), from which P (H) = φ.                                                                                                      
 
The set P (H) is not closed under set union, intersection, difference or symmetric difference.      
 
3. RESTRICTED HYPERGRAPHS 
 
3.1: Proposition.  Suppose H = (V, E).  For A ∈ 2V*, let  
(i) e (A) and p(A) be as in 2.1;   
 
(ii) C (A) = e (A) if p(A) = φ, and C (A) = e (A) ∪ {p(A)} if p(A) ≠ φ.    
   
Then (A, C (A)) is a hypergraph on A. 
 
Proof.  Clearly C (A) is a nonempty subfamily of 2V*.  Note that A = (∪ X ϵ e(A)  X) ∪ p(A), so that given x ∈ A we have 
either x ∈ X for some X ∈ e (A) or x ∈ p(A).  Also, ∪ X ϵ e(A)  X and p(A) make a partition of A, whence (A, C (A)) is a 
hypergraph on A.                                                                                                                                                                                                                                             
 
The hypergraph (A, C (A)) seen in 3.1 is called the restricted hypergraph on the subset A of V, and is denoted by H|A.  
We also call this hypergraph the restriction of H to A.  If A = V, then e (A) = E so that H|V = H. 
 
3.2: Proposition.  Given H = (V, E).  Then a unique H|A exists for each A ∈ 2V*. 
 
Proof.  The existence follows from 3.1.  For A ∈ 2V*, the sets e (A) and p(A) are unique, and so is C (A).                                                                                                                                                                     
 
3.3: Proposition.  If H|A is non-trivial, then e (A) ≠ φ.  (A hypergraph is nontrivial if some hyperedge X does not equal 
the vertex set V.) 
 
Proof.  If e (A) = φ, then p(A) = A, so that C (A) = {A}, whence H|A is trivial.                                                                     
 
3.4: Example.  The converse of 4.4 is not true.  Let H = (V, E) be Sperner, and A ∈ E.  Then p(A) = φ, so e (A) = {A}.  
But H|A is trivial because C (A) = {A}. 
 
3.5: Proposition.  H|A is simple for each A ∈ 2V*. 
 
Proof.  Let A ∈ 2V* be given and H|A = (A, C (A)).  If e (A) = φ, then H|A is clearly simple.  In the case e (A) ≠ φ, then 
write e (A) = {Y1, …, Yt} for some positive integer t.  It is clear that p(A) is disjoint with every member of e (A).  Were 
H|A not simple, then for some distinct positive integers j and k (both ≤ t) we would have Yj = Yk in e (A).  But then H 
would not be simple.                                                                                                                                                                                   
 
3.6: Proposition.  If p (A) = φ, then H|A is the partial hypergraph on A generated by e (A). 
 
The proof follows from the preceding discussions on e (A), p (A) and H|A.                       
 
4. SUMMING UP 
 
(i) Given simple hypergraph H, patches in a subset of vertices are aggregates of vertices in the subset whose union 
cannot contain any hyperedge.   
 
(ii) A partial hypergraph is a special case of a restricted hypergraph (3.6). 
 
(iii) The only class of hypergraphs that cannot have any patches is that of the ones in which there is a loop at every 
vertex (consequence of 2.11).  This class is very rarely dealt with in applications.   
 
So, a majority of simple hypergraphs do have patches.  This could have applications in image processing.  
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(iv) In a restricted hypergraph, at most one hyperedge is a patch. This patch could be of negligible size, and this could 
be of interest in image processing applications involving thresholds. The authors are studying such application 
possibilities. 
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