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ABSTRACT
If a Banach space operator T is a-polaroid then it satisfies a-Weyl’s theorem iff T has SVEP at A ¢ o, (T). Also

an a-polaroid operator can be described as a quasi-nilpotent part of an operator. For such an operator T, f(T)
satisfies a-Weyl’s theorem for every non-constant function f analytic on a neighbourhood of o (T) if and only if

(04 (T)) =0, (£(T)).
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1. INTRODUCTION

Throughout this paper X will denote an infinite-dimensional complex Banach space and £(X ), the Banach algebra
of bounded linear operators acting on X . For an operator T € £(X), let T™ denote the adjoint, A/ (T), the kernel,
R(T), its range. o(T), o,(T), o(T), o,(T) denote respectively, the spectrum, approximate spectrum,

surjective spectrum and point spectrum. Let «(T) and A(T) denote the dimensions of A (T) and N(T"),
respectively.

Let @ (X):={T € £L(X): R(T) isclosed, cx(T) < o0} be the class of all upper semi-Fredholm operators and let
O (X)={T eL(X),B(T)<xo} be the class of all lower semi-Fredholm operators. Moreover,
D(X)=D (X)nD (X) defines the class of all Fredholm operators. If T € @ (X), the index of T is defined
by in @ =a(T)-4(T).

Define

W (X)={T € L(X): T is Fredholm operator of index zero},
W, (X)={T e @ (X),indT <0},
W_(X):={T e ®_(X),indT > 0}.

Thus,
W (X)=W, (X)W _(X).

The classes of operators defined above generate the following spectra. Denote by

o,(T)={AeC : A -T eW(X)}
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The Weyl spectrum. The Weyl essential approximate point spectrum is defined by
0, T)={AeC : A -T W (X)}
while the Weyl essential surjective spectrum by

o, (T):={AeC: Al -T W _(X)}

Obviously, o,,(T) =0,,(T)vo,,(T) and by Fredholm theory we know
o,TM)=0,07), 0,T)=0,T7).

The ascent of an operator T € £(X) is defined as the smallest non-negative integer p = p(T) such that
KerTP = KerTP", the descent of T is defined as the smallest non-negative integer ¢ :=¢q(T) such that

T9(X) =T (X), and if such an integer does not exist we put ¢{(T) =oo. If p(T) and q(T) are both finite then
pP(T)=q(T). A bounded operator T € L£L(X) is said to be Browder (resp., upper semi-Browder, lower semi-

Browder) if T e ®(X) and p(T)=q(T) <oo (resp., T € D (X) and p(T) <o, Te®d_(X) and q(T) <0 )

Let B(X), B,(X), B (X) denote respectively, the classes of Browder operators, upper semi-Browder operators
and lower semi-Browder operators. Obviously,

B(X)cW(X), B.(X)cW, (X), B(X)cW (X).

Let
0,(T)={AC : Al -T is not Browder}denote the Browder spectrum and o, (T) denote the upper semi-

Browder spectrum of T and is defined by

0,(T)={AC : A1 =T is not upper semi-Browder}.

Clearly, 0,,(T) < 0,(T),0,,(T)co,(T).

In the year 2001,the concept of semi-Fredholm operator was generalized by Berkani [7] in the following way: For
every T € £(X) and a non-negative integer N, Ty, the restriction of T to R[T"] is viewed as a map from the

space T"(X) into itself (we set Ty =T ). T is said to be semi B-Fredholm (resp., B. Fredholm, upper semi B-
Fredholm, lower semi-B-Fredholm), if for some integer N>0 and R(T") is closed and T[n] is a semi-Fredholm

operator (resp., Fredholm, upper semi-Fredholm, lower semi-Fredholm). In this case T[m] is a semi-Fredholm operator
forall m>n.

We can define index of semi B-Fredholmas ind T = ind T, ,. A bounded linear operator T € £(X) is said to be

B-Weyl (resp., upper semi B-Weyl, lower semi B-Weyl) if T is B-Fredholm of index zero (resp., upper semi B-
Fredholm with negative index and lower semi B-Frefholm with positive index).

In this paper we deal with a-polaroid operators, for that purpose we need to define Drazin invertibility in a more
abstract way. T € £(X) is said to be Drazin invertible if and only if p(T)=q(T) <o or T =T, @ T, where T,

is nilpotent and T, is invertible [13], so every Drazin invertible operator is B-Fredholm. The Drazin spectrum is
defined as

o,(T)={AeC : A1 T is not Drazin invertible}
Also, A € C isapoleof T € £L(X) if A1 =T is Drazin invertible, or equivalently if 4 € C is a pole of the
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resolvent of T if 0< p(A1 =T)=q(Al —=T) <o0. In this case A is an eigenvalue of T and an isolated point of
spectrum o (T) [12, Proposition 50.2]. An operator T € £(X) is said to be polaroid if every isolated point of o (T)
is a pole of the resolvent of T .

A bounded operator T € £(X) is said to be a-polaroid if every 4 €150 o, (T) is a pole of the resolvent of T .
Trivially T is a-polaroid = T is polaroid.

The following property has relevant role in local spectral Theory and Fredholm Theory [1].

An operator T is said to have single-valued extension property at 4, € C (abbreviated SVEP at Ay ), if for every
open disc D of A, the only analytic function f : 22 — X which satisfies the equation (11 —T)f (1) =0 for all

A €D, isthe function f =0.Anoperator T € L£(X) is said to have SVEP if T has SVEP at every point L € C.
Evidently, T € £L(X) has SVEP at every isolated point of the spectrum.

Also, if
p(Al —=T) <oothen T has SVEP at A. ()
q(Al =T) <oothen T™ has SVEP at A. @)

From the definition of localized SVEP, it is evident

o, (T)does not cluster A = T has SVEP at Aand dually 3)

o, (T)does not cluster 2 = T has SVEP at 4. 4)
In particular, if o, (T) =¢,then T has SVEP.

An important subspace in local spectral theory is the quasi-nilpotent part of T defined by

H,(T):={xe X :lim||T"X |'"=0}.

Obviously, kerT" < H,(T) for all n. We also have [1, Theorem 2.31].
H,(41 -T)isclosed = T has SVEP at A. (5)

Remark 1.1. All implications (1), (2), (3), (4) and (5) are equivalent if A1 —T is semi-Fredholm [1, Chapter 3].

Another important subspace in local spectral theory is analytic core K(T) defined as K(T) ={x e X :there exista
constant € >0 and a sequence {X,} < X such that X, =X, TX, =X, and || X, ||<c" || x|| for all natural no.n}
(see [1D).

2. AAWEYL’S THEOREM AND A-POLAROID OPERATORS

In this section we show the equivalence between a-Weyl theorem and Kato type operator in case T € £L(X) is a-
polaroid operator. If T € £(X) define

E(M)={Aeisoo(T): O<a(Al -T)}

and

E(T)={Aeisoo,(T): O0<a(il -T)}.
Obviously, E(T) c E®(T) forevery T € £L(X).
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Define
Ty (T)={Aeisoo(T):0<a(Al -T) <x}
7oo(T)={A€is0o,(T):0<a(Al -T) <}

Let Pyo(T)=0(T) ~0,(T) or Py, (T) is the set of all poles of the resolvent of T having finite rank for every
T € L(X), we have

Poo (T) < 7700 (T) < 7750 (T)-

For every a-polaroid operator [4, Lemma 3.1]
Poo (T) = 745 (T) = 7250 (T) and E(T) = E*(T).

We now give Weyl theorem and its various variants in the following form:

A bounded operator T € £(X) is said to satisfy Weyl’s theorem, if

o(T)~0,(T)=myu(T).

T € L(X) is said to satisfy a-Weyl’s theorem if

Ga(T) ~ O-UW(T) = ﬂ.(?O(T)
Weyl’s theorem for T entails Browder’s theorem if &, (T) =0, (T) .

A bounded linear operator T € £(X) is said to satisfy property (w) if

Ga(T) ~ O-uw(r) = 77’-00('-)'
T e L(X) is said to satisfy property (b) if

O-a(T) ~ O_uw(T) = pOO(T)

The preceding result is reminiscent of the equivalence established in[10, Theorem 2.2] under the assumption that is T a-
polaroid.

Theorem 2.1. Let T € £(X) be a-polaroid. Then the following are equivalent:
(i) T satisfies a-Weyl’s theorem.
(i) T hasSVEPat A¢ o, (T).

(i) T hasSVEPat A ¢o,,(T) and T isKato typeat 1 €iso o(T).
(iv) T satisfies a-Browder’s theorem and dsc(T —Al) <oo.
W) 0,(T)=0,,(T)Viso o, (T).

Proof.. (i) = (ii). Let T satisfy a-Weyl’s Theorem, then o, (T) ~ o, (T) =74 (T). Let A€ o,(T) ~0,,(T),
A¢o,,(T)and A ey (T) then A €isoo,(T). Thus, T hasSVEPat A ¢ o, (T).

(i) = (). If T has SVEP at A ¢ 0o,,(T) then a-Browder’s theorem holds for T . Then T satisfies a-Weyl’s

theorem if Py, (T) = 775, (T) [1, Theorem 2.14]. We know Pg, (T) < 725, (T) for every T € £(X). We need to
prove the reverse inclusion.

For that if A € 775, (T) then A €is0 0,(T) and 0< p(A1 =T)=q(Al =T) <o as T isa-polaroid.

Also (A1 —=T) <o therefore, using [1, Theorem 3.4] we get (Al —T) <o and hence A € pg, (T).
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() = (v). If T satisfies a-Weyl’s theorem A € 0,(T) ~o,,(T) =7, (T). Then Aeisoo,(T). Thus,
o,(T)co,, (M) uisoo,(T). Also o, (T)uisoo,(T)c o, (T) for every operator T € L(X). Hence,
o,(T)=0,,(T)visoo,(T).

(v) = (iii). Supposeo,(T)=0,,(T)visoo,(T). Let Ag¢o, (T) then either Aeisoo,(T) or
A¢isoo,(T).If A€isoo,(T) then T hasSVEP atA.If A ¢is0 o, (T), then A¢a, (T)uisoo,(T)=0,(T)
and hence T has SVEP at A then using [11, Theorem 3.6] T satisfies a-Browder’s theorem and pg, (T) = 75, (T)
(see (i) = (i)). Thus, a-Weyl’s theorem holds for T . Since T is a-polaroid, therefore 7z, (T) = Py, (T) = 774, (T) -

Thus A€ o,(T)~0,,(T)=754(T) =7y, (T). Also A€ py(T). Thus, A is a pole of the resolvent. Thus
(A1 =T) is kato type [17].

(iii) = (iv). T has SVEP and is kato type at A €S0 o, (T) then T satisfies a-Browder’s theorem and since T is
Kato type at 4 €50 o, (T) . Thus dsc(Al —T) < oo [17].

(iv) = (v). Since T satisfies a-Browder’s theorem therefore T has SVEP at A ¢ Guw(l').

Therefore A €10 0,(T) . Then 0,(T) c o, (T)wisoo(T).
Thus, 0,(T)=0,,(T)visoo,(T).

The a-Weyl’s theorem and property (b) for T € £(X) are independent, but the next result shows that if T is a-
polaroid then property (b) and property (w) are equivalent to a-Weyl’s theorem.

Theorem 2.2. Let T € £L(X) . If T is a-polaroid then the following are equivalent:
(i) T satisfies property (W).

(i) T satisfies a-Weyl’s theorem.

(iii) T satisfies property (b).

We know if T* has SVEP then o(T)=o,(T) [1, Corollary 2.45], so that T has SVEP and T is polaroid then T

is a-polaroid. The following result shows that condition may be described in terms of quasi-nilpotent part of an
operator.

Theorem 2.3. Let T € £(X) . Then T is a-polaroid if and only if there exist p = p(4) € N such that

H, (A1 -T)=ker(41 =T)" forall A iso o(T) ©)

Proof. Suppose T satisfies (1) and A€isoo(T)cisoo,(T). Then there existt peN such that
H, (Al =T) =k r(4l -€T)".

Since 4 €150 o(T). Then

X=H,(Al -T)®K(1l -T)

=Ker(Al -T)* @K (1l -T).

Therefore, X =K r(11€T)? ® (A1 —=T)? X which implies p(A1 =T)=q(Al1 =T)< p and hence A is a
pole of the resolvent so that T is polaroid. Since (Al —T) <oo thus T has SVEP at A therefore, T is a-
polaroid.

Conversely, T is a-polaroid and hence polaroid. Then by [2, Theorem 2.9] there exists p e N such that
H (A1 -T) =k r(11 €T)".
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An operator U € L(Y, X) between two Banach spaces Y and X is said to be a quasi-affinity if U is injective and
has dense range. The operator S € £(Y) is said to be a quasi-affine transform of T € £(X) (notation S <T ), if

there is a quasi-affinity U € £(Y, X) such that TU =US . If both S<T and T < S hold then S, T are said to
be quasi-similar.

Theorem 2.4. Suppose that T € £(X) and S<T . If T is a-polaroid then property (b), property (w) and a-
Weyl’s theorem equivalently hold for S .

Proof. Since T is a-polaroid, we show that S is a -polaroid. Let A €150 o(T) < iS0 o, (T). Then there exists
p e N suchthat Hy(A1 =T) =k r(11 €T)".Let xe H, (A1 —S). Then

lim || (A1 =T)"Ux|[""=lim [|U (A1 =S)"x ||
<lim|| (A1 =S)"x|[""=0.
So Uxe H, (A1 —T) =k r(Al €T)".
Therefore,
U(Al-S)’x= (A1 -T)?Ux =0.
and since U is injective, therefore X € ker(11 —S)”. This gives H, (41 —S) < k r(11 €S)". Since opposite

inclusion is true we get H, (A1 —=S) =k r(A1 -€S)". By Theorem 2.2, the result follows.
Let H(o(T)) denote the set of analytic functions which are defined on an open neighbourhood U/ of o (T)

Theorem 2.5. Let T € £(X) is a-polaroid, f € H(c(T)). Then
Foa(T) ~ 750 (T)) = 0, (f (T)) ~ 776, (£ (T)). Forany T e L(X)
o, (f(T)) ~ 75 (£ (T)) = F (0, (T) ~ 775, (T))-

Let Le f(o,(T)~7n5%(T)) < f(o,(T)). Suppose A € 75, (f(T)) then
fFM) A= —m)T —p5)..(T = p1,)9(T)

for some g4, 14, ... 1, € 0,(T) and g(T) is invertible. If some 1, € o, (T) then g, €isoo,(T)cz(T) as T
is a-polaroid Since A is an isolated point of o, (T) of finite multiplicity, then « € o,(T) are poles of finite

multiplicity. Since T is a-polaroid, therefore, poles of finite multiplicity are in 7z§0 (T), which is a contradiction.

Thus,
Aeo,(f(T)~ag(f(T)).

It is known that o, (f(T)) < f(o,,(T)). The next theorem gives us some sufficient conditions such that the
equality holds.

Theorem 2.6. Let T € £L(X) be a-polaroid then T obeys a-Weyl’s theorem for f € H(c(T)). Then f(T) obeys
a-Weyl’s theorem if and only if

F(0,,(T)) = 0, ((T)).

Proof. By Theorem 2.5 we have

F (o (T)) = f (0 (T) ~ 76,(T))
=0, (f(T)) ~ 7, (£ (T))

The right hand side is equal to o, (f (T)) ifand only if f (o, (T))=0,,(f(T)).
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