EXISTENCE THEORY FOR BOUNDARY VALUE PROBLEM OF RANDOM DIFFERENTIAL INCLUSION

D. S. Palimkar*
Department of Mathematics, Vasantrao Naik College, Nanded-431603(M.S.), India

(Received on: 12-08-12; Revised \& Accepted on: 15-09-12)

Abstract

In this paper, I prove the existence of random solution for the boundary value problem of second order multi-valued differential inclusion with non-convex case using a nonlinear alternative of Leray-Schauder type and on a selection theorem for lower semi continuous maps.

Keywords: Random differential inclusion, multi-valued random operator, random solution, boundary value problem
2000 Mathematics Subject Classification: 60H25, 47 H10.

1. INTRODUCTION

Consider the two point boundary value problem (BVP) of second order differential inclusions

$$
\begin{equation*}
x^{\prime \prime}(t) \in F\left(t, x(t), x^{\prime}(t)\right) \quad \text { a.e. } \quad t \in J \tag{1.1}
\end{equation*}
$$

satisfying the boundary conditions

$$
\left.\begin{array}{l}
a_{0} x\left(t_{0}\right)-a_{1} x^{\prime}\left(t_{1}\right)=c_{0} \tag{1.2}\\
b_{0} x\left(t_{0}\right)+b_{1} x^{\prime}\left(t_{1}\right)=c_{1}
\end{array}\right\}
$$

where the functions involved in (1.1) and (1.2) satisfy the following properties :
(a) $F: J \times R \times R \rightarrow \mathcal{P}_{f}(R)$,
(b) $a_{0}, a_{1}, b_{0}, b_{1} \in R^{+}$satisfying $a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}>0$ and
(c) $c_{0}, c_{1} \in R$.

Let $J=\left[t_{0}, t_{1}\right]$ be a closed and bounded interval in R for some real numbers $t_{0}, t_{1} \in R$ with $t_{0}<t_{1}$. let $\boldsymbol{P}_{f}(\boldsymbol{R})$ denote the class of all non-empty subsets of R with a property f. By a solution of the BVP (1.1)-(1.2), I mean a function $x \in A C^{1}(J, R)$ whose second derivative exists and is a member of $L^{1}(J, R)$ in $F\left(t, x, x^{\prime}\right)$, i.e. there exists a $v \in L^{1}(J, R)$ such that $v(t) \in F\left(t, x(t), x^{\prime}(t)\right)$ for a. e. $t \in J$ and $x^{\prime \prime}(t)=v(t)$ for all $t \in J$ satisfying (1.2), where $A C^{1}(J, R)$ is the space of continuous real-valued functions whose first derivative exists and is absolutely continuous on J .

The special cases of the BVP (1.1)-(1.2) have been discussed in the literature for existence of the solutions. The special case of the form

$$
\begin{equation*}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right), \text { a.e. } t \in J \tag{1.3}
\end{equation*}
$$

satisfying the boundary conditions (1.2) where $f: J \times R \rightarrow R, a_{0}, a_{1}, b_{0}, b_{1} \in R_{+}, \quad c_{0}, c_{1} \in R$ and $a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}>0$ has been discussed in Bernfeld and Lakshmikantham [2] for the existence of solutions. Again, when $c_{0}=c_{1}, a_{1}=0=b_{1}, a_{0}=b_{0}$, and F not depending on x^{\prime}, the BVP (1.1) - (1.2) reduces

$$
\begin{equation*}
y^{\prime \prime} \in F(t, y) \text { a.e. } t \in J, y\left(t_{0}\right)=y\left(t_{1}\right) \tag{1.4}
\end{equation*}
$$

Corresponding author: D. S. Palimkar*
Department of Mathematics, Vasantrao Naik College, Nanded-431603(M.S.), India

D. S. Palimkar*/ EXISTENCE THEORY FOR BOUNDARY VALUE PROBLEM OF RANDOM DIFFERENTIAL INCLUSION /IJMA- 3(9), Sept.-2012.

where $y=x$. This is a BVP of second order differential inclusions considered in Benchohra and Ntouyas [3]. Finally, the special case of the BVP consisting of the equation

$$
\begin{equation*}
y^{\prime \prime}(t) \in F(t, y(t)), \text { a.e. } t \in J \tag{1.5}
\end{equation*}
$$

satisfying the boundary conditions (1.2) has been studied in Halidias and Papageorgiou [5] via the method of lower and upper solutions. Thus the BVP (1.1) - (1.2) is more general and so is its importance in the theory of differential inclusions. Here in the present paper, I discuss the BVP (1.1) - (1.2) via a nonlinear alternative of Leray-Schauder type and on a selection theorem for lower semi continuous maps. I prove the main existence results for the BVP (1.1) - (1.2) when the right hand side has nonconvex values.

2. AUXILIARY RESULTS

I apply the following nonlinear alternative in the sequel.
Theorem 2.1 (O'Regan [8]) Let U and $\overline{\boldsymbol{U}}$ be the open and closed subsets in a normed linear space X such that $0 \in U$ and let $T: \bar{U} \rightarrow \mathcal{P}_{c p, c v}(X)$ be a completely continuous multi-valued operator. Then either
(i) the operator inclusion $x \in T x$ has a solution, or
(ii) there is an element $u \in \partial U$ such that $\lambda u \in T u$ for some $\lambda>1$, where ∂U is the boundary of U.

Corollary 2.1 Let $\mathcal{B}_{r}(\mathrm{O})$ and $\overline{\mathcal{B}_{r}(\mathrm{O})}$ be the open and closed balls in a normed linear space X centered at origin 0 of radius r and let $T: \overline{\mathcal{B}_{r}(\mathbf{O})} \rightarrow \mathcal{P}_{c p, c v}(X)$ be a completely continuous multi-valued operator. Then either
(i) the operator inclusion $x \in T x$ has a solution, or
(ii) there is an element $u \in X$ such that $\|u\|=r$ satisfying $\lambda u \in T u$ for some $\lambda>1$.

Corollary 2.2 Let $\mathcal{B}_{r}(\mathbf{0})$ and $\overline{\mathcal{B}_{r}(\mathbf{O})}$ be the open and closed balls in a normed linear space X centered at origin 0 of radius r and let $T: \overline{\boldsymbol{B}_{r}(\mathbf{O})} \rightarrow X$ be a completely continuous multi-valued map. Then either (1) the operator inclusion $x=T x$ has a solution, or (2) there is an element $u \in X$ such that $\|u\|=r$ and $u=\lambda T u$ for some $\lambda<1$.

Now, I state a selection theorem due to Bressan and Colombo [4].
Theorem 2.2 Let Y be a separable metric space and let $N: \boldsymbol{Y} \rightarrow \mathcal{P}_{f}\left(\boldsymbol{L}^{1}(\boldsymbol{J}, \mathbb{R})\right)$ be a multi-valued operator which has property $(B C)$. Then N has a continuous selection, i.e. there exists a continuous function (single-valued) $g: Y \rightarrow L^{1}(J, R)$ such that $g(y) \in N(y)$ for every $y \in Y$.

3. EXISTENCE RESULTS

I have written a useful result from the theory of boundary value problems of ordinary differential equations.
Lemma 3.1 If $f \in L^{1}(J, R)$, then the BVP

$$
x^{\prime \prime}(t)=f(t) \quad \text { a.e. } t \in J \quad \text { and } \quad\left\{\begin{array}{l}
a_{0} x\left(t_{0}\right)-a_{1} x^{\prime}\left(t_{1}\right)=c_{0} \tag{3.1}\\
b_{0} x\left(t_{0}\right)+b_{1} x^{\prime}\left(t_{1}\right)=c_{1}
\end{array}\right.
$$

has a unique solution x given by

$$
\begin{equation*}
x(t)=z(t)+\int_{t_{0}}^{t_{1}} G(t, s) f(s) d s, \quad t \in J, \tag{3.2}
\end{equation*}
$$

where z is a unique solution of the homogeneous differential equation

$$
x^{\prime \prime}(t)=0 \quad \text { a.e. } \quad t \in J \quad \text { and } \quad\left\{\begin{array}{l}
a_{0} x\left(t_{0}\right)-a_{1} x^{\prime}\left(t_{1}\right)=c_{0} \tag{3.3}\\
b_{0} x\left(t_{0}\right)+b_{1} x^{\prime}\left(t_{1}\right)=c_{1}
\end{array}\right.
$$

given by

$$
\begin{equation*}
z(t)=\frac{c_{0} a_{1}\left(t_{1}-t\right)+c_{0} b_{1}+c_{1} a_{0}\left(t-t_{0}\right)+c_{1} b_{0}}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}, \quad t \in J \tag{3.4}
\end{equation*}
$$

and $G(t, s)$ is the Green's function associated to the differential equation

$$
x^{\prime \prime}(t)=0 \quad \text { a.e. } \quad t \in J \quad \text { and } \quad\left\{\begin{array}{l}
a_{0} x\left(t_{0}\right)-a_{1} x^{\prime}\left(t_{1}\right)=0 \tag{3.5}\\
b_{0} x\left(t_{0}\right)+b_{1} x^{\prime}\left(t_{1}\right)=0
\end{array}\right.
$$

given

$$
G(t, s)= \begin{cases}\frac{\left(a_{1}\left(t_{1}-t\right)+b_{1}\right)\left(a_{0}\left(s-t_{0}\right)+b_{0}\right)}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}, & t_{0} \leq s \leq t \leq t_{1}, \tag{3.6}\\ \frac{\left(a_{1}\left(t_{1}-s\right)+b_{1}\right)\left(a_{0}\left(t-t_{0}\right)+b_{0}\right)}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}, & t_{0} \leq t \leq s \leq t_{1},\end{cases}
$$

Remark 3.1 It is known that the function z belongs to the class $C^{1}(J, R)$. Therefore it is bounded on J and there is a constant $C_{1}>0$ with

$$
C_{1}=\max \left\{\frac{c_{0} a_{1}\left(t_{1}-t_{0}\right)+c_{0} b_{1}+c_{1} a_{0}\left(t_{1}-t_{0}\right)+c_{1} b_{0}}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}, \frac{c_{0} b_{1}-c_{0} a_{1}+c_{1} a_{0}+c_{1} b_{0}}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}\right\}
$$

such that

$$
\|z\|=\max \left\{\sup _{t \in J}|z(t)|, \sup _{t \in J}\left|z^{\prime}(t)\right|\right\} \leq C_{1}
$$

Remark 3.2 It is easy to see that the Green's function $G(t, s)$ of Lemma 3.1 is continuous in $J \times J$ and $G_{t}(t, s)$ is continuous in $(a, b) \times(a, b) \backslash\{(t, t) \mid t \in J\}$ and satisfy the inequalities

$$
\begin{gather*}
|G(t, s)|=G(t, s) \leq \frac{\left(a_{1}\left(t_{1}-t_{0}\right)+b_{1}\right)\left(a_{0}\left(t_{1}-t_{0}\right)+b_{0}\right)}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}=K_{1}, \tag{3.7}\\
\left|G_{t}(t, s)\right|=\left\{\begin{array}{l}
\frac{\left|-a_{1}\right|\left(a_{0}\left(s-t_{0}\right)+b_{0}\right)}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}, t_{0}<s<t<t_{1,} \\
\frac{\left(a_{1}\left(t_{1}-s\right)+b_{1}\right) a_{0}}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}, t_{0}<t<s<t_{1} .
\end{array}\right.
\end{gather*}
$$

and

$$
\begin{align*}
& =\max \left\{\frac{a_{1}\left(a_{0}\left(t_{1}-t_{0}\right)+b_{0}\right)}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}, \frac{\left(a_{1}\left(t_{1}-t_{0}\right)+b_{1}\right) a_{0}}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}\right\} \tag{3.8}\\
& =K_{2} .
\end{align*}
$$

Now, I study the case, when F is not necessarily convex valued. I give result, based on the Leray-Schauder Alternative for single valued maps combined with a selection theorem due to Bressan and Colombo [4] for lower semicontinuous multi-valued operators with decomposable values.

The following assumptions will be needed for proving main existence resul
$\left(H_{1}\right)$ There exists a function $\phi \in L^{1}(J, R)$ with $\phi(t)>0$ for a.e. $t \in J$ and there is a nondecreasing function $\psi: R^{+} \rightarrow(0, \infty)$ such that
$\|F(t, x, y)\|_{\mathcal{P}}=\operatorname{sun}\{|u|: u \in F(t, x, y)\} \leq \phi(t) \psi(\max \{|x|,|y|\})$ for a.e. $t \in J$ and for all $x, y \in R$.
$\left(\boldsymbol{H}_{2}\right)$ The multi-valued function $t \mapsto F(t, x, y)$ is measurable and integrably bounded for all $\boldsymbol{x}, y \in R$.
$\left(H_{3}\right)$ The multi-fraction $F: J \times R \times R \rightarrow \mathcal{P}_{c l}(R)$ satisfies

$$
H\left(F\left(t, x_{1}, y_{1}\right), F\left(t, x_{2}, y_{2}\right)\right) \leq \ell_{1}(t)\left|x_{1}-y_{1}\right|+\ell_{2}(t)\left|x_{2}-y_{2}\right| \text { a.e. } t \in J
$$

for all $x_{1}, x_{2}, y_{1}, y_{2} \in R$.
$\left(H_{4}\right)$ The multi-function $F: J \times R \times R \rightarrow \mathcal{P}_{c p}(R)$ satisfies
a) $(t, x, y) \mapsto F(t, x, y)$ is $(\mathcal{L} \otimes \mathcal{B} \otimes \mathcal{B})$ - measurable, and
b) $(x, y) \mapsto F(t, x, y)$ is lower semi-continuous for almost every $t \in J$.

Lemma 3.2 Let $F: J \times R \times R \rightarrow \mathcal{P}_{c p}(R)$ be an integrably bounded multi-valued function satisfying $\left(H_{4}\right)$. Then F is of lower semi-continuous type.

MAIN RESULT

Theorem 3.3 Assume the hypotheses $\left(H_{1}\right)-\left(H_{4}\right)$ hold and there exists a real number $r>0$ satisfying

$$
\begin{equation*}
r>C_{1}+\max \left\{K_{1}, K_{2}\right\}\|\phi\|_{L^{1}} \psi(r) \tag{3.9}
\end{equation*}
$$

where C_{1}, K_{1} and K_{2} are the constants defined in Remark 3.2. Then the BVP (1.1) - (1.2) has at least one solution on J .

Proof: First, I transform the BVP (1.1) - (1.2) into a fixed-point problem in a suitable normed linear space. The problem of existence of a solution of BVP (1.1) - (1.2) reduces to finding a solution of the integral equation

$$
\begin{equation*}
x(t)=z(t)+\int_{t_{0}}^{t_{1}} k(t, s) f(x(s)) d s, \quad t \in J \tag{3.10}
\end{equation*}
$$

where $f(x(\cdot)) \in L^{1}$ with $f(x(t)) \in F\left(t, x(t), x^{\prime}(t)\right)$ a.e. $t \in J$. I study the integral equation (6.3.13) in the space $A C^{1}(J, R)$. Let $X=A C^{1}(J, R)$ and define an open ball $\mathcal{B}_{r}(0)$ in X centered at origin 0 of radius r, where the real number $\mathrm{r}>0$ satisfies the inequality (3.9). Define the operator T on $\overline{\mathcal{B}_{r}(\mathbf{0})}$ by

$$
\begin{equation*}
T x(t)=z(t)+\int_{t_{0}}^{t_{1}} k(t, s) f(x(s)) d s \tag{3.11}
\end{equation*}
$$

Then the integral equation (3.11) is equivalent to the operator equation

$$
\begin{equation*}
x(t)=T x(t), \quad t \in J \tag{3.12}
\end{equation*}
$$

I will show that the multi-valued operator T satisfies all the conditions of Corollary 2.2.
First, I show that T is continuous on $\overline{\mathcal{B}_{r}(0)}$. Since $\left(H_{1}\right)$ holds, then

$$
|f(x(t))| \leq \phi(t) \psi\left(\max \left\{|x(t)|,\left|x^{\prime}(t)\right|\right\}\right) \quad \text { a.e. } t \in J
$$

for all $\boldsymbol{x} \in A C^{1}(J, R)$. Let $\left\{x_{n}\right\}$ be a sequence in $\overline{\mathcal{B}_{r}(\mathbf{O})}$ converging to a point $\boldsymbol{x} \in \overline{\mathcal{B}_{r}(\mathbf{O})}$.

Then,

$$
\left|f\left(x_{n}(t)\right)\right| \leq \phi(t) \psi(r) \text { a.e. } t \in J
$$

Hence, by the dominated convergence theorem and continuity of f, I have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} T x_{n}(t) & =z(t)+\int_{t_{0}}^{t_{1}} G(t, s) f\left(x_{n}(s)\right) d s \\
& =T x(t)
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(T x_{n}\right)^{\prime}(t) & =z^{\prime}(t)+\int_{t_{0}}^{t_{1}} G_{t}(t, s) f\left(x_{n}(s)\right) d s \\
& =(T x)^{\prime}(t)
\end{aligned}
$$

for all $t \in J$. As a result, T is continuous on $\overline{\mathcal{B}_{r}(\mathbf{0)}}$. Next, using theorem as "Assume that (1) F is Carath'eodory and (2) $\left(H_{3}\right)$ hold. Suppose that there is a real number $r>0$ such that $r>C_{1}+\max \left\{K_{1}, K_{2}\right\}\|\phi\|_{L^{1}} \psi(r)$. Then the BVP (1.1)-(1.2 has at least one solution u such that $\|u\| \leq r$.Following the arguments as in above mentioned theorem, it is shown that T is a compact operator on $\overline{\mathcal{B}_{r}(\mathbf{O})}$. Now an application of Corollary 2.2 yields that either (i) the operator equation $X=T X$ has a solution $\overline{\mathcal{B}_{r}(0)}$, or (ii) there is an element $u \in X$ such that $\|u\|=r$ and $u=\lambda T u$ for some $\lambda \in(0,1)$. If the assertion (ii) holds, then we obtain a contradiction to multivalued operator definition. Hence assertion (i) holds and the BVP (1.1-(1.2) has a solution $u \in A C^{1}(J, R)$ such that $\|u\| \leq r$. This completes the proof.

REFERENCES

[1]. J. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, 1984.
[2]. S. Bernfield and V. Lakhsmikantham, An Introduction to Boundary Value Problem, Academic Press, New York, 1974.
[3]. M. Benchora and S. K. Ntouyas, On second order differential inclusions with periodic boundary conditions, Acta. Math. Univ. Comeniana LXIX (2000), 173-181.
[4]. A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90, 1988, 69-86.
[5]. N. Halidias and N. S. Papageorgiou, Second order multi-valued boundary value problems, Arch. Math (Brno) 34, 1998, 267-284.
[6]. Hu and N. S. Papageorgiou, Hand Book of Multi-valued Analysis Vol.-I, Theory Kluwer Academic Publisher, Dordrechet, Boston, London, 1997.
[7]. D.S. Palimkar, Existence theory for second order random differential inclusion, Int. Journ. of Adv. in Engineering, Science and Technology,Vol.2,Issue 3,2012,p.261-266.
[8]. D. O’ Regan, Fixed point theory for closed multifunctions, Arch. Math. (Brno) 34, 1998, 191-197.

Source of support: Nil, Conflict of interest: None Declared

