International Journal of Mathematical Archive-2(3), Mar. - 2011, Page: 351-355

MA Available online through www.i.jma.info ISSN 2229-5046

SOME INEQUALITIES CONCERNING Q-GAMMA FUNCTIONS

W. T. Sulaiman*
Department of Computer Engineering, College of Engineering
University of Mosul, Iraq.
E-mail: waadsulaiman@hotmail.com

(Received on: 26-02-11; Accepted on: 05-03-11)

ABSTRACT

$S_{\text {everal new inequalities concerning } q \text {-gamma functions are proved. }}^{\text {- }}$
Mathematics subject classification (2010): 33B15, 33D05, 36D07, 24A48.
Keywords: q-gamma function, inequality, monotonic function.

1. INTRODUCTION:

The Euler gamma function $\Gamma(x)$ is defined for $x>0$ by

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t \tag{1.1}
\end{equation*}
$$

The psi or digamma function, the logarithmic derivative of the gamma function is defined by

$$
\begin{equation*}
\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}, \quad x>0 . \tag{1.2}
\end{equation*}
$$

The q -analogue of $\Gamma(x)$ is called q-gamma function, was introduced by Jackson in 1904 and defined for $x>0$ and $0<q<1$ by

$$
\begin{equation*}
\Gamma_{q}(x)=(1-q)^{1-x} \prod_{n=0}^{\infty} \frac{1-q^{n+1}}{1-q^{n+x}} \tag{1.3}
\end{equation*}
$$

The q-gamma function satisfies the following

$$
\begin{equation*}
\lim _{q \rightarrow 1^{1^{-}}} \Gamma_{q}(x)=\Gamma(x) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{q}(x+1)=\frac{1-q^{x}}{1-q} \Gamma_{q}(x), \quad \Gamma_{q}(1)=1 . \tag{1.5}
\end{equation*}
$$

The q -analogue of $\psi(x)$ is called the q -psi function defined by

$$
\begin{equation*}
\psi_{q}(x)=\frac{\Gamma_{q}^{\prime}(x)}{\Gamma_{q}(x)} . \tag{1.6}
\end{equation*}
$$

From (1.3) and (1.6) it follows that

$$
\begin{equation*}
\psi_{q}(x)=-\log (1-q)+\log q \sum_{n=0}^{\infty} \frac{q^{n+x}}{1-q^{n+x}}=-\log (1-q)+\log q \sum_{n=0}^{\infty} \frac{q^{n x}}{1-q^{n}} . \tag{1.7}
\end{equation*}
$$

It is well-known that ψ_{q}^{\prime} is strictly completely monotonic on $(0, \infty)$ that is (see [1,page260])

$$
\begin{equation*}
(-1)^{n}\left(\psi_{q}^{\prime}(x)\right)^{(n)}>0 \text { for } x>0, n \geq 0 \tag{1.8}
\end{equation*}
$$

Concerning q-gamma functions, the following results were achieved
Theorem: 1.1[3]. Let $x \in[0,1], q \in(0,1), a \geq b>0, c, d$ positive real numbers with $b c>a d>0$ and $\psi_{q}(b+a x)>0$. Then

$$
\begin{equation*}
\frac{\Gamma_{q}(a)^{c}}{\Gamma_{q}(b)^{d}} \leq \frac{\Gamma_{q}(a+b x)^{c}}{\Gamma_{q}(b+a x)^{d}} \leq \frac{\Gamma_{q}(a+b)^{c}}{\Gamma_{q}(a+b)^{d}} . \tag{1.9}
\end{equation*}
$$

Theorem: 1.2[2]. Let $0<q<1, A \leq 0$, and $b \geq 0$. Then the function

$$
\begin{equation*}
f(x)=x^{A}\left[\Gamma\left(1+\frac{b}{x}\right)\right]^{x} \tag{1.10}
\end{equation*}
$$

decreases with respect to $x>0$.

The object of the present paper is to give several new inequalities concerning the q-gamma functions.

2. RESULTS:

The following generalizes theorem 1.2.
Theorem: 2.1. Let f be a non-negative real function such that $f^{\prime}<0$ and $f^{\prime \prime} \geq 0$. Let $0<q<1$, $\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{f(x)}=0, f(x) f^{\prime \prime}(x) \geq\left(f^{\prime}(x)\right)^{2}$ and $b \geq 0$. Then the function

$$
\begin{equation*}
F(x)=f(x)\left[\Gamma_{q}\left(1+\frac{b}{x}\right)\right]^{x} \tag{2.1}
\end{equation*}
$$

decreases with respect to $x>0$.

Proof: We have,

$$
\begin{aligned}
\log F(x) & =\log f(x)+x \log \Gamma_{q}\left(1+\frac{b}{x}\right) \\
F^{\prime}(x) & =\left(\frac{f^{\prime}(x)}{f(x)}-\frac{b}{x} \psi_{q}\left(1+\frac{b}{x}\right)+\log \Gamma_{q}\left(1+\frac{b}{x}\right)\right) F(x)=g\left(\frac{1}{x}\right) F(x)
\end{aligned}
$$

By setting $x=1 / y$, we have

$$
g(y)=\frac{f^{\prime}\left(y^{-1}\right)}{f\left(y^{-1}\right)}-b y \psi(1+b y)+\log \Gamma_{q}(1+b y)
$$

Differentiating the above leads to

$$
g^{\prime}(y)=\frac{\left(f^{\prime}\left(y^{-1}\right)\right)^{2}-f\left(y^{-1}\right) f^{\prime \prime}\left(y^{-1}\right)}{y^{2} f\left(y^{-1}\right)}-b y \psi^{\prime}(1+b y)<0 .
$$

Therefore g is non-increasing. As $g(0)=0$, then $g(y)$ and hence $g\left(x^{-1}\right)<0$, which implies $F^{\prime}(x)<0$. That is F is decreasing.

Remark: 1 It may be mentioned that theorem 1.2 follows from theorem 2.1 by putting $f(x)=x^{A}, A \leq 0$. In a similar way as the Beta function, we define the q-beta function by

$$
\begin{equation*}
B_{q}(x, y)=\frac{\Gamma_{q}(x) \Gamma_{q}(y)}{\Gamma_{q}(x+y)}, \quad x, y>0 . \tag{2.2}
\end{equation*}
$$

Lemma: 2.2 Let $0<q<1,0<s \leq t, 0<t+m \leq s+n$, then

$$
\frac{q^{s}}{1-q^{m}} \geq \frac{q^{t}}{1-q^{n}} .
$$

Proof: We have

$$
q^{s}+q^{t+m} \geq q^{t}+q^{s+n},
$$

which implies

$$
\begin{aligned}
& q^{s}-q^{s+n} \geq q^{t}-q^{t+m} \\
& q^{s}\left(1-q^{n}\right) \geq q^{t}\left(1-q^{m}\right),
\end{aligned}
$$

hence the result.
Theorem: 2.3 Let $x, a, b, \alpha>0$. Then the function $B_{q}(\alpha a+b x, \alpha b+a x)$ is non-increasing in x.
Proof: Let

$$
f(x)=B_{q}(\alpha a+b x, \alpha b+a x),
$$

then, we have

$$
\log f(x)=\log \Gamma_{q}(\alpha a+b x)+\log \Gamma(\alpha b+a x)-\log \Gamma((a+b)(\alpha+x)),
$$

and

$$
\begin{aligned}
\frac{f^{\prime}(x)}{f(x)}= & b \psi(\alpha a+b x)+a \psi(\alpha b+a x)-(a+b) \psi((a+b)(\alpha+x)) \\
= & \log q\left(a \sum_{i=0}^{\infty} \frac{q^{\alpha a+b x+i}}{1-q^{\alpha a+b x+i}}+b \sum_{i=0}^{\infty} \frac{q^{\alpha b+a x+i}}{1-q^{\alpha b+a x+i}}-(a+b) \sum_{i=0}^{\infty} \frac{q^{(a+b)(\alpha+x)+i}}{1-q^{(a+b)(\alpha+x)+i}}\right) \\
= & a \log q\left(\sum_{i=0}^{\infty}\left(\frac{q^{\alpha a+b x+i}}{1-q^{\alpha a+b x+i}}-\frac{q^{(a+b)(\alpha+x)+i}}{1-q^{(a+b)(\alpha+x)+i}}\right) q^{i}\right) \\
& \quad+b \log q\left(\sum_{i=0}^{\infty}\left(\frac{q^{\alpha b+a x+i}}{1-q^{\alpha b+a x+i}}-\frac{q^{(a+b)(\alpha+x)+i}}{1-q^{(a+b)(\alpha+x)+i}}\right) q^{i}\right) .
\end{aligned}
$$

Now, making use of lemma 2. With

$$
s=\alpha a+b x, \quad t=(a+b)(\alpha+x), \quad m=\alpha a+b x+i \quad \text { and } \quad n=(a+b)(\alpha+x)+i
$$

*W. T. Sulaiman / Some inequalities concerning Q-gamma functions / IJMA- 2(3), Mar.-2011, Page: 351-355 and then exchang a and b , we get $f^{\prime}(x) / f(x) \leq 0$, which implies $f^{\prime}(x) \leq 0$.

Therefore $f(x)$ is non-increasing. The proof is complete.
Theorem: 2.4 Let $\quad x>0, c, d, M, N>0, M b^{2}<N d^{2}, a>c, b>d, 0<q<1, f>0 \quad$ and $f^{\prime \prime}<0$ (that is f^{\prime} is decreasing). Then the function

$$
L(x)=f(x) \frac{\left(\Gamma_{q}\left(1+\frac{a}{x}\right)\right)^{M x}}{\left(\Gamma_{q}\left(1+\frac{b}{x}\right)^{N x}\right.}
$$

is decreasing for $x>0$.

Proof: We have

$$
\begin{aligned}
\log L(x) & =\log f(x)+M x \log \left(\Gamma_{q}\left(1+\frac{a}{x}\right)\right)-N x \log \left(\Gamma_{q}(1+b)\right), \\
\frac{L^{\prime}(x)}{L(x)} & =\frac{f^{\prime}(x)}{f(x)}-b \frac{M}{x} \frac{\Gamma_{q}^{\prime}\left(1+\frac{a}{x}\right)}{\Gamma_{q}\left(1+\frac{a}{x}\right)}+M \Gamma_{q}\left(1+\frac{a}{x}\right)+N \frac{b}{x} \frac{\Gamma_{q}^{\prime}\left(1+\frac{b}{x}\right)}{\Gamma_{q}\left(1+\frac{b}{x}\right)}-N \Gamma_{q}\left(1+\frac{b}{x}\right) \\
& =\frac{f^{\prime}(x)}{f(x)}-b \frac{M}{x} \psi_{q}\left(1+\frac{a}{x}\right)+M \Gamma_{q}\left(1+\frac{a}{x}\right)+N \frac{b}{x} \psi_{q}\left(1+\frac{b}{x}\right)-N \Gamma_{q}\left(1+\frac{b}{x}\right) \\
& =\frac{G(x)}{f(x)} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
G^{\prime}(x) & =\frac{f^{\prime \prime}(x)}{f(x)}-\frac{\left(f^{\prime}(x)\right)^{2}}{f^{2}(x)}+M \frac{a^{2}}{x^{3}} \psi_{q}^{\prime}\left(1+\frac{a}{x}\right)-N \frac{b^{2}}{x^{3}} \psi_{q}^{\prime}\left(1+\frac{b}{x}\right) \\
& \leq \frac{f^{\prime \prime}(x)}{f(x)}-\frac{\left(f^{\prime}(x)\right)^{2}}{f^{2}(x)}+M \frac{a^{2}}{x^{3}}\left(\psi_{q}^{\prime}\left(1+\frac{a}{x}\right)-\psi_{q}^{\prime}\left(1+\frac{b}{x}\right)\right)
\end{aligned}
$$

Since $\psi_{q}^{\prime \prime}(x)<0$, then ψ_{q}^{\prime} is decreasing. Therefore $G^{\prime}(x) \leq 0$, which implies $L^{\prime}(x) \leq 0$, and hence $L(x)$ is decreasing.

Theorem: 2.5 Let $x, y>0,0<q<1, c, d>0, a \geq c, b \geq d, \Gamma_{q}(a) \geq 1, \psi_{q}(c+d x) \geq 0$. Then the function

$$
H(x)=\frac{\Gamma\left(a+\frac{b}{y}\right)^{x}}{\Gamma\left(c+\frac{d}{x}\right)^{y}}
$$

is non- decreasing for $x>0$.
Proof: Since $\psi_{q}^{\prime}>0$, then ψ_{q} is increasing and therefore $\psi(a+b x) \geq \psi(c+d x)$. Then we have

$$
\begin{aligned}
\log H(x) & =x \log \Gamma_{q}\left(a+\frac{b}{y}\right)-y \log \Gamma_{q}\left(c+\frac{d}{x}\right), \\
\frac{H^{\prime}(x)}{H(x)} & =\log \Gamma\left(a+\frac{b}{y}\right)+\frac{y d}{x^{2}} \psi_{q}\left(c+\frac{d}{x}\right)=\frac{g(x)}{F(x)} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& g(z)=\log \Gamma_{q}(a+b z)+y z^{2} d \psi_{q}(c+d z), \quad x^{-1}=z \\
& g^{\prime}(z)=b \psi_{q}(a+b z)+y d z^{2} \psi_{q}^{\prime}(c+d z)+2 y z \psi_{q}(c+d z)
\end{aligned}
$$

*W. T. Sulaiman / Some inequalities concerning Q-gamma functions / IJMA- 2(3), Mar.-2011, Page: 351-355

$$
\begin{aligned}
& \geq(b+2 y z) \psi_{q}(c+d z)+y d z^{2} \psi_{q}^{\prime}(c+d z) \\
& \geq 0
\end{aligned}
$$

Therefore g is non-decreasing. Since $g(0) \geq 0$, then $g(x) \geq 0$, and hence $H^{\prime}(x) \geq 0$.
Theorem: 2.6 Let $f(x) \geq g(x), a f^{\prime}(x) \geq b g^{\prime}(x)>0, \psi(g(x))>0, a, b>0$, then the function

$$
h(x)=\frac{\Gamma_{q}(f(x))^{a}}{\Gamma_{q}(g(x))^{b}}
$$

is non-decreasing in x.
Proof: We have

$$
\begin{aligned}
\log h(x) & =a \log \Gamma_{q}(f(x))-b \log \Gamma_{q}(g(x)) \\
\frac{h^{\prime}(x)}{h(x)} & =a f^{\prime}(x) \frac{\Gamma_{q}^{\prime}(f(x))}{\Gamma_{q}(f(x))}-b g^{\prime}(x) \frac{\Gamma_{q}^{\prime}(g(x))}{\Gamma_{q}(g(x))} \\
& =a f^{\prime}(x) \psi_{q}(f(x))-b g^{\prime}(x) \psi_{q}(g(x))
\end{aligned}
$$

Making use of (1.7), we have

$$
\psi(f(x))-\psi(g(x))=\log \sum_{n=0}^{\infty} \frac{\left(q^{f(x)}-q^{g(x)}\right) q^{n}}{\left(1-q^{n+f(x)}\right)\left(1-q^{n+g(x)}\right)} \geq 0
$$

which implies

$$
\frac{h^{\prime}(x)}{h(x)} \geq b g^{\prime}(x)(\psi(f(x))-\psi(g(x))) \geq 0
$$

Therefore $h^{\prime}(x) \geq 0$ and h is non-decreasing.

Remark: 2 Theorem 1.1 follows from theorem 2.6 by putting

$$
f(x)=a+b x, \quad g(x)=b+a x, 0 \leq x \leq 1, \quad \text { and replacing } a, b \text { by } c, d \text { respectively. }
$$

REFERENCES:

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas and Mathematical Tables, Dover, New york, 1965.
[2] C. G. Kokologiannaki, Monotonicity of of functions involving q-gamma functi-ons, Math. Ineq. Appl., Preprint.
[3] T. Mansour, Some inequalities for the q-gamma functions, J. Ineq. Pure. Appl. Math. Volume 9 (2008), Issue 1, Article 1.

