$\alpha g \omega$ - closed sets in topological spaces

¹Dr J. Antony Rex Rodrigo & ²P. Krishna*

¹Department of Mathematics, V. O. Chidambaram College, Thoothukudi, (TN), India

²Department of Mathematics, Cape Institute of Technology, Levengipuram, Tirunelveli, (TN), India

(Received on: 17-08-12; Revised & Accepted on: 03-09-12)

ABSTRACT

New classes of sets called $\alpha g \omega$ -closed sets and $\alpha g \omega$ -open sets are introduced and study some of their properties. Moreover the notions of $\alpha g \omega$ -Continuity and $\alpha g \omega$ -irresolute are introduced and study some of their properties.

Keywords: agω -closed set, agω -open set, agω -continuous function, agω -irresolute.

2000 AMS classification: 54C10, 54C08, 54C05.

1. INTRODUCTION

The concept of generalized closed sets was introduced by Levine [4]. Veerakumar introduced several generalized closed sets [15,16,17]. Sheik John [14] defined ω -closed sets. We introduced $\alpha g \omega$ -closed sets and studied some of their properties by using ω -closed sets in this paper.

2. PRELIMINARIES

Throughout this paper we denote a topological space by (X, τ) or simply by X, when there is no possibilities of confusion. Let A be a subset of a space X. The closure of A (resp. preclosure and semiclosure) is the intersection of all closed sets that contain A and is denoted by cl(A)[resp.pcl(A)] and scl(A). A^c denotes the complement of A in X. The following definitions are useful in the sequel.

Definitions 2.1: A subset of a space (X, τ) is called

- 1. semi open set [5] if $A \subseteq cl$ (Int(A)) and a semiclosed set int(cl(A)) $\subseteq A$.
- 2. preopen set [8] if $A \subseteq int(cl(A))$ and a preclosed set if $cl(int(A)) \subseteq A$ (9).
- 3. α -open set [9] if $A \subseteq \text{int}(\text{cl}(\text{int}(A)))$ and an α -closed set if $\text{cl}(\text{int}(\text{cl}(A))) \subseteq A$.
- 4. semi preopen set[1](= β -open)if A \subseteq cl(int(A))and a semi pre closed set(= β -closed) if int(cl(int(A)) \subseteq A.

Definition 2.2: A subset A of a space (X, τ) is called a generalized closed (briefly g-closed) [4] set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (x, τ) ; the complement of a g-closed set is called a g-open set.

- i) An α -generalised closed (briefly αg -closed) [6] set if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in (X, τ) ; the complement of an αg -closed set is called and αg -open set.
- ii) $g^{\#}$ closed set[18] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is αg -open in (X, τ)
- iii) g^* closed set [15] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is g-open in (X, τ)
- iv) gsp-closed set [2] if $spcl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in (X, τ)
- v) ή-closed set [12] if pcl(A)⊆U whenever A⊆U and U is ω-open in (X, τ)
- vi) g^* p-closed set[16] if pcl(A) \subseteq U whenever A \subseteq U whenever A \subseteq U and U is g-open in (X, τ)
- vii) ω -closed [17] if cl(A) \subseteq U whenever A \subseteq U and U is semi open in (X, τ).

Corresponding author: ²P. Krishna*

²Department of Mathematics, Cape Institute of Technology, Levengipuram, Tirunelveli,(TN), India

viii) gp-closed set [10] if α cl(A) \subseteq int (U) whenever A \subseteq U and U is α -open in (X, τ).

ix) α gp-closed set[11] if α cl(A) \subseteq U whenever A \subseteq U and U is pre-open in (X, τ).

3. BASIC PROPERTIES OF ago -CLOSED SET

We introduce the following definition.

Definition 3.1: $\alpha g \omega$ -closed set: A subset A of a topological space (X, τ) is $\alpha g \omega$ -closed if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open in (X, τ) .

Theorem 3.2: If A is closed then A is $\alpha g\omega$ -closed.

Proof: Given A is closed. Let $A \subseteq U$ and U is ω -open. Since A is closed cl(A) = A.

Also we have $\alpha cl(A) \subseteq cl(A)$. Hence $A \subseteq U \Rightarrow cl(A) \subseteq U \Rightarrow \alpha cl(A) \subseteq U$. Thus A is $\alpha g\omega$ -closed.

The converse need not be true.

(eg) Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}\}$ clearly (X, τ) is a topology. The subsets $\{b\}, \{c\}, \{a, b\}$ are $\alpha g \omega$ - closed but they are not closed.

Theorem 3.3: If A is α -closed then A is $\alpha g \omega$ -closed.

Proof: Let A be α -closed. Thus α cl(A) = A. Let A \subseteq U,U is ω -open.

Then $\alpha cl(A)\subseteq U$. Thus whenever $A\subseteq U$, U is ω -open, $\alpha cl(A)\subseteq U$.

Thus A is αgω-closed.

The converse need not be true always.

Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a, b\}\}$ clearly (X, τ) is a topology. The subsets $\{a, c\}$, $\{b, c\}$ are $\alpha g \omega$ -closed but they are not α -closed.

Theorem 3.4: Every g-closedness is independent of αgω-closedness.

Let us take $X = \{a, b, c\}$ $\tau = \{X, \emptyset, \{a\}, \{a, b\}\}$. The subset $\{b\}$ is $\alpha g \omega$ -closed but not g-closed. The subset $\{a, b\}$ is g-closed in $\tau = \{X, \emptyset, \{a\}, \{a, c\}\}$

But $\{a, b\}$ is not $\alpha g \omega$ -closed.

Also consider $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\$, the subset $\{a, c\}$ is g-closed but not $\alpha g \omega$ -closed.

Thus g-closed sets and $\alpha g \omega$ -closed sets are independent of each other.

Theorem 3.5: Every $\alpha g \omega$ -closed set is αg -closed.

Proof: Let A be $\alpha g \omega$ -closed. Let A \subseteq U and U is open in (x, τ)

Thus $A \subseteq U$ and U is ω -open in (X, τ) , since every open set is ω -open.

Hence $\alpha cl(A) \subseteq U$.

 \Rightarrow A is α g-closed.

The converse need not be true.

Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a, c\}$. Here $A = \{b\}$ is αg -closed but not $\alpha g \omega$ -closed.

 1 Dr J. Antony Rex Rodrigo & 2 P. Krishna*/ $\alpha g \omega$ - closed sets in topological spaces/IJMA- 3(9), Sept.-2012.

Theorem 3.6: Every αgp-closed set is αgω-closed.

Proof: Let A be αgp-closed. To prove A is αgω-closed.

Let $A \subseteq U$, U is ω -open in (X, τ)

Since every ω-open set is pre open, U is preopen.

Hence $A\subseteq U$; pre open in (X, τ)

 $\Rightarrow \alpha cl(A) \subseteq U$, since A is αgp -closed.

Hence A is αgω-closed.

Conversely, every ago-closed set need not be agp-closed.

Let $X = \{a, b, c\} \tau = \{X, \emptyset, \{a\}, \{a, b\}\}\$

Here $\{a, c\}$ is $\alpha g \omega$ -closed but $\{a, c\}$ is not $\alpha g p$ -closed.

Theorem 3.7: Every αgω-closed set is gsp-closed.

Proof: Every αgω-closed set is αg-cld & Every αg-closed set is gsp-closed.

Hence every $\alpha g\omega$ -closed set is gsp-closed.

Theorem 3.8: If A and B are αgω-closed then AUB is αgω-closed in x

Proof: Let A and B be αgω-closed.

Let AUB \subseteq U, U is ω -open. \Rightarrow A \subseteq U and B \subseteq U. \Rightarrow α clA \subseteq U and α clB \subseteq U

We have $\alpha cl(AUB) = (\alpha clA)U(\alpha clB)$

Thus $\alpha cl(AUB)=(\alpha clA)U(\alpha clB)\subseteq U$

 \Rightarrow AUB is α g ω -closed.

Remark 3.9: If A and B are $\alpha g \omega$ -closed then A \cap B need not be $\alpha g \omega$ -closed.

Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{c\}\}. (X, \tau)$ is a topology.

The subsets $\{a, c\}$ and $\{b, c\}$ are $\alpha g \omega$ -closed but $\{a, c\} \cap \{b, c\} = \{c\}$ is not $\alpha g \omega$ -closed.

Theorem 3.10: Every $g^{\#}$ closed set is $\alpha g \omega$ -closed.

Proof: Let A be g[#] closed set. To prove A is αgω-closed.

Let $A \subseteq U$, U is ω -open $\Rightarrow U$ is αg -open, Since every ω -open set is αg -open.

 \Rightarrow cl(A) \subseteq U, Since A is g[#] closed.

 $\Rightarrow \alpha cl(A) \subseteq U$, Since $\alpha cl(A) \subseteq cl(A)$.

Hence A is αgω-closed.

Theorem 3.11: Every g* closed set is αgω-closed.

Proof: Let A be a g*closed set.

Let $A \subseteq U$, U is ω -open. \Rightarrow U is g-open, Since every ω -open set is g-open. [14]

Hence $cl(A) \subseteq U$, Since A is g^* closed. Thus $acl(A) \subseteq U$

¹Dr J. Antony Rex Rodrigo & ²P. Krishna*/ $\alpha g\omega$ - closed sets in topological spaces/IJMA- 3(9), Sept.-2012.

 \Rightarrow A is $\alpha g\omega$ -closed.

Conversely, Every αgω-closed set need not be g* closed.

Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}\}$. Here $\{b\}$ is $\alpha g \omega$ -closed.

But $cl\{b\}=\{b, c\} \not\subset \{b\}$ which is g-open.

 \Rightarrow {b} is not g* closed set.

Thus converse is not true.

Theorem 3.12: Every $\hat{\eta}$ closed is $\alpha g \omega$ -closed

Proof: Let $A \subseteq U$, U is ω -open $\Longrightarrow pcl(A) \subseteq U$.

Thus $\alpha cl(A) \subseteq A$, since $\alpha cl(A) \subset pcl(A)$. Hence A is $\alpha g\omega$ -closed.

Thus every $\hat{\eta}$ closed set is $\alpha g \omega$ -closed.

Converse need not be true. (eg) Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}\}\$

Here the set $\{a, b\}$ is $\alpha g \omega$ -closed but not $\hat{\eta}$ closed.

Hence every $\alpha g \omega$ -closed set need not be $\hat{\eta}$ closed.

Theorem 3.13: A set A is $\alpha g \omega$ -closed and $A \subseteq B \subseteq \alpha cl(A)$ then B is $\alpha g \omega$ -closed.

Proof: Let $B \subseteq U$, U is ω -open. $\Rightarrow A \subseteq U$. $\Rightarrow \alpha cl(A) \subseteq U$, Since A is $\alpha g \omega$ -closed.

Also $B \subseteq \alpha cl(A)$. $\Rightarrow \alpha cl(B) \subseteq \alpha cl(A) \subseteq U$, Since $\alpha cl(B) \subseteq B$.

 $\Rightarrow \alpha cl(B) \subseteq U$. Hence B is $\alpha g \omega$ -closed.

Conversely, any subset of a αgω-closed need not be αgω-closed

Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{b\}, \{a, b\}, \{b, c\}\}$. Here $\{b, c\}$ is $\alpha g \omega$ closed but $\{b\}$ is not $\alpha g \omega$ closed.

Hence the subset of a $\alpha g\omega$ -closed set need not be $\alpha g\omega$ -closed.

Theorem 3.14: Every $\alpha g \omega$ -closed set is gp-closed.

Proof: Let A be $\alpha g\omega$ -closed set. Let $A\subseteq U$, U is open $\Longrightarrow U$ is ω -open. Since every open set is ω -open.

Thus $\alpha cl(A) \subseteq U$, Since A is $\alpha g \omega$ closed.

 \Longrightarrow Pcl(A) \subseteq acl(A) \subseteq U

(ie) $Pcl(A) \subseteq U \implies A$ is gp-closed

Converse need not be true, every gp-closed need not be $\alpha g\omega$ -closed. Let $\tau = \{X, \emptyset, \{a\}\}, \{a\}$ is gp -closed but not $\alpha g\omega$ -closed.

Theorem 3.15: If A is ω -open and $\alpha g \omega$ -closed subset of a topological space x, then A is α -closed.

Proof: Let A be ω -open and $\alpha g \omega$ -closed.

Since $A \subseteq A$, $\alpha cl A \subseteq A$ Since A is $\alpha g \omega$ -cld.

 \Rightarrow A is α -closed, Since $A \subseteq \alpha clA$.

4. PROPERTIES OF ago -CLOSED SETS

Definition 4.1: Let A be a subset of a topological space (X, τ) . Then the pre kernel of A (briefly pker(A)) is the intersection of all open supersets of A.

Theorem 4.2: A subset A of a topological space X is $\alpha g \omega$ closed if and only if $\alpha cl(A) \subseteq pker(A)$.

Proof: Let A be a subset of X which is αgω-closed.

To Prove $\alpha cl(A) \subseteq pker(A)$. If $\alpha cl(A) \not\subseteq pker(A)$.

Let $x \in \alpha cl(A) \Longrightarrow x \notin pker(A)$. Then there exist an open set $U \supset A$ such that $x \notin U$.

Since every open set is ω open, U is ω -open.

 $\Rightarrow \alpha cl(A) \subseteq U$, Since A is $\alpha g \omega$ -closed. Hence $x \notin \alpha clA$, Since $x \notin U$.

This is $\Rightarrow \Leftarrow$ to $x \in \alpha cl(A)$.

Thus $\alpha cl(A) \subseteq pker(A)$.

Conversely, et A be a subset of X such that $A \subseteq U$, U is ω -open. Clearly $\alpha cl(A) \subseteq pker(A) \subseteq A$. Hence the result follows.

Theorem 4.3: A subset A of X is $\alpha g\omega$ -open if and only if α Int(A) \supseteq F whenever A \supseteq F and F is ω -closed.

Proof: Given A is $\alpha g\omega$ -open. Let $A \supseteq F$ and F is ω -closed.(ie) $A^c \subseteq F^c$ and F^c is ω -open

 $\Rightarrow \alpha \operatorname{cl}(A^c) \subset F^c \operatorname{Since} A^c \operatorname{is} \alpha \operatorname{g} \omega \operatorname{closed} \Rightarrow (\alpha \operatorname{int} A)^c \subset F^c \Rightarrow \alpha \operatorname{int}(A) \supseteq F.$

Conversly, let α -int(A) \supseteq F whenever A \supseteq F and F is ω -closed. Let A^c \subseteq U, U is ω -open.

 $\Rightarrow A \supseteq U^c, U^c \text{ is } \omega\text{-closed.} \Rightarrow \alpha\text{-int}(A) \supseteq U^c. \Rightarrow (\alpha\text{-int}(A))^c \subseteq U \text{ (ie)} \alpha cl(A^c) \subseteq U. \Rightarrow A^c \text{ is } \alpha g \omega\text{-closed.}$

Hence A is αgω-open.

5. Properties of R-closed sets

Definition 5.1: ago-continuous functions: A function $f:(X, \tau) \to (Y, \sigma)$ is ago-continuous if

 $f^{1}(B)=A$ Where B is open in Y and A is $\alpha g\omega$ -open in X.

(ie) Inverse image of every open set in Y is αgω-open X.

Definition 5.2: $\alpha g \omega$ - irresolute: A function $f:(X, \tau) \to (Y, \sigma)$ is said to be $\alpha g \omega$ -irresolute if the inverse image of every $\alpha g \omega$ -open set in Y is $\alpha g \omega$ -open in X.

Theorem 5.3: Every αgω- irresolute function is αgω-continuous.

Since every closed set is $\alpha g \omega$ -closed, the proof follows.

Conversly, Every αgω-continuous functions need not be αgω-irresolute.

Let
$$X = \{a, b, c\}$$
 and $Y = \{x, y, z\}, \tau = \{X, \emptyset, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{Y, \emptyset, \{z\}, \{x, z\}, \{y, z\}\}$

Consider f: $X \rightarrow Y$ defined by f(a) = y, f(b) = x, f(c) = z

Here $f^{-1}(\{x\}) = \{b\}$ which is not $\alpha g \omega$ -closed in X. But f is $\alpha g \omega$ -continuous.

Theorem 5.4: If $f:(X, \tau) \to (Y, \sigma)$ is $\alpha g \omega$ -irresolute and $g:(Y, \sigma) \to (Z, \delta)$ is $\alpha g \omega$ -continuous then gof is $\alpha g \omega$ -continuous.

Proof: Let C is closed in $Z \Rightarrow g^{-1}(C) = B$ is $\alpha g \omega$ -closed in $Y \Rightarrow f^{-1}(B) = A$ is $\alpha g \omega$ -closed in X.

Hence $f^{-1}(g^{-1}(C)) = A$ is $\alpha g \omega$ -closed in X.

Thus $(gof)^{-1}$ C = A is $\alpha g\omega$ -closed.

Thus gof is αgω-continuous.

Theorem 5.5: Let $A \subseteq Y \subseteq X$ and A is $\alpha g \omega$ -closed in X, then A is $\alpha g \omega$ -closed relative to Y.

Proof: Let $A \subseteq U$, U is ω -closed

Then $U=G \cap Y,G$ is ω -open in x.

 $\therefore A \subseteq G \Rightarrow \alpha cl A \subseteq G$

 $\Rightarrow \alpha clA \cap Y \subseteq G \cap Y = U$. Thus $\alpha clA \cap Y \subseteq U$

 \Rightarrow A is $\alpha g\omega$ -closed relative to Y, Since A is an ω -closed set and F is a closed set then

 $A \cap F$ is an ω -closed set.

Theorem 5.6: Let A and B be open subsets of X and $\alpha g \omega$ -closed subsets in X such that $X=A \cup B$. Let $f:(A, \tau/A) \to (Y, \sigma)$ and $g:(B,\tau/B) \to (Y, \sigma)$ be compatible functions. If f is an $\alpha g \omega$ -continuous function and g is an $\alpha g \omega$ -continuous function then its combination $f \nabla g:(X,\tau) \to (Y,\sigma)$ is an $\alpha g \omega$ -continuous function.

Proof: Let C be a closed subset of (Y, σ) . Thus $f^{1}(C)$ and $g^{-1}(C)$ are $\alpha g \omega$ -closed subsets $(A, \tau/A)$ and $(B, \tau/B)$ respectively.

 \Rightarrow f¹(C) and g⁻¹(C) are $\alpha g \omega$ closed in X. Hence f¹(C) \cup g⁻¹(C)=(f ∇ g)⁻¹(C) is $\alpha g \omega$ -closed in X.

Hence f ∇ g is $\alpha g \omega$ -continuous.

Theorem 5.7: Every $\{x\}$ is ω -closed (or) $\{x\}^c$ is $\alpha g \omega$ -closed.

Proof: Let $\{x\}$ is not ω -closed in $X. \Longrightarrow \{x\}^c$ is not ω -open. \Longrightarrow The only ω -open set containing $\{x\}^c$ is X itself. Thus $\alpha \operatorname{cl}\{x\}^c \subseteq X$.

 \Rightarrow {x}^c is α g ω -closed.

Remark 5.8: From the above discussions and known results we have the following implications $A \rightarrow B$ ($A \leftrightarrow B$) represents A implies B but not conversely.(A and B implies each other).

REFERENCES

- [1] Ancrijevic, D. Semi pre open sets, Mat. Versnik, 38, 24-32(1986).
- [2] Julion, Dontchev, On generalizing Semi pre open sets, Mem. Fac. Sci. Kochi Univ (Math), 16, 35-48 (1995) .70 (1963) 36-41.
- [3] Julian Dontchev and Maki, H., On behaviour of gp closed sets and their generalizations, Mem. Fac. sci. Kochi Univ (Math), 19, 57-72(1998).

1 Dr J. Antony Rex Rodrigo & 2 P. Krishna*/ $\alpha g \omega$ - closed sets in topological spaces/IJMA- 3(9), Sept.-2012.

- [4] Levine, N., Generalized closed sets in topology, Rend. circl, Mat. Palermo, 19(2), 89-96(1970).
- [5] Levine, N., Semi open sets and semi continuity in topolosical spaces, Amer. Math. Monthly. 70(1963)36-41.
- [6] Maki, H., Devi, R., Balachandran, K., Associated topologies of generalized closed sets, Mem. Fac. sci. Kochi Univ (Math) 15, 51-63(1994).
- [7] Maki, H., Umehara, Noiri, Every topological space is pre $T_{1/2}$ Mem. Fac. sci., Kochi Univ (Math) 17, 33-42(1996).
- [8] Mashhour, Abd-El-Monsef, DeepE. L., On pre continuous and weak pre continuous mappings, Pro. Math and phys.soc., Egypt, 53, 47-53(1982).
- [9] Njasted, J., On some classes of nearly open sets, Pacific. J. Math, 15, 961-970(1965).
- [10] Noiri, T., Maki, H., J. Umehara. Mem. Fac. sci. Kohci Univ (math), 19, 13-20(1998),
- [11] N.Palaniappan, S. Pious Misser and J. Antony Rex Rodrigo, αGp-closed sets in Topological spaces, Acta ciencia Indica, Vol.xx1 M.No.1, 243-247(2006).
- [12] N. Palaniappan, J. Antony Rex Rodrigo and S. Pious Missier, On $\hat{\eta}$ -closed sets in Topological spaces, Varahamihir Journal of Mathematical Sciences, Vol. 7 No.1 (2007)33-38.
- [13] Rajamani, M., Viswanathan, k., On ags closed sets in topological spaces, Acta Ciencia Indica (2005).
- [14] Sheik John, M., Ph.D Thesis Bharathiar University sep 2002.
- [15] Veera Kumar, M.K.R.S., Between closed sets and g closed sets, Morn. Fac. Sci. Kochi Univ Ser A . Math, 21(2000)1-19.
- [16] Veera Kumar, M.K.R.S., g* Pre closed sets, Acta ciencia Indica(Math emath)Meeret xxxviii(M)(2002),51-60.
- [17] Veera Kumar, M.K.R.S., \hat{g} -pre closed sets, Bull. Allahabad math.soc. 18(2003), 99-112.
- [18] Veera kumar, M.K.R.S., µ-closed sets in Topological spaces, Antartica J. math., 2(10(2005), 1-18.

Source of support: Nil, Conflict of interest: None Declared