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ABSTRACT 
The unsteady Couette flow of a viscous incompressible fluid through a highly porous medium bounded by two vertical 
parallel porous plates in the presence of transversely applied magnetic field has been studied. One of the plate is 
suddenly moved from rest with a free stream velocity that oscillates in time about a constant mean. Assuming periodic 
temperature at the moving plate, the approximate solution for the velocity field, the temperature field, the skin friction 
and the rate of heat transfer are obtain by using perturbation technique and discussed with the help of graphs and 
tables.  
 
Keywords: Hydromagnetic, unsteady free convective, periodic wall temperature. 
 
 
1. INTRODUCTION  
 
The phenomenon of free convection arises in fluid when temperature changes cause density variation leading to 
buoyancy forces acting on the fluid elements. It can be observed in our daily life in atmospheric flow, which is driven 
by temperature differences. Free convective flow past a vertical plate has been studied extensively by Ostrach [1, 2] 
and many other researchers. These studies are confined to steady flow only. In case of unsteady free convective flows, 
Soundalgekar [3] studied the effect of viscous dissipation on the flow past an infinite vertical porous plate. It was 
assumed that the plate temperature oscillates in such a way that its amplitude is small. In fluid dynamics, Couette flow 
refers to the laminar flow of a viscous fluid in the space between two parallel plates, one of which is moving relative to 
other. The flow is driven by virtue of viscous drag force acting on the fluid and the applied pressure gradient parallel to 
the plates. This type of flow is named in honor of Maurice Marie Alfred Couette, a Professor of Physics at French 
University of Angers in the late 19th century. Couette flow is frequently used in under graduate Physics and 
Engineering courses to illustrate shear driven fluid motion. Some important application areas of couette motion are 
magnetohydrodynamics power generators and pumps, polymer technology, petroleum industry and purification of 
crude oil. Singh [4] studied unsteady free convective flow of an incompressible viscous fluid between two vertical 
parallel plates, in which one is stationary and other is impulsively moving in its own plane. The steady state couette 
flow with viscous dissipating heat was studied by Kearsley [5]. The natural convection in unsteady couette flow 
confined between two vertical plates in the presence of thermal radiation has been investigated by Narahari [6].  
 
Flows of fluid through porous media are of practical interest because these are quite prevalent in nature. Such flows 
have attracted the attention of a number of scholars due to their application in many branches of science and 
technology. Raptis [7] studied the unsteady free convective flow through a porous medium. Raptis and Peridikis [8] 
further studied the unsteady free convection flow through a highly porous medium bounded by an infinite porous plate. 
The convection in a porous medium with inclined temperature gradient has been studied by Nield [9]. An exact solution 
of unsteady free convective couette flow of a viscous incompressible heat generating/ absorbing fluid confined between 
two vertical plates in a porous medium has been studied by Deka and Bhattacharya [10]. Comprehensive literature on 
various aspects of free convection flows and its application could be found in Nield and Bejan [11]. On the other hand 
the research works in magnetohydrodynamics (MHD) have been advanced significantly during last three decades in 
natural sciences and engineering disciplines after the work of Hartmann in liquid metal duct flow under the influence of 
a strong external magnetic field. This fundamental investigation has provided basic knowledge for development of 
several MHD devices such as MHD pumps, generators, brakes and flow meters. The study of flow for an electrically 
conducting fluid has many applications in engineering problems such as plasma studies, nuclear reactors, geothermal 
energy extraction and the boundary layer control in the field of aerodynamics. MHD Couette flows are frequently 
encountered in many scientific and environmental processes, such as astrophysical flow, heat and cooling of chambers  
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and solar power technology. Jha [12] has studied the natural convection in unsteady MHD couette flow. Jain et al [13] 
investigated the three dimensional Couette flow with transpiration cooling through a porous medium in slip flow 
regime. The three dimensional Couette flow and heat transfer in the presence of transverse magnetic field has been 
analyzed by Das et al [14]. Unsteady free convection oscillatory couette flow through a porous medium with periodic 
wall temperature has been analyzed by Sharma et al [15]. 

In this work we purpose to study the effects of free convection on Hydromagnetic oscillatory Couette flow of viscous, 
incompressible and electrically conducting fluid through a highly porous medium bounded by two infinite vertical 
porous plates when the temperature of moving plate oscillates with time. 
 
2. FORMULATION OF THE PROBLEM 
 
We consider the unsteady Couette flow of a viscous, incompressible and electrically conducting fluid through a highly 
porous medium bounded between two infinite vertical porous plates separated by a distance b . One of the plate is 
suddenly moved from the rest with a free stream velocity which oscillates with time about a constant mean. Choose a 
Cartesian coordinates systems with x-axis along one of moving plate in vertically upward direction. The other 
stationary vertical plate is situated at y∗ = b. Further it is assumed that the temperature of moving plate fluctuates with 
time about a non-zero constant mean, and the temperature of the other plate is held constant. A magnetic field (fixed 
relative to moving plate) of uniform strength B0 is assumed to be applied transversely to the plates. Also, it is assumed 
that the magnetic Reynolds number is so small that induced magnetic field can be neglected in comparison to externally 
applied magnetic field. 
 
 

Boundary conditions 

 Boundary conditions 

 

 
 
 

 
Fig. (1): The physical configuration of the problem. 

 
We consider the free stream velocity distribution of the form U∗(t∗) = U0�1 + εeiω∗t∗�                                               (1)  
 
where  U0 is mean free stream velocity, ω∗ is the frequency of oscillations and t∗ is time. The equations governing the 
problem are 
 
Momentum equation 
 
ρ ∂u∗

∂t∗
= − ∂P

∂x∗
+ μ ∂2u∗

∂y∗2 − ρ∗g − u∗μ
k∗
− σB0

2u∗                                                                                                                      (2) 
 
and equation of energy is 
 
∂T∗

∂t∗
= α ∂2T∗

∂y∗2                                                                                                                                                               (3) 
 
And boundary conditions are 
 
y∗ = 0 ∶  u∗ = U0�1 + ϵeiω∗t∗� , T∗ = Tn

∗ + ε(Tn
∗ − Ts

∗)eiω∗t∗,        
          
y∗ = b ∶  u∗ = 0 , T∗ = Ts

∗                                                                                                                                      (4) 
 
where u∗, U∗, ρ , μ , P , g , β , k∗ , α , T∗,  Tn  

∗ , Ts
∗, B0 are respectively, velocity, free stream velocity, density, 

viscosity, pressure, gravity, volumetric coefficient of thermal expansion, permeability parameter, thermal diffusivity, 
temperature of fluid in the boundary layer, temperature of moving plate,  temperature of the stationary plate and 
magnetic field . The (*) stands for dimensional quantities. 
 
 

y∗ = b 

B0 

b 

u∗ = U0�1 + εeiω∗t∗�, 

T∗ = Tn
∗ + ε(Tn

∗ − Ts
∗)eiω∗t∗ 

y∗ = 0 

y∗ 

x∗ 

u∗ = 0, T∗ = Ts
∗ 

O 
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Equation (2), for the free stream, is reduced to  
 
ρ dU∗

dt∗
= − ∂P

∂x∗
− ρ∞∗ g − U∗μ

k
− σB0

2U∗                                                                                                                                (5) 
 
From equations (2) and (5), we get 
 
ρ ∂u∗

∂t∗
=  ρ dU∗

dt∗
+  μ ∂2u∗

∂y∗2 + g(ρ∞∗ − ρ∗) − (u∗−U∗)μ
k∗

− σB0
2(u∗ − U∗)                                                                                  (6) 

 
By using the constitutive equation 
 
g(ρ∞∗ − ρ∗) = gβρ(T∗ − Ts

∗), 
 
where β is the volumetric coefficient of thermal expansion and ρ∞  the density of the fluid far away the surface. 
 
Introducing the following non-dimensional quantities 
 

y = y∗

b
, u = u∗

U0 
 , U = U∗

U0 
 ,ω = ω∗b2

v
,  t = ω∗t∗ , θ = (T∗−Ts

∗)
(Tn
∗ −Ts

∗)
 , k = k∗

 b2  , M = B0b�
σ
μ
 

𝐺𝐺𝑟𝑟(Grashoff number)  = gβb2(Tn
∗ −Ts

∗)
νU0

 ,     Pr (Prandtl number)  = 𝜈𝜈
𝛼𝛼
 

 
Using non-dimensional quantities the equations (6) and (3) become 
 
ω∂u

∂t
= ω dU

dt
+ ∂2u

∂y2 + Grθ −
(u−U)

k
− M2(u − U)                                                                                                          (7) 

 
ωPr ∂θ

∂t
= ∂2θ

∂y2                                                                                                                                                                 (8) 
 
The corresponding boundary conditions become 
 
y = 0 ∶ u = 1 + εeit  . θ = 1 + εeit , 
y = 1 ∶ u = 0 ∶  θ = 0                                                                                                                                                  (9) 
 
3. METHOD OF SOLUTION  
 
Since the amplitudes of free-stream velocity and temperature variation ε(≪ 1) is very small, we now assume the 
solution of the following form: 
 
u(y, t) = u0(y) + εu1(y)eit , 
θ(y, t) = θ0(y) + εθ1(y)eit ,                                                                                                                                   (10) 
 
The free-stream velocity is given by the expression 
U = 1 + εeit  .                                                                                                                                                            (11) 
 
Substituting equation (10) and (11) in equation (7) and (8), comparing the coefficients of identical power of ε and 
neglecting those of ε2, we get following equations 
 
∂2u0
∂y2 − u0

k
− M2u0 = −Grθ0 −

1
k
− M2                                                                                                                       (12) 

 
∂2θ0
∂y2 = 0                                                                                                                                                                      (13) 
 
∂2u1
∂y2 − �iω + 1

k
+ M2�u1 = −Grθ1 − �iω + 1

k
+ M2�                                                                                                 (14) 

 
∂2θ1
∂y2 − iωPrθ1 = 0                                                                                                                                                        (15) 
 
with the corresponding boundary conditions 
y = 0 ∶  u0 = 1, u1 = 1, θ0 = 1, θ1 = 1  
y = 1 ∶  u0 = 0, u1 = 0,  θ0 = 0,  θ1 = 0                                                                                                                    (16) 
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Solutions of these equations under the corresponding boundary conditions are given by the following expression. 
 
θ0(y) = 1 − y                                                                                                                                                                (17) 
 
θ1(y) = Aeλ(1+i)y + Be−λ(1+i)y                                                                                                                                      (18) 
 
u0(y) = A1ea1y + B1e−a1y + Gr (1−y)

M2+1
k

+ 1                                                                                                                      (19) 

 
u1(y) = A3e(a2+ia3)y + B2e−(a2+ia3)y − A2Aeλ(1+i)y − A2Be−λ(1+i)y + 1                                                                    (20)      
 
Where constants used above have been listed in the appendix. 
 
4.  RESULTS AND DISCUSSION 
 
In order to point out the effect of permeability and convection on the velocity, when the moving plate is subjected to 
oscillating free stream velocity, fluctuating wall temperature and the entire system is exposed to transversely applied 
magnetic field, numerical calculations are carried out for different values of Grashoff number (Gr), Prandtl number (Pr), 
the frequency of oscillation and the permeability parameter (k) for small (M = 2) and large  (M = 10) value of 
magnetic field parameter i.e. Hartmann number (M). The values of Prandtl number are chosen as 0.71 and 7.0 
approximately, which represents air and water at 20 . The values of  Gr  and k are selected arbitrarily. 
 
(a)  MEAN FLOW 
 
The mean flow velocity is given by equation (19). The variation in mean flow velocity for various values of Grashoff 
number and permeability of porous medium is presented in Figure 2. It is observed from this figure that the mean 
velocity increases with an increase in free convection parameter i.e. Grashoff number whereas it decreases with 
increasing permeability parameter because the porous material offers resistance to the fluid flow. The above pattern 
remains unaltered for small and large value of magnetic field parameter (M = 2 and M = 10) 

 

 
 
 

                   
Fig. (2):  The mean flow velocity profiles 

 
Knowing the mean velocity field, from the practical point of view, it is important to know the effects of Grashoff 
number and Hartmann number on mean-skin friction. It is given by: 
 
τ∗ = μ �du∗

dy∗
�

y∗=0
  

 
And in non-dimensional form it is given by: 
 
τ = τ∗b

μU0
= �∂u

∂y
�

y=0
= �∂u0

∂y
�

y=0
+ ε �∂u1

∂y
�

y=0
eit                                                                                                         (21) 

 
 

Curve   k    Gr  
   I        .5     2 
  II        .5   10 
 III        1      2 
 IV            2 
   

                 M = 2 
    ……….   M = 10 
 

y 

u0 
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Denoting the mean skin friction 
 
τm = �∂u0

∂y
�

y=0
                                                                                                                                                                (22) 

 
Substituting equation (19) in equation (22), we have  
 
τm = a1A1 − a1B1 −

Gr
1
k+M2                    

                                                      
The numerical values of  τm  are entered in Table 1. 
 

Table-1: The mean skin friction (τm ). 
 

 
 
 
 
 
 
 
It can be interpreted from this table that the mean friction first increases and there after decreases with increasing value 
of permeability parameter (k) and free convection parameter (Gr). This pattern is preserved for both small and large 
value of magnetic field parameter(M). It is interesting to note that mean skin friction is more affected by increase in Gr , 
which may be attributed to the presence of porous medium. 
 
UNSTEADY FLOW 
 
The velocity and temperature fields given by equations (17) to (20) respectively can be expressed in terms of 
fluctuating parts as follows: 
 
u(y, t) = u0(y) + εeit (mr + imi),                                                                                                                        (23) 
 
θ(y, t) = θ0(y) + εeit (Tr + iTi),                                                                                                            (24)  
 
where 
 
mr + imi = u1(y)  and  Tr + iTi = θ1(y)           
 
We can write expression for transient velocity and transient temperature from equation (23) and (24) as follows 
 
u �y, π

2
� = u0(y) − εmi                                                                                                                                                 (25) 

 
θ �y, π

2
� = θ0(y) − εTi                                                                                                                                               (26)   

 
 The variation in transient velocity profiles for small (M = 2) and large (M = 10) value of  magnetic field parameter is 
shown in figure 3. The study of this figure reveals that the transient velocity increases with increasing Grashoff number 
(Gr) for both the situation i.e. for 𝑃𝑃𝑟𝑟 = 0.71 (air) and Pr = 7.0 (water), because the buoyancy force increases in the 
upward direction. 
 
The above pattern is maintained for both small and large value of magnetic parameter(𝑀𝑀). Clearly the impact of 
increasing magnetic field is to enhance the transient velocity profiles. Further it is also evident from this figure that the 
transient velocity decreases due to increase of permeability parameter (k) in both cases (Pr = 0.71 and Pr = 7.0 ), 
which physically can be interpreted as true because the permeability of the porous medium exert retarding influence on 
fluid motion. It is also observed from this figure that transient velocity profiles increases with the frequency of 
oscillation parameter (ω). The values of transient velocity is more for large value of magnetic field parameter (M =
10) as compare to its small value (M = 2). 
 
 
 
 
 

M k ∞ 1 2 3 4 5 
2 Gr = 2 -0.01413 0.03160 0.00982 0.00213 -0.00184 -0.00424 
2 Gr = 5 0.79185 0.80425 0.79864 0.79652 0.79540 0.79472 
10 Gr = 2 0.25265 0.25310 0.25291 0.25283 0.25279 0.25276 
10 Gr = 5 0.73271 0.72611 0.72940 0.73050 0.73105 0.73138 
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Fig. (3): The transient velocity profiles for t = π
2
  and ε = 0.2 

 
Fig. (4)  depicts the variation of temperature with distance from moving plate. It is observed that transient temperature 
increases with increasing 𝜔𝜔 for air (Pr = 0.71), while reverse phenomena is observed for water (Pr = 7.0). It is 
interesting to note that the values of transient temperature are greater near the moving pate for water while reverse 
effect is observed as we move towards the stationary plate. It is now proposed to study the behavior of amplitude and 
phase of skin-friction, from equation (20) and (21) we have, 
 
τ = τm + εeit [(a2 + ia3)A3 − (a2 + ia3)B2 − AA2λ(1 + i) + BA2λ(1 + i)]                                                              (27) 
 
Equation can be expressed (27) in terms of the amplitude and phase of skin-friction as 
 
τ = τm + ε|m| cos(t + ∅)                                                                                                                                               (28) 
 
where 
 
m = mr + imi = Coefficient of εeit  in equation (27) 
 
|m| = �mr

2 + mi
2 ,    and tanϕ = mi

mr
 

 

 
 
 

Fig. (4):  The transient temperature profiles for 𝑡𝑡 = 𝜋𝜋
2
 and 𝜖𝜖 = 0.2 Curve   Pr     ω 

   
 
 
 

Curve   k   Gr     Pr     𝜔𝜔 
   I      .5     2     7      5 
  II          2     7      5 
  III    .5    10    7      5 
  IV    .5     2    .71    5 
  V     .5    2    .71    10 
   

                 M = 2 
    ……….   M = 10 
 

u1 

y 

θ 

y 

Curve   Pr     ω 
   I       .71    5 
  II       .71   10 
 III         7     5 
 IV        7     10 
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Table-2: The values of (|𝑚𝑚|) for k = 0.5 

 

M ω 
Gr = 2 
Pr = 7 

 

Gr = 1 
Pr = 7 

Gr = 2 
       Pr = 0.71 

 

Gr = 1 
      Pr = 0.71 

2 2 0.12980 0.26088 0.07415 0.18060 
2 4 0.15702 0.28276 0.099312 0.18791 
2 6 0.17702 0.28527 0.12982 0.19764 
2 8 0.19451 0.28647 0.16379 0.20829 
2 10 0.20921 0.29459 0.19710 0.21831 
10 2 0.18590 0.06559 0.25119 0.09701 
10 4 0.14622 0.045256 0.24536 0.09470 
10 6 0.12400 0.03802 0.23704 0.09165 
10 8 0.10932 0.027451 0.22770 0.08867 
10 10 0.09756 0.025797 0.21863 0.08647 

 
The numerical value of |𝑚𝑚| are presented in Table – 2. for M = 2 and M = 10. It is observed from this table that for  
M = 10, |𝑚𝑚| decrease with increasing frequency of oscillation  ω for water and air (for same value of Gr), whereas for 
M = 2, reverse pattern is observed. Also with increasing value of convection parameter Gr , the amplitude of skin 
friction |𝑚𝑚|, decreases for M = 2 (for air and water), whereas the |𝑚𝑚| increases with increasing convection parameter  
Gr, for M = 10 (for air and water).  
 
We now study the effect of 𝜔𝜔 on the rate of heat transfer. The rate of heat transfer in terms of the Nusselt Number can 
be obtained as 
 
Nu = qω∗ b

k(Tn
∗ −Ts

∗)
= �∂θ

∂y
�

y=0
= �∂θ0

∂y
�

y=0
+ ε �∂θ1

∂y
�

y=0
eit ,                                                                                           (29) 

 
Nu = −1 + εeit [Aλ(1 + i) − Bλ(1 + i)].                                                                                                                (30) 
 
We can express (30) in terms of amplitude and phase of heat transfer as 
 
Nu = −1 + ε|H| cos(t + φ)                                                                                                                                       (31) 
 
Where  
H = Hr + iHi = Coefficients of εeit  in expression (30) 
|H| = �Hr

2 + Hi
2  and     tan φ = Hi

Hr
 . 

 

 
Fig.(5) : The tangent of phase tanϕ of skin friction. 

 
The variation in tangent of phase of skin-friction is exhibited in figure 5. It is observed from this figure that the phase of 
skin-friction decreases with the increase in 𝐺𝐺𝑟𝑟  in both the cases (Pr = 0.71 and Pr = 7.0) and there is always a phase 
lead for small value of k. 
 

 
 

Curve   k   Pr     Gr  
   I         .71    2 
  II          7      2 
 III      .5    7      2 
 IV      .5   .71    2 
  V      .5   .71    5 
VI       .5     7     5 
 

 

 tanϕ 
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Table- 3:   The amplitude and phase for heat transfer. 

 

 
ω 

|H| tanφ 

Pr = 0.71 Pr = 7.0 Pr = 0.71 Pr = 7.0 
2 1.1438 3.7623 0.44771 1.01700 
4 1.4745 5.2937 0.77310 0.99791 
6 1.8575 6.4794 0.95328 0.99989 
8 2.2280 7.4832 1.03170 1.00010 
10 2.5668 8.3667 1.05570 1.00000 

 
The values of amplitude and phase of heat transfer is listed in Table 3. We observe from the Table 3 that amplitude of 
heat transfer increases with increasing Pr  and ω both. The value of amplitude is greater in case of water than in case of 
air. It is clear that there is always a phase lead for Pr = 0.71 (air), and the phase of heat transfer almost remains 
constant the case of water (Pr = 7.0) 
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Appendix 
 

λ = �ωPr
2

 ,  A = − e−λ (1+i)

eλ (1+i)−e−λ (1+i)  ,  B = e−λ (1+i)

eλ (1+i)−e−λ (1+i) , a1 = �1
k

+ M2,  a2 = 1
√2

+ ��ω2 + �1
k

+ M2�
2

+ �1
k

+ M2��

1
2

 ,  

a3 = 1
√2

+ ��ω2 + �1
k

+ M2�
2
− �1

k
+ M2��

1
2

    

 

A1 = − 1
ea 1−e−a 1

�1 − Gr e−a 1
1
k+M2 �,  B1 = 1

ea 1−e−a 1
�1 − Gr ea 1

1
k+M2� , A2 = Gr

λ2(1+i)2−�iω+1
k+M2�

     

 

B2 = −�AA2�e(a 2+ia 3)−eλ(1+i)�+BA2�e(a 2+ia 3)−e−λ(1+i)�+1�
e−(a 2+ia 3)−e(a 2+ia 3)    A3 = �AA2�e−(a 2+ia 3)−eλ(1+i)�+BA2�e−(a 2+ia 3)−e−λ(1+i)�+1�

e−(a 2+ia 3)−e(a 2+ia 3)    
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