Bilateral Sequence Spaces $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ and $\ell(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ defined by Orlicz Function

RITI AGRAWAL*

M. M. M. Engineering College Gorakhpur (U.P.), India

J. K. SRIVASTAVA

D. D. U. Gorakhpur University, Gorakhpur (U.P.), India

(Received on: 29-08-12; Revised & Accepted on: 17-09-12)

ABSTRACT

In this paper, we construct new sequence spaces $c_{\circ}(\mathbb{Z},X,M,\bar{\lambda},\bar{p})$ and $\ell(\mathbb{Z},X,M,\bar{\lambda},\bar{p})$ by using OrliczfunctionM. We also examine some of the properties like containment, linearity and completeness etc of these newly constructed sequence spaces.

Keywords: Bilateral Sequence, Sequence Space, Paranormed space, Orlicz function.

2010 AMS Subject Classification: Primary- 46A45, Secondary- 46B45.

1. INTRODUCTION

By a bilateral sequence, we mean a function whose domain is the set \mathbb{Z} of all integers with natural ordering. The utility of bilateral sequences can be found in [7] and [8]. We will denote a bilateral sequence by the symbol $(a_k)_{-\infty}^{\infty}$ or $\bar{a} = (a_k)_{-\infty}^{\infty}$. As usual, by the convergence of the bilateral series $\sum_{-\infty}^{\infty} a_k$ to s written as $\sum_{-\infty}^{\infty} a_k = s$, we shall mean the convergence of the sequence $(S_n)_{n=1}^{\infty}$ to s where $S_n = \sum_{-n}^{n} a_k$ is called n-th partial sum of the bilateral series $\sum_{-\infty}^{\infty} a_k$

Again, let M be the Orlicz function. The definition of Orlicz function and Orlicz sequence spaces are as follows:

Definition 1.1: An Orlicz function $M: [0, \infty) \to [0, \infty)$ is a continuous, non-decreasing and convex function defined for $t \ge 0$ such that

(i)M(x) > 0 for x > 0;

 $(\mathbf{ii})M(0) = 0$ and

 $(\mathbf{iii})\lim_{t\to\infty}M\left(t\right)=\infty.$

An Orlicz function M can always be represented in the following integral form (see [1])

$$M(x) = \int_0^x p(t)dt$$

where p is known as the kernal of M, is right differentiable for $t \ge 0$, p(0) = 0, p(t) > 0 for t > 0, p is non-decreasing and $p(t) \to \infty$ as $t \to \infty$.

Definition 1.2:Lindenstrauss and Tzafriri (see [1], [3], [4] and [5]) used the ideas of Orlicz function to construct the sequence space,

$$l_{M} = \left\{ x \in \omega : \sum_{1}^{\infty} M\left(\frac{|x_{k}|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

The space l_M with the norm

$$||x|| = \inf \left\{ \rho > 0: \sum_{1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}$$

becomes a Banach space which is called an Orlicz sequence space.

Now let $\bar{p} = (p_k)_{-\infty}^{\infty}$ and $\bar{q} = (q_k)_{-\infty}^{\infty}$ be bilateral sequences of strictly positive real numbers and $\bar{\lambda} = (\lambda_k)_{-\infty}^{\infty}$ and $\bar{\mu} = (\mu_k)_{-\infty}^{\infty}$ be bilateral sequences of non-zero complex numbers and M be an Orlicz function. Now we introduce the following classes of Banach space X -valued bilateral sequences:

$$c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p}) = \{\bar{x} = (x_k)_{-\infty}^{\infty} : x_k \in X, \ k \in \mathbb{Z}, \ and \ \left(M(\frac{||\lambda_k x_k||}{\rho})\right)^{p_k} \to 0 \ as$$

$$k \to -\infty, \ as \ well \ as \ k \to \infty \quad for \ some \ \rho > 0\}$$

$$\ell(\mathbb{Z},X,M,\bar{\lambda},\bar{p}) = \{\bar{x} = (x_k)_{-\infty}^{\infty} : x_k \in X, \ k \in \mathbb{Z}, \ and \ \sum_{-\infty}^{\infty} \left(M(\frac{||\lambda_k x_k||}{\rho})\right)^{p_k} < \infty, \ for \ some \ \rho > 0\}.$$

Throughout the paper we denote $t_k = \left| \frac{\lambda_k}{\mu_k} \right|$.

Definition 1.3: Let X be a linear space. A mapping $g: X \to \mathbb{R}$ is called a paranorm if it satisfies

- (i) $g(\theta) = 0$;
- (ii) g(x) = g(-x);
- (iii) $g(x+y) \leq g(x) + g(y)$;
- (iv) if (α_n) is a sequence of scalars with $\alpha_n \to \alpha$ and (x_n) is a sequence in X with $g(x_n x) \to 0$ then $g(\alpha_n x_n \alpha x) \to 0$ (continuity of scalar multiplication). The paranorm is called total if
- $(\mathbf{v})g(x) = 0$ implies x = 0, see [9].

In this paper our aim is to investigate results concerning the above defined classes with the help of Orlicz function M.

2. CONTAINMENT

Lemma 2.1: $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p}) \subset c_{\circ}(\mathbb{Z}, X, M, \bar{\mu}, \bar{p})$ if and only if

$$\lim_{k\to-\infty}\inf_k t_k > 0$$
 and $\lim_{k\to\infty}\inf_k t_k > 0$ with $l = \inf_k p_k \le p_k$.

Proof: For the sufficiency of the condition suppose that $\lim_{k\to\infty}\inf_k t_k>0$ and $\lim_{k\to\infty}\inf_k t_k>0$ and $\bar{x}=(x_k)_{-\infty}^\infty\in c_\circ(\mathbb{Z},X,M,\bar{\lambda},\bar{p})$ Then there exists a real number m>0 such that $m<|\frac{\lambda_k}{\mu_k}$ for all sufficiently large values of |k|. Thus $m||\mu_k x_k||<||\lambda_k x_k||$, for all sufficiently large values of |k|. Also $\bar{x}\in c_\circ(\mathbb{Z},X,M,\bar{\lambda},\bar{p})$ so we can find some $\rho_1>0$ such that $\left(M(\frac{||\lambda_k x_k||}{\rho_1})\right)^{p_k}\to 0$. Let us choose ρ such that $\rho_1< m\rho$. Since M is non-decreasing, we have

$$\left(M(\frac{||\mu_k x_k||}{\rho})\right)^{p_k} \le \left(M(\frac{||\lambda_k x_k||}{m\rho})\right)^{p_k} < \left(M(\frac{||\lambda_k x_k||}{\rho_1})\right)^{p_k} \to 0$$

and hence $\bar{x} \in c_{\circ}(\mathbb{Z}, X, M, \bar{\mu}, \bar{p})$ and hence $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p}) \subset c_{\circ}(\mathbb{Z}, X, M, \bar{\mu}, \bar{p})$.

For the necessity, let $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p}) \subset c_{\circ}(\mathbb{Z}, X, M, \bar{\mu}, \bar{p})$ but either $\lim_{k \to \infty} \inf t_k = 0$ or $\lim_{k \to \infty} \inf t_k = 0$. Let us take $\lim_{k \to \infty} \inf t_k = 0$. Then there exists a sequence (k(n)) such that $k(n+1) > k(n) \ge 1$, for which $n^2 |\lambda_{k(n)}| < |\mu_{k(n)}|$. Now the bilateral sequence $\bar{x} = (x_k)_{-\infty}^{\infty^{TM}}$ defined by

$$x_k = \begin{cases} \lambda_{k(n)}^{-1} n^{-1} z & \text{if } k = k(n), n \ge 1, \text{ and} \\ \theta, & \text{otherwise} \end{cases}$$

where $z \in X$ and ||z|| = 1. Then $||\lambda_{k(n)}x_{k(n)}|| = \frac{1}{n}$. Which implies that $||\lambda_{k(n)}x_{k(n)}|| \to 0$ as $n \to \infty$.

Therefore $\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\varrho})\right)^l \to 0$ as $n \to \infty$ for any fixed l.

Hence

$$\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{p_{k(n)}} \to 0$$
as $n \to \infty$ since $l \le p_k$

i.e., $\bar{x} \in c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$. But $||\mu_{k(n)} x_{k(n)}|| > n$, implies that

$$\left(M(\frac{||\mu_{k(n)}x_{k(n)}||}{\rho})\right)^{p_{k(n)}/l} > 1 \quad \text{for all } n \ge 1 \text{ and for some fixed } l \le p_k,$$
 or
$$\left(M(\frac{||\mu_{k(n)}x_{k(n)}||}{\rho})\right)^{p_{k(n)}} > 1 \quad \text{for all } n \ge 1 \text{ and for some } \rho.$$

Which implies $\bar{x} \notin c_{\circ}(\mathbb{Z}, X, M, \bar{\mu}, \bar{p})$, a contradiction.

Similar proof can be given in the case when $\lim_{k\to\infty}\inf_k t_k > 0$. This completes the proof.

Lemma 2.2: $c_{\circ}(\mathbb{Z}, X, M, \bar{\mu}, \bar{p}) \subset c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ if and only if $\lim_{k \to -\infty} \sup_{k} t_{k} < \infty$ and $\lim_{k \to \infty} \sup_{k} t_{k} < \infty$ with $l = \inf_{k} p_{k} \leq p_{k}$.

Proof: Sufficiency is straightforward. On the other hand for the necessity suppose that $(\mathbb{Z}, X, M, \bar{\mu}, \bar{p}) \subset c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ but either $\lim_{k \to -\infty} \sup_{k} t_{k} = \infty$ or $\lim_{k \to \infty} \sup_{k} t_{k} = \infty$. Let $\lim_{k \to \infty} \sup_{k} t_{k} = \infty$. Then there exists a sequence (k(n)), $k(n) \ge 1$ such that for each $n \ge 1$, $|\lambda_{k(n)}| > n^{2} |\mu_{k(n)}|$ Now define the bilateral sequence $\bar{x} = (x_{k})_{-\infty}^{\infty}$ by

$$x_k = \begin{cases} \mu_{k(n)}^{-1} n^{-1} z & \text{if } k = k(n), n \ge 1 \text{ and,} \\ \theta, & \text{otherwise} \end{cases}$$

where $z \in X$ and ||z|| = 1. Then $||\mu_{k(n)}x_{k(n)}|| = \frac{1}{n}$ $n \ge 1$ and $||\mu_kx_k|| = 0$, otherwise. This implies that $\frac{||\mu_{k(n)}x_{k(n)}||}{\rho} \to 0$ as $n \to \infty$ for some ρ . Thus by the property of Orlicz function, we have $\left(M(\frac{||\mu_{k(n)}x_{k(n)}||}{\rho})\right)^l \to 0$ as $n \to \infty$ for some ρ and for any fixed l.

Therefore $\left(M(\frac{||\mu_{k(n)}x_{k(n)}||}{\rho})\right)^{p_k} \to 0$ as $n \to \infty$ since $l = \inf p_k < p_k$. This shows that $\bar{x} \in c_{\circ}(\mathbb{Z}, X, M, \bar{\mu}, \bar{p})$. But $||\lambda_{k(n)}x_{k(n)}|| > n$ implies that $||\lambda_{k(n)}x_{k(n)}|| \to \infty$ as $n \to \infty \left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{p_k/l} \to \infty$ for arbitrary large n and $l \le p_k$. This shows that $\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{p_k} \to \infty$ as $n \to \infty$; i.e., $\bar{x} \notin c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$, which is a contradiction.

Similar proof can be given in the case when $\lim_{k\to -\infty} \sup_{k} t_k = \infty$. This completes the proof.

On combining Lemma 2.1 and Lemma 2.2, we get the following theorem:

Theorem 2.3:For $l = \inf p_k \le p_k$, $c_o(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p}) = c_o(\mathbb{Z}, X, M, \bar{\mu}, \bar{p})$ if and only if

$$\begin{array}{l} 0<\lim_{k\to -\infty}\inf t_k\leq \lim_{k\to -\infty}\sup t_k<\infty \ and,\\ 0<\lim_{k\to \infty}\inf t_k\leq \lim_{k\to \infty}\sup t_k<\infty. \end{array}$$

Corollary 2.4: For $l = \inf p_k \le p_k$,

$$\begin{split} (\mathbf{i})c_{\circ}(\mathbb{Z},X,M,\bar{\lambda},\bar{p}) \subset c_{\circ}(\mathbb{Z},X,M,\bar{p}) &\text{if and only if} \\ &\lim_{k \to -\infty} \inf |\lambda_k|^{p_k} > 0 \ and \ \lim_{k \to \infty} \inf |\lambda_k|^{p_k} > 0; \end{split}$$

$$(\mathbf{ii}) c_{\circ}(\mathbb{Z}, X, M, \bar{p}) \subset c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p}) \text{if and only if } \\ \lim_{k \to -\infty} \sup |\lambda_k|^{p_k} < \infty \ and \ \lim_{k \to \infty} \sup |\lambda_k|^{p_k} < \infty \ ;$$

(iii)
$$c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p}) = c_{\circ}(\mathbb{Z}, X, M, \bar{p})$$
 if and only if
$$0 < \lim_{k \to -\infty} \inf |\lambda_{k}|^{p_{k}} \le \lim_{k \to -\infty} \sup |\lambda_{k}|^{p_{k}} < \infty \text{ and } \\ 0 < \lim_{k \to \infty} \inf |\lambda_{k}|^{p_{k}} \le \lim_{k \to \infty} \sup |\lambda_{k}|^{p_{k}} < \infty.$$

Proof:

(i) Take $\mu_k = 1$, for all k in Lemma 2.1,

(ii) Take $\mu_k = 1$, for all k in Lemma 2.2,

(iii) Take $\mu_k = 1$, for all k in Theorem 2.3.

Lemma 2.5: $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p}) \subset c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{q})$ if and only if

$$\lim_{k\to\infty}\inf\frac{q_k}{p_k}>0$$
 and $\lim_{k\to\infty}\inf\frac{q_k}{p_k}>0$ with $l=\inf_k p_k\leq p_k$.

Proof: For the sufficiency condition, suppose $\lim_{k\to -\infty}\inf \frac{q_k}{p_k}>0$ and

 $\lim_{k\to\infty}\inf\frac{q_k}{p_k}>0$ and $\bar{x}=(x_k)_{-\infty}^\infty\in c_\circ(\mathbb{Z},X,M,\bar{\lambda},\bar{p})$. Then there exists a real number m>0 such that $q_k>mp_k$ for all sufficiently large values of |k|. Further since $\bar{x}\in c_\circ(\mathbb{Z},X,M,\bar{\lambda},\bar{p})$ we have $\left(M(\frac{||\lambda_k x_k||}{\rho})\right)^{p_k}<1$, for all sufficiently

large values of |k| and hence $(M(\frac{||\lambda_k x_k||}{\rho}))^{q_k} < [(M(\frac{||\lambda_k x_k||}{\rho}))^{p_k}]^m < 1$, for all sufficiently large values of |k|. This implies that $\bar{x} \in c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{q})$ and hence $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p}) \subset c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{q})$.

For the necessity of the condition, suppose that inclusion holds but either $\lim_{k\to -\infty}\inf\frac{q_k}{p_k}=0$ or $\lim_{k\to \infty}\inf\frac{q_k}{p_k}=0$. Here we prove the result for the case when $\lim_{k\to \infty}\inf\frac{q_k}{p_k}=0$, then there exists a sequence $(k(n)), k(n)\geq 1$ such that foreach $n\geq 1$ $nq_{k(n)}< p_{k(n)}$. Now taking $z\in X$ and ||z||=1 for the bilateral sequence $\bar{x}=(x_k)_{-\infty}^\infty$ defined by

$$x_k = \begin{cases} \lambda_{k(n)}^{-1} n^{-1} z & \text{if } k = k(n), \ n \ge 1 \text{ and,} \\ \theta, & \text{otherwise} \end{cases}$$

Then $\bar{x} = c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ as $||\lambda_{k(n)}x_{k(n)}|| = \frac{1}{n}$. This implies that $||\lambda_{k(n)}x_{k(n)}|| \to 0$ as $n \to \infty$. Thus by the definition of Orlicz function, we have

$$M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho}) \to 0$$
as $n \to \infty$ for some $\rho > 0$

or $\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^l \to 0$ as $n \to \infty$ for some ρ and some fixed l.

or
$$\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{p_{k(n)}} \le \left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{l}$$
 since $l \le p_k$.

This implies that $\left(M(\frac{||\lambda_k(n)x_k(n)||}{\rho})\right)^{p_k(n)} \to 0$ as $n \to \infty$ for some ρ . Therefore $\bar{x} = (x_k)_{-\infty}^{\infty} \in c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$. But

$$\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{p_{k(n)}} < \left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{nq_{k(n)}}$$

Now we can choose some $\rho_1 > \rho$ such that $\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho_1})\right)^{p_{k(n)}}$ does not converge to zero.

Therefore $\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{nq_{k(n)}}$ does not converge to zero for some $\rho_1 > \rho$ which shows that $\bar{x} \notin c_o(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$, a contrdiction.

Similar proof can be given for the case when $\lim_{k\to-\infty}\inf\frac{q_k}{p_k}=0$. This completes the proof.

Lemma 2.6: $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{q}) \subset c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ if and only if

$$\lim_{k \to -\infty} \sup \frac{q_k}{p_k} < \infty \ and \ \lim_{k \to \infty} \sup \frac{q_k}{p_k} < \infty$$

with $1 = \inf_k q_k \le q_k$.

Proof: Sufficiency is straightforward. On the other hand for the necessity, let the inclusion holds but $\lim_{k\to-\infty}\sup\frac{q_k}{p_k}=\infty$ or $\lim_{k\to\infty}\sup\frac{q_k}{p_k}=\infty$. Here we prove the result for the case when $\lim_{k\to\infty}\sup\frac{q_k}{p_k}=\infty$ then there exists a sequence $(k(n)), k(n) \ge 1$ such that $q_{k(n)} > np_{k(n)}$ for all $n \ge 1$. Thus, the bilateral sequence $\bar{x} = (x_k)_{-\infty}^{\infty}$ defined by

$$x_k = \begin{cases} \lambda_{k(n)}^{-1} n^{-1} z & \text{if } k = k(n), n \ge 1 \text{ and,} \\ \theta, & \text{otherwise} \end{cases}$$

where $z \in X$, ||z|| = 1. We see that, $||\lambda_{k(n)}x_{k(n)}|| \to 0$ as $n \to \infty$. Thus by the definition of Orlicz function we have $\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^l \to 0$ as $n \to \infty$ for some ρ and some fixed l and $\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{q_{k(n)}} \le \left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^l$, since $l \le q_k$.

Therefore $\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{q_{k(n)}} \to 0$ for some ρ implies that $\bar{x} \in c_{\circ}(M, X, \lambda, q)$. But $\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{np_{k(n)}}$ will not surely converge to zero for each $n \ge 1$ as

$$\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{q_{k(n)}} < \left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{np_{k(n)}}$$

and we can choose some $\rho_1 < \rho$ such that $\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho_1})\right)^{q_{k(n)}} \to \infty$. Therefore

$$\left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{q_{k(n)}} < \left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho_1})\right)^{q_{k(n)}} < \left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho_1})\right)^{np_{k(n)}}$$

Implies $\left(M(\frac{||\lambda_k(n)^{x_k(n)}||}{\rho})\right)^{p_k(n)}$ will not converge to zero for some $\rho > \rho_1$. Therefore $\bar{x} \notin c_{\circ}(\bar{\mathbb{Z}}, X, M, \bar{\lambda}, \bar{p})$, which is a contrdiction.

Similar proof can be given for the case when $\lim_{k\to -\infty} \sup \frac{q_k}{p_k} = \infty$. This completes the proof.

On combining Lemma 2.5 and Lemma 2.6 we get the following theorem:

Theorem 2.7: $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p}) = c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{q})$

$$0<\lim_{k\to -\infty}\inf\frac{q_k}{p_k}<\lim_{k\to -\infty}\sup\frac{q_k}{p_k}<\infty,\ \ and\quad \ 0<\lim_{k\to \infty}\inf\frac{q_k}{p_k}<\lim_{k\to \infty}\sup\frac{q_k}{p_k}<\infty.$$

Lemma 2.8: $\ell(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p}) \subset \ell(\mathbb{Z}, X, M, \bar{\mu}, \bar{p})$ if and only if

$$\lim_{k\to-\infty}\inf t_k>0$$
 and $\lim_{k\to\infty}\inf t_k>0$.

Proof: Suppose $\lim_{k \to -\infty} \inf t_k > 0$ and $\lim_{k \to \infty} \inf t_k > 0$ and $\bar{x} = (x_k)_{-\infty}^\infty \in \ell(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$. Then there exists a real number m > 0 such that $m|\mu_k| < |\lambda_k|$ for all sufficiently large values of |k|. Thus $m||\mu_k x_k|| < ||\lambda_k x_k||$ for all sufficiently large values of |k|. Since $\bar{x} \in \ell(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ so there exists $\rho_1 > 0$ such that $\sum_{-\infty}^\infty \left(M(\frac{||\lambda_k x_k||}{\rho_1}) \right)^{p_k} < \infty$. Let us $\mathrm{choose} \rho > 0$ such that $\rho_1 < m\rho$. Since M is non-decreasing therefore

$$\sum_{-\infty}^{\infty} \left(M\left(\frac{||\mu_k x_k||}{\rho}\right) \right)^{p_k} < \sum_{-\infty}^{\infty} \left(M\left(\frac{||\lambda_k x_k||}{m\rho}\right) \right)^{p_k} < \sum_{-\infty}^{\infty} \left(M\left(\frac{||\lambda_k x_k||}{\rho_1}\right) \right)^{p_k} < \infty$$

for some $\rho > 0$. Hence $\bar{x} \in \ell(\mathbb{Z}, X, M, \bar{\mu}, \bar{p})$ and this implies that

$$\ell(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p}) \subset \ell(\mathbb{Z}, X, M, \bar{\mu}, \bar{p}).$$

Conversely, let the inclusion holds but either $\lim_{k\to\infty}\inf t_k=0$ or $\lim_{k\to\infty}\inf t_k=0$. Here we take $\lim_{k\to\infty}\inf t_k=0$, then there exists a sequence $(k(n)),\ k(n)\geq 1$ such that $n^2|\lambda_{k(n)}|<|\mu_{k(n)}|$ for all $n\geq 1$. Now we see that $\bar x=(x_k)_{-\infty}^\infty$ defined by

$$x_k = \begin{cases} \lambda_{k(n)}^{-1} n^{-1} z & \text{if } k = k(n), n \ge 1 \text{ and,} \\ \theta, & \text{otherwise} \end{cases}$$

where $z \in X$, ||z|| = 1 is in $\ell(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ but not in $\ell(\mathbb{Z}, X, M, \bar{\mu}, \bar{p})$ as $||\lambda_{k(n)} x_{k(n)}|| = \frac{1}{n}$. Therefore $\left(M(\frac{||\lambda_{k(n)} x_{k(n)}||}{\rho})\right)^l \to 0$ as $n \to \infty$ for some ρ and for any fixed l. Hence $\sum_{-\infty}^{\infty} \left(M(\frac{||\lambda_{k(n)} x_{k(n)}||}{\rho})\right)^{p_k} < \infty$ for $\ell = \inf_k p_k \le p_k$. But $||\mu_{k(n)} x_{k(n)}|| = |\frac{\mu_{k(n)}}{\lambda_{k(n)}}|\frac{1}{n} > n$, implies that $\left(M(\frac{||\mu_{k(n)} x_{k(n)}||}{\rho})\right)^{p_{k(n)/l}} > 1$ for $\rho > 0$ and for some fixed $l \le p_k$, or $\sum_{-\infty}^{\infty} \left(M(\frac{||\mu_{k(n)} x_{k(n)}||}{\rho})\right)^{p_{k(n)}} > 1$

Hence $\bar{x} \notin \ell(\mathbb{Z}, X, M, \bar{\mu}, \bar{p})$, which is a contrdiction.

Similar proof can be given for the case when we take $\lim_{k\to -\infty}\inf t_k=0$. This completes the proof.

Lemma 2.9: $\ell(\mathbb{Z}, X, M, \bar{\mu}, \bar{p}) \subset \ell(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ if and only if

$$\lim_{k\to-\infty}\sup_k t_k < \infty$$
 and $\lim_{k\to\infty}\sup_k t_k < \infty$ with $l=\inf_k p_k \le p_k$.

Proof: Sufficiency is straightforward. On the other hand suppose that

 $\ell(\mathbb{Z},X,M,\bar{\mu},\bar{p}) \subset \ell(\mathbb{Z},X,M,\bar{\lambda},\bar{p})$ but either $\lim_{k\to\infty}\sup_k t_k = \infty$ or $\lim_{k\to\infty}\sup_k t_k = \infty$. Let $\lim_{k\to\infty}\sup_k t_k = \infty$. Then there exists a sequence $(k(n)), k(n) \geq 1$ such that for each $n\geq 1, |\lambda_{k(n)}| > n|\mu_{k(n)}|$. Now define the bilateral sequence $\bar{x} = (x_k)_{-\infty}^{\infty}$ by

$$x_k = \begin{cases} \mu_{k(n)}^{-1} n^{-2} z & \text{if } k = k(n), & n \ge 1 \text{ and,} \\ \theta, & \text{otherwise} \end{cases}$$

 $\text{where} \ z \in X \ \text{ and } \ ||z|| = 1. \ \text{Then} \ \ \bar{x} \in \ell(\mathbb{Z}, X, M, \bar{\mu}, \bar{p}) \ \text{ since } \ ||\mu_{k(n)} x_{k(n)}|| = \frac{1}{n^2} \ \text{i.e., } \ ||\mu_{k(n)} x_{k(n)}|| \to 0 \ \text{as } \ n \to \infty.$ Therefore $\left(M(\frac{||\mu_{k(n)} x_{k(n)}||}{\rho}) \right)^l \to 0 \ \text{ as } \ n \to \infty \ \text{ for any fixed } \ l = \inf_k p_k. \text{ Hence}$ $\sum_{-\infty}^{\infty} \left(M(\frac{||\mu_k x_k||}{\rho}) \right)^{p_k} < \infty \text{ for } \ l = \inf_k p_k.$

But
$$||\lambda_{k(n)}x_{k(n)}|| = |\frac{\lambda_{k(n)}}{\mu_{k(n)}}|$$
. $n^2 > n$, implies that $M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho}) > 1$. Therefore $\sum_{-\infty}^{\infty} \left(M(\frac{||\lambda_{k(n)}x_{k(n)}||}{\rho})\right)^{p_{k(n)}} > 1$ for arbitrary large n . Hence $\bar{x} \notin \ell(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$, which is a contrdiction.

Similar proof can be given for the case when we take $\lim_{k\to\infty}\sup t_k=\infty$. This completes the proof.

On combining above two Lemmas 2.8 and 2.9 we easily get:

Theorem 2.10: $\ell(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p}) = \ell(\mathbb{Z}, X, M, \bar{\mu}, \bar{p})$ if and only if

$$0<\lim_{k\to -\infty}\inf t_k<\lim_{k\to -\infty}\sup t_k<\infty$$
 and
$$0<\lim_{k\to \infty}\inf t_k<\lim_{k\to -\infty}\sup t_k<\infty.$$

3. LINEARITY

As far as linear space structures of $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ and $\ell(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ are concerned, here also we take co-ordinate-wise addition and scalar multiplication in what follows for $\bar{p} = (p_k)_{-\infty}^{\infty} \in \ell_{\infty}(\mathbb{Z})$ we shall use the notation $H = max(1, \sup_k p_k)$.

Theorem 3.1: $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ forms a linear space over the field \mathbb{C} .

Proof: Let $\bar{x}, \bar{y} \in c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ and $\alpha, \beta \in \mathbb{C}$ therefore there exist some positive ρ_1 and ρ_2 such that $\left(M(\frac{||\bar{\lambda}_k x_k||}{\rho_1})\right)^{p_k} \to 0$ as $k \to -\infty$ as well as $k \to \infty$ and $\left(M(\frac{||\bar{\lambda}_k y_k||}{\rho_2})\right) \to 0$ as $k \to -\infty$ as well as $k \to \infty$. In order to prove the result, we need to find some $\rho_3 > 0$ such that,

$$\left(M\left(\frac{||\alpha\lambda_k x_k + \beta\lambda_k y_k||}{\rho_3}\right)\right)^{p_k} \to 0 \text{ as } k \to -\infty \text{ as well as } k \to \infty.$$

Consider $\rho_3 = max(2|\alpha|\rho_1, 2|\beta|\rho_2)$ i.e., $\frac{|\alpha|}{\rho_3} \le \frac{1}{2\rho_1}$ and $\frac{|\beta|}{\rho_3} \le \frac{1}{2\rho_2}$. Then we have

$$\left(M\left(\frac{||\alpha\lambda_{k}x_{k}+\beta\lambda_{k}y_{k}||}{\rho_{3}}\right)^{p_{k}} \leq \left(M\left(\frac{||\alpha\lambda_{k}x_{k}||}{\rho_{3}}+\frac{||\beta\lambda_{k}y_{k}||}{\rho_{3}}\right)\right)^{p_{k}} \\
\leq \left(M\left(\frac{||\lambda_{k}x_{k}||}{2\rho_{1}}+\frac{||\lambda_{k}y_{k}||}{2\rho_{2}}\right)\right)^{p_{k}} \\
\leq \frac{1}{2^{p_{k}}}\left(M\left(\frac{||\lambda_{k}x_{k}||}{\rho_{1}}\right)+M\left(\frac{||\lambda_{k}y_{k}||}{\rho_{2}}\right)\right)^{p_{k}} \\
\leq \left(M\left(\frac{||\lambda_{k}x_{k}||}{\rho_{1}}\right)+M\left(\frac{||\lambda_{k}y_{k}||}{\rho_{2}}\right)\right)^{p_{k}} \\
\leq c\left(M\left(\frac{||\lambda_{k}x_{k}||}{\rho_{1}}\right)\right)^{p_{k}}+c\left(M\left(\frac{||\lambda_{k}y_{k}||}{\rho_{2}}\right)\right)^{p_{k}} \to 0$$

 $ask \rightarrow -\infty$ as well as $k \rightarrow \infty$,

where $c = max(1, 2^{H-1})$. This proves that $c_o(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ forms a linear space over \mathbb{C} .

Theorem 3.2: $\ell(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ forms a linear space over the field \mathbb{C} .

4. PARANORMED SPACE STRUCTURE

We define

$$(4.1) P(\bar{x}) = \inf \left\{ \rho^{p_n/H} : \sup_{k} \left(M(\frac{||\lambda_k x_k||}{\rho}) \right)^{p_k/H} \le 1, \ n \in \mathbb{Z}^+ \right\} \text{ and }$$

$$(4.2) Q(\bar{x}) = \inf \left\{ \rho^{p_n/H} : \left(\sum_{-\infty}^{\infty} \left(M(\frac{||\lambda_k x_k||}{\rho}) \right)^{p_k} \right)^{\frac{1}{H}} \le 1, \quad n \in \mathbb{Z}^+ \right\}$$
where $H = (1, \sin p_k)$

Theorem 4.1: $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ is a total paranormed space with paranorm defined by (4.1).

Proof:(i) Clearly $P(\bar{x}) = P(-\bar{x})$.

- (ii) $P(\bar{x} + \bar{y}) \le P(\bar{x}) + P(\bar{y})$ follows by putting $\alpha = \beta = 1$ in Theorem 3.1.
- (iii) If $\bar{x} = \theta$ then $P(\theta) = 0$ follows easily since

$$\sup_{k} \left(M(\frac{||\lambda_k x_k||}{\rho}) \right)^{p_k/H} = 0 \text{ for all } k$$

Conversely suppose $P(\bar{x}) = 0$ then

$$\inf \left\{ \rho^{p_n/H} : \sup_{k} \left(M\left(\frac{||\lambda_k x_k||}{\rho}\right) \right)^{p_k/H} \le 1, \ n \in \mathbb{Z}^+ \right\} = 0$$

In such a case, for given $\epsilon > 0$, there exists some ρ_{ϵ} , $0 < \rho_{\epsilon} < \epsilon$ such that $\sup_{k} \left(M(\frac{||\lambda_{k}x_{k}||}{\rho_{\epsilon}}) \right)^{p_{k}/H} \le 1$. Thus, $\sup_{k} \left(M(\frac{||\lambda_{k}x_{k}||}{\rho_{\epsilon}}) \right)^{p_{k}/H} \le \sup_{k} \left(M(\frac{||\lambda_{k}x_{k}||}{\rho_{\epsilon}}) \right)^{p_{k}/H} \le 1$.

Suppose, $x_{n_m} \neq 0$, for some m. Let $\epsilon \to 0$, then $(\frac{||x_{n_m}||}{\epsilon}) \to \infty$. It follows that

$$\sup_{m} \left(M(\frac{||\lambda_{m} x_{n_{m}}||}{\epsilon}) \right)^{p_{m}/H} \to \infty$$

which is a contradiction. Therefore $x_{n_m} = 0$ for each m.

(iv) Finally, we prove that scalar multiplication is continuous. Let μ be any number. By definition,

$$P(\mu \bar{x}) = \inf \left\{ \rho^{p_n/H} : \sup_{k} \left(M(\frac{||\mu \lambda_k x_k||}{\rho}) \right)^{p_k/H} \le 1, n \in \mathbb{Z}^+ \right\}.$$

Then
$$P(\mu \bar{x}) = \inf \left\{ (\mu r)^{p_n/H} : \sup_k \left(M(\frac{||\lambda_k x_k||}{r}) \right)^{p_k/H} \le 1, n \in \mathbb{Z}^+ \right\}$$

where $r = \frac{\rho}{\mu}$. Since $|\mu|^{p_k} \le \max(1, |\mu|^H)$. Therefore $|\mu|^{p_k/H} \le (\max(1, |\mu|^H))^{1/H}$.

Hence,
$$P(\mu \bar{x}) \leq (max(1, |\mu|^H))^{1/H} \inf \left\{ (r)^{p_n/H} : \sup_k \left(M(\frac{|\lambda_k x_k|}{r}) \right)^{p_k/H} \leq 1, n \in \mathbb{Z}^+ \right\}$$

= $(max(1, |\mu|^H))^{1/H} P(\bar{x})$,

which converges to zero as $P(\bar{x})$ converges to zero in $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$. Now suppose $\mu_n \to 0$ and $\bar{x} \in c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$. For arbitrary $\epsilon > 0$, let N be a positive integer such that $\left(M(\frac{||\lambda_k x_k||}{\rho})\right)^{p_k} < \frac{\epsilon}{2}, \quad k \in \mathbb{Z} \setminus \mathbb{Z}(-N, N)$ for some $\rho > 0$. This implies that $\left(M(\frac{||\lambda_k x_k||}{\rho})\right)^{p_k/H} \le \frac{\epsilon}{2}, \quad k \in \mathbb{Z} \setminus \mathbb{Z}(-N, N)$.

Let $0 < |\mu| < 1$, then by convexity of M, we get

$$\left(M(\frac{||\mu \lambda_k x_k||}{\rho})\right)^{p_k} < \left(|\mu|M(\frac{||\lambda_k x_k||}{\rho})\right)^{p_k} < (\frac{\epsilon}{2})^H, \quad k \in \mathbb{Z} \setminus \mathbb{Z}(-N, N).$$

Since M is continuous everywhere in $[0,\infty)$, then $f(t) = \left(M(\frac{||t\lambda_k x_k||}{\rho})\right)$, $k \in \mathbb{Z} \setminus \mathbb{Z}(-N,N)$ is continuous at 0. So there is $1 > \delta > 0$ such that $|f(t)| < \frac{\epsilon}{2}$, $0 < t < \delta$. Let K be such that $|\mu_n| < \delta$ for all n > K, then for n > K

$$\left(M(\frac{||\mu_n\lambda_kx_k||}{\rho})\right)^{p_k/H}<\frac{\epsilon}{2},\quad k\in\mathbb{Z}(-N,N),$$

Hence
$$\sup_k \left(M(\frac{||\mu_n \lambda_k x_k||}{\rho}) \right)^{p_k/H} < \frac{\epsilon}{2}, \quad k \in \mathbb{Z}(-N,N).$$
 Thus
$$\sup_k \left(M(\frac{||\mu_n \lambda_k x_k||}{\rho}) \right)^{p_k/H} < \epsilon, \text{ for } n > K, \ k \in Z(-N,N).$$

This completes the proof.

Theorem 4.2:Let $1 \le p_k < \infty$. Then $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ is a complete paranormed space with paranorm

$$P(\bar{x}) = \inf \left\{ \rho^{p_n/H} : \sup_{k} \left(M(\frac{||\lambda_k x_k||}{\rho}) \right)^{p_k/H} \le 1, \text{ for some } \rho \text{ and } n \in \mathbb{Z} \right\}$$

Proof: Let $(\bar{x}^{(i)})$ be a Cauchy sequence in $c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$. Let r and x_{\circ} be fixed positive real numbers with $M(\frac{rx_0}{2}) > 1$. Then for each $\frac{\epsilon}{rx_0} > 0$ there exists a positive integer N such that

(4.3)
$$P(\bar{x}^{(i)} - \bar{x}^{(j)}) < \frac{\epsilon}{rx_0} \quad \text{for all } i, j \ge N.$$

Using definition of paranorm, we get

$$(4.4) \qquad \sup_{k} \left(M(\frac{||\lambda_k x_k^{(i)} - \lambda_k x_k^{(j)}||}{P(\bar{x}^{(i)} - \bar{x}^{(j)})})]^{p_k/H} \right) \le 1 \quad \text{for all} \quad i, j \ge N, \text{and} \quad k \in \mathbb{Z}.$$

Thus

$$\left(M(\frac{||\lambda_k x_k^i - \lambda_k x_k^j||}{P(\bar{x}^{(i)} - \bar{x}^{(j)})})\right)^{p_k} \le 1 \quad \text{for all } i, j \ge N \text{ and } k \in \mathbb{Z}.$$

Since $1 \le p_k < \infty$, it implies that

$$\left(M(\frac{||\lambda_k x_k^{(i)} - \lambda_k x_k^{(j)}||}{P(\bar{x}^{(i)} - \bar{x}^{(j)})})\right) \le 1 \quad \text{for all} \quad k \ge 1 \quad \text{and for all} \quad i, j \ge N.$$

But $M(\frac{rx_0}{2}) > 1$. Therefore

$$M(\frac{||\lambda_k x_k^{(i)} - \lambda_k x_k^{(j)}||}{P(\bar{x}^{(i)} - \bar{x}^{(j)})}) < M(\frac{rx_0}{2}).$$

But M is non-decreasing therefore

$$\frac{||\lambda_k x_k^{(i)} - \lambda_k x_k^{(j)}||}{P(\bar{x}^{(i)} - \bar{x}^{(j)})} < \frac{r x_0}{2}$$

or,
$$||\lambda_k x_k^{(i)} - \lambda_k x_k^{(j)}|| < \frac{rx_0}{2} \cdot [P(\bar{x}^{(i)} - \bar{x}^{(j)})]$$

or,
$$||\lambda_k x_k^{(i)} - \lambda_k x_k^{(j)}|| < \frac{rx_0}{2} \cdot \frac{\epsilon}{rx_0} = \frac{\epsilon}{2}.$$

Hence $(x_k^{(i)})$ is a Cauchy sequence in X for all $k \in \mathbb{Z}$ and therefore convergent. But X is complete, therefore $x_k^{(i)} \to x_k$ (say) as $i \to \infty$. Let us choose $\rho > 0$ such that $P((\bar{x}^{(i)} - \bar{x}^{(j)})) < \rho < \epsilon$ for all $i, j \ge N$. Since M is non decreasing we have by (4.4)

$$\sup_{k} \left(M(\frac{||\lambda_{k} x_{k}^{(i)} - \lambda_{k} \lim_{j \to \infty} x_{k}^{(j)}||}{\rho}) \right)^{p_{k}/H} \leq \sup_{k} \left(M(\frac{||\lambda_{k} x_{k}^{(i)} - \lambda_{k} x_{k}^{(j)}||}{P(\bar{x}^{(i)} - \bar{x}^{(j)})}) \right]^{p_{k}/H} ght) \leq 1,$$

for all $i, j \ge N$

Letting $j \to \infty$ and using continuity of M, we get

$$\sup_{k} \left(M(\frac{||\lambda_{k} x_{k}^{(i)} - \lambda_{k} \lim_{j \to \infty} x_{k}^{(j)}||}{\rho}) \right)^{p_{k}/H} \le 1 \quad \text{for all } k \in \mathbb{Z}(-N, N).$$

Thus

$$\sup_{k} \left(M(\frac{||\lambda_{k} x_{k}^{(i)} - \lambda_{k} x_{k}||}{\rho}) \right)^{p_{k}/H} \le 1 \quad \text{for all } k \in \mathbb{Z}(-N, N).$$

Taking infimum of such ρ 's, we get

$$P(\bar{x}^{(i)} - \bar{x}) = \inf \left\{ \rho^{p_n/H} : \sup_{k} \left(M(\frac{||\lambda_k x_k^{(i)} - \lambda_k x_k||}{\rho}) \right)^{p_k/H} \le 1 \quad \text{for all } i \ge N \right\}$$

$$\le \rho < \epsilon.$$

Hence $P(\bar{x}^{(i)} - \bar{x}) < \epsilon$ for all $i \ge N$.

Since $(\bar{x}^{(i)}) \in c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ and M is continuous, it follows that $\bar{x} \in c_{\circ}(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$. This completes the proof.

Theorem 4.3: $\ell(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ is a total paranormed space with

$$Q(\bar{x}) = \inf \left\{ \rho^{p_n/H} : \left(\sum_{-\infty}^{\infty} \left(M(\frac{||\lambda_k x_k||}{\rho}) \right)^{p_k} \right)^{\frac{1}{H}} \le 1, \quad n \in \mathbb{Z}^+ \right\}$$

where $H = (1, \sup_k p_k)$.

Proof: The theorem can be proved on the lines of Theorem 4.1

Theorem 4.4:Let $1 \le p_k < \infty$. Then $\ell(\mathbb{Z}, X, M, \bar{\lambda}, \bar{p})$ is a complete paranormed space with respect to paranorm

$$Q(\bar{x}) = \inf \left\{ \rho^{p_n/H} : \left(\sum_{-\infty}^{\infty} \left(M(\frac{||\lambda_k x_k||}{\rho}) \right)^{p_k} \right)^{\frac{1}{H}} \le 1, \quad n \in \mathbb{Z}^+ \right\}$$

Proof: We can prove this theorem on the lines of Theorem 4.2.

REFERENCES

- [1] Krasnoselskii, M. A and Rutitsky, Y. B. (1961). Convex Functions and Orlicz Spaces. Groningen, Netherlands.
- [2] Lindberg, K. (1973). On Subspaces of Orlicz Sequence Spaces. Studia Math., 45:119{146.
- [3] Lindenstrauss, J and Tzafriri, L. (1971). On Orlicz Sequence Spaces. IsraelJour. Math., 10(3): 379 -390.
- [4] Lindenstrauss, J and Tzafriri, L. (1972). On Orlicz Sequence Spaces II. Israel Jour. Math., 11(4):355 379.
- [5] Lindenstrauss, J and Tzafriri, L. (1973). On Orlicz Sequence Spaces Ill.Israel Jour. Math., 14(4): 368-389.
- [6] Lindenstrauss, J and Tzafriri, L. (1977). Classical Banach Spaces. Springer-Verlag, New York/ Berlin.
- [7] Simon, N. C and Marko, L. W. (2011). Limit Operators, Collective Compactnessand the Spectral Theory of Infinite Matrices. Memoirs, Amer. Math. Soc., 210.
- [8] Srivastava, J. K and Agrawal, R. (2012). Banach Space X-Valued Bilateral Sequence Spaces $c_o(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$ and $C(\mathbb{Z}, X, \bar{\lambda}, \bar{p})$. Submitted for Publication.
- [9] Wilansky, A. (1978). Modern Methods in Topological Vector Spaces. McGraw-HillBook Co. Inc. New York.

Source of support: Nil, Conflict of interest: None Declared