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Abstract 
In   this   paper   we  discuss   new  type   of  continuous   functions   called   slightly rg-continuous; somewhat 
rg-continuous and somewhat rg-open  functions; its  properties and  interrelation with  other such  functions  are 
studied. 
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1. Introduction 
 
In 1995 T.M. Nour introduced slightly semi-continuous functions.  After him T.Noiri and G.I. Chae f u r t h e r  
s t u d i e d slightly semi-continuous f u n c t i o n s  in 2000. T.Noiri individually s t u d i e d  about slightly β-continuous 
functionsin 2001. C.W.Baker introduced slightly precontinuous functions in 2002.   Erdal Ekici and M. Caldas 
studied slightly γ-continuous functions in 2004. Arse Nagli Uresin and others studied slightly δ−continuous functions 
in 2007. Recently S. Balasubramanian and P.A.S. Vyjayanthi studied slightly ν-- continuous functions in 2011. 
Inspired with these developments we introduce in this paper slightly rg-continuous functions and study its basic 
properties and interrelation with other type of such functions. Throughout the paper (X,τ) and (Y,σ) (or simply X 
and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned.  

 
2. Preliminaries 

 
Definition 2.1:  A⊂ X is called                             
(i) g-closed [rg-closed] if cl A⊆ U whenever A⊆ U and U is open in X.                       
(ii) b-open if A⊂(cl{A})o∩ cl{Ao}.                 
 
Definition 2.2:  A function f: X→ Y is said to be 
(i) continuous [resp: nearly-continuous; rα-continuous; v-continuous; α-continuous; semi-continuous; β-continuous; 
pre-continuous] if inverse image of each open set is open[resp: regular-open; rα-open; v-open; α-open; semi-open; β -
open; preopen].  
 
(ii) nearly-irresolute[resp: rα-irresolute; v-irresolute; α-irresolute; irresolute; β-irresolute; pre-irresolute] if inverse 
image of each regular-open[resp: rα-open; v-open; α-open; semi-open; β-open; preopen] set is regular-open[resp: rα-
open; v-open; α-open; semi-open; β-open; preopen].  
 
(iii) almost continuous[resp: almost  nearly-continuous; almost rα-continuous; almost v-continuous; almost α-
continuous; almost semi-continuous; almost β-continuous; almost pre-continuous] if for each x in X and each open set 
(V, f(x)), ∃ an open[resp: regular-open; rα-open; v-open; α-open; semi-open; β-open; preopen] set (U, x) such that f(U) 
⊂ (cl(V))o.  
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(iv)  weakly continuous[resp: weakly nearly-continuous; weakly rα-continuous; weakly v-continuous; weakly α-
continuous; weakly semi-continuous; weakly β-continuous; weakly pre-continuous] if for each x in X and each open set 
(V, f(x)), ∃ an open[resp: regular-open; rα-open; v-open; α-open; semi-open; β-open; preopen] set (U, x) such that f(U) 
⊂ cl(V).  
 
(v) slightly continuous[resp: slightly semi-continuous; slightly pre-continuous; slightly β-continuous; slightly γ-
continuous; slightly α-continuous; slightly r-continuous; slightly v-continuous] at x in X if for each clopen subset V in 
Y containing f(x), ∃ U∈ τ (X)[ ∃ U∈ SO(X); ∃ U∈ PO(X); ∃ U∈ βO(X); ∃ U∈ γ O(X); ∃ U∈ α O(X); ∃ U∈ RO(X); ∃ 
U∈ v O(X)] containing x such that f(U) ⊆ V.  
 
(vi) slightly continuous[resp: slightly semi-continuous; slightly pre-continuous; slightly β-continuous; slightly γ-
continuous; slightly α-continuous; slightly r-continuous; slightly v-continuous] if it is slightly-continuous[resp:slightly 
semi-continuous; slightly pre-continuous; slightly β-continuous; slightly γ-continuous; slightly α-continuous; slightly 
r-continuous; slightly v-continuous] at each x in X. 
 
(vii) almost strongly θ-semi-continuous[resp: strongly θ-semi-continuous] if for each x in X and for each V∈ σ(Y, 
f(x)), ∃ U∈ SO(X, x) such that f(scl(U)) ⊂ scl(V)[resp: f(scl(U)) ⊂ V]. 
 
Lemma 2.1:                           
(i) Let A and B be subsets of a space X, if A∈RGO(X) and B∈RO(X), then A∩B∈RGO(B).            
(ii)Let A⊂ B⊂ X, if A∈ RGO (B) and B∈ RO(X), then A∈RGO(X). 
 
3. Slightly rg-continuous functions 
 
Definition 3.1: A function f:X→ Y is said to be slightly rg-continuous at x in X if for each clopen subset V in Y 
containing f(x), ∃ U∈RGO(X) containing x such that f(U) ⊆ V and slightly rg-continuous if it is slightly rg-continuous 
at each x in X. 
 
Note 2: Here after we call slightly rg-continuous function as sl.rg.c function shortly. 
 
Example 3.1: X = Y = {a, b, c}; τ = {φ, {a}, {b}, {a, b}, X} and σ = {φ, {a}, {b, c}, Y}. Let f  be defined as f(a) = b; 
f(b) = c and f(c) = a, then f  is sl.rg.c.   
 
Theorem 3.1: The following are equivalent: 
(i) f  is sl.rg.c. 
(ii)  f -1(V) is rg-open for every clopen set V in Y. 
(iii) f -1(V) is rg-closed for every clopen set V in Y.  
(iv) f(rgcl(A)) ⊆ rgcl(f(A)). 
 
Corollary 3.1: The following are equivalent. 
(i) f  is sl.rg.c. 
(ii) For each x in X and each clopen subset V∈ (Y, f(x)) ∃ U∈ RGO(X, x) such that f (U) ⊆ V. 
 
Theorem 3.2:  Let  ∑ = {Ui:i∈ I} be any cover of X by regular open sets in X. A function f is sl.rg.c. iff f/Ui: is sl.rg.c., 
for each i∈ I. 
 
Proof: Let i∈ I be an arbitrarily fixed index and Ui∈ RO(X). Let x∈ Ui and V∈ CO(Y, fUi(x)) Since f is sl.rg.c, ∃ U∈ 
RGO(X, x) such that f (U) ⊂ V. Since Ui∈ RO(X), by Lemma 2.1 x∈ U∩ Ui∈ RGO (Ui) and (f/Ui)U∩ Ui = f(U∩ Ui)⊂ 
f(U) ⊂ V. Hence f/Ui is sl.rg.c.’ 
 
Conversely Let x in X and V∈ CO(Y, f(x)), ∃ i∈ I such that x∈ Ui. Since f/Ui is sl.rg.c, ∃ U∈RGO (Ui, x) such that 
f/Ui(U) ⊂ V. By Lemma 2.1, U∈ RGO(X) and f (U) ⊂ V. Hence f is sl.rg.c. 
 
Theorem 3.3: 
(i) If f  is rg-irresolute and g is sl.rg.c.[sl.c.; g.c], then g • f is sl.rg.c. 
(ii) If f  is rg-irresolute and g is g-continuous, then g• f is sl.rg.c. 
(iii) If f  is rg-continuous and g is sl.rg.c. [sl.c.,] then g• f is sl.rg.c. 
‘ 
Theorem 3.4:  If f is rg-irresolute, rg-open and RGO(X) = τ and g be any function, then g• f:X→ Z is sl.rg.c iff g is 
sl.rg.c. 
 
Proof: If part: Theorem 3.3(i) 
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Only if part: Let A be clopen subset of Z. Then (g• f)-1(A) is a rg-open subset of X and hence open in X[by 
assumption]. Since f is rg-open f(g• f)-1(A) is rg-open Y ⇒ g-1(A) is rg-open in Y. Thus g is sl.rg.c. 
 
Corollary 3.2: If f is rg-irresolute, rg-open and bijective, g is a function. Then g is sl.rg.c. iff g• f is sl.rg.c.  
 
Theorem 3.5: If g: X → X× Y, defined by g(x) = (x, f(x)) for all x in X be the graph function of f:X→Y. Then g:X→ 
X×Y is sl.rg.c iff f is sl.rg.c. 
 
Proof: Let V∈CO(Y), then X× V is clopen in X× Y. Since g is sl.rg.c., f -1(V) = f -1(X× V) ∈RGO(X). Thus f is sl.rg.c. 
Conversely, let x in X and F be a clopen subset of X× Y containing g(x). Then F∩ ({x}× Y) is clopen in {x}× Y 
containing g(x). Also {x}× Y is homeomorphic to Y. Hence {y∈ Y:(x, y) ∈ F} is clopen subset of Y. Since f is sl.rg.c. 
 ∪{f -1(y):(x, y) ∈ F} is rg-open in X. Further x∈ ∪{f -1(y):(x, y) ∈ F}⊆ g -1(F). Hence g -1(F) is rg-open. Thus g:X→ 
Y is sl.rg.c. 
 
Theorem 3.6: (i) f: Π Xλ→ Π Yλ is sl.rg.c, iff fλ: Xλ→ Yλ is sl.rg.c for each λ∈Γ. 
(ii) If f: X→ Π Yλ is sl.rg.c, then Pλ• f : X→ Yλ is sl.rg.c for each λ∈Γ, where Pλ:ΠYλ onto Yλ.  
 
Remark 1: 
(i) Composition of two sl.rg.c functions is not in general sl.rg.c. 
(ii) Algebraic sum and product of sl.rg.c functions is not in general sl.rg.c. 
(iii) The pointwise limit of a sequence of sl.rg.c functions is not in general sl.rg.c. 
However we can prove the following: 
 
Theorem 3.7: The uniform limit of a sequence of sl.rg.c functions is sl.rg.c. 
 
Note 3: Pasting Lemma is not true for sl.rg.c functions. However we have the following weaker versions. 
 
Theorem 3.8: Let X and Y be topological spaces such that X = A∪ B and let f/A: A→ Y and g/B: B → Y are sl.r.c maps 
such that f(x) = g(x) for all x∈ A∩B. Suppose A and B are r-open sets in X and RO(X) is closed under finite unions, 
then the combination α: X→ Y is sl.rg.c continuous. 
 
Theorem 3.9:  Pasting Lemma Let X and Y be spaces such that X = A∪ B and let f/A: A→ Y and g/B: B → Y are 
sl.rg.c maps such that f(x) = g(x) for all x∈ A∩ B. Suppose A, B are r-open sets in X and RGO(X) is closed under finite 
unions, then the combination α: X→ Y is sl.rg.c. 
 
Proof: Let F∈CO(Y), then α-1(F) = f -1(F)∪g -1(F), where f -1(F)∈RGO(A) and g-1(F)∈RGO(B) ⇒ f -1(F); g -

1(F)∈RGO(X) ⇒ f -1(F)∪g -1(F)∈RGO(X)[by assumption]. Therefore α -1(F)∈RGO(X). Hence α: X→Y is sl.rg.c. 
 
4. Covering and Separation properties of sl.rg.c. Functions: 
 
Theorem 4.1: If f  is sl.rg.c.[resp: sl.rg.c] surjection and X is rg-compact, then Y is compact. 
 
Proof: Let {Gi:i∈ I} be any open cover for Y. Then each Gi is open in Y and hence each Gi is clopen in Y. Since f  is 
sl.rg.c., f -1(Gi) is rg-open in X. Thus {f -1(Gi)} forms a rg-open cover for X and hence have a finite subcover, since X is 
rg-compact. Since f is surjection, Y = f(X) = ∪n

i = 1Gi. Therefore Y is compact. 
 
Corollary 4.1: If f  is sl.sp.c.[resp: sl.r.c] surjection and X is rg-compact, then Y is compact. 
 
Theorem 4.2: If f is sl.rg.c., surjection and X is rg-compact [rg-lindeloff] then Y is mildly compact[mildly lindeloff]. 
 
Proof: Let {Ui:i∈ I} be clopen cover for Y. For each x in X, ∃ αx∈ I such that f(x) ∈ Uαx  and ∃ Vx∈ RGO(X, x) such 
that f(Vx)⊂ Uαx . Since the family {Vi:i∈ I} is a cover of X by rg-open sets of X, ∃ a finite subset I0 of I such that X⊂ 
{Vx:x∈ I0}. Therefore Y⊂ ∪ {f(Vx):x∈ I0}⊂ ∪ {Uαx:x∈ I0}. Hence Y is mildly compact. 
 
Corollary 4.2: 
(i)  If f is sl.rg.c[resp: sl.r.c] surjection and X is rg-compact[rg-lindeloff] then Y is mildly compact[mildly lindeloff]. 
                    
(ii) If f is sl.rg.c.[resp: sl.c; sl.r.c] surjection and X is locally rg-compact{resp:rg-Lindeloff; locally rg-lindeloff}, then 
Y is locally compact{resp: Lindeloff; locally lindeloff}.    
 
(iii) If f is sl.rg.c.[sl.r.c.], surjection and X is locally rg-compact{resp: rg-lindeloff; locally rg-lindeloff} then Y is 
locally mildly compact{resp: locally mildly lindeloff}. 
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Theorem 4.3: If f  is sl.rg.c., surjection and X is s-closed then Y is mildly compact[mildly lindeloff]. 
 
Proof: Let {Vi : Vi∈ CO(Y); i∈ I} be a cover of Y, then {f -1(Vi) : i∈ I} is rg-open cover of X[by Thm 3.1] and so 
there is finite subset I0 of I, such that {f -1(Vi):i∈ I0} covers X. Therefore {Vi: i∈ I0} covers Y since f is surjection. 
Hence Y is mildly compact. 
 
Corollary 4.3: If f  is sl.r.c., surjection and X is s-closed then Y is mildly compact[mildly lindeloff]. 
 
Theorem 4.4: If f is sl.rg.c.,[resp: sl.rg.c.; sl.r.c.] surjection and X is rg-connected, then Y is connected. 
 
Proof: If Y is disconnected, then Y = A∪ B where A and B are disjoint clopen sets in Y. Since f is sl.rg.c. surjection, X 
= f -1(Y) = f -1(A) ∪ f -1(B) where f -1(A) f -1(B) are disjoint rg-open sets in X, which is a contradiction for X is rg-
connected. Hence Y is connected. 
 
Corollary 4.4: The inverse image of a disconnected space under a sl.rg.c., [resp: sl.r.c.] surjection is rg-disconnected. 
 
Theorem 4.5: If f is sl.rg.c..[resp: sl.c.], injection and Y is UTi, then X is rgi i = 0, 1, 2. 
 
Proof: Let x1 ≠ x2∈ X. Then f(x1) ≠ f(x2)∈Y since f is injective. For Y is UT2 ∃ Vj∈CO(Y) such that f(xj)∈Vj and ∩Vj 
= φ for j = 1,2. By Theorem 3.1, xj∈f -1(Vj)∈RGO(X) for j = 1,2 and ∩f -1(Vj) = φ for j = 1,2. Thus X is rg2. 
 
Theorem 4.6: If f  is sl.rg.c., injection; closed and Y is UTi, then X is rggi i = 3, 4. 
 
Proof:(i) Let x in X and F be disjoint closed subset of X not containing x, then f(x) and f(F) be disjoint closed subset of 
Y not containing f(x), since f is closed and injection. Since Y is ultraregular, f(x) and f (F) are separated by disjoint 
clopen sets U and V respectively. Hence x∈ f -1(U); F⊆ f -1(V), f -1(U); f -1(V)∈RGO(X) and f -1(U)∩f -1(V) = φ. Thus X 
is rgg3. 
 
(ii) Let Fj and f (Fj) are disjoint closed subsets of X and Y respectively for j = 1,2, since f is closed and injection. For Y 
is ultranormal, f(Fj) are separated by disjoint clopen sets Vj respectively for j =1,2. Hence Fj⊆ f -1(Vj) and  
f -1(Vj)∈RGO(X) and ∩f -1(Vj) = φ for j = 1,2. Thus X is rgg4. 
 
Theorem 4.7: If f  is sl.rg.c.[resp: sl.c.], injection and  
(i) Y is UCi[resp: UDi] then X is rgCi[resp: rgDi] i = 0, 1, 2. 
(ii)Y is URi, then X is rg-Ri i = 0, 1. 
 
Theorem 4.8: If f  is sl.rg.c.[resp: sl.c; sl.r.c] and Y is UT2, then the graph G(f) of f is rg-closed in X×Y. 
 
Proof: Let (x, y)∉G(f) implies y ≠ f(x) implies ∃ disjoint V; W∈CO(Y) such that f(x)∈V and y∈W. Since f is sl.rg.c., ∃ 
U∈RGO(X) such that x∈U and f(U)⊂W and (x, y)∈U×V⊂X×Y-G(f). Hence G(f) is rg-closed in X×Y.  
 
Theorem 4.9: If f  is sl.rg.c.[resp: sl.c; sl.r.c] and Y is UT2, then A = {(x1, x2)| f(x1) = f(x2)} is rg-closed in X× X. 
 
Proof: If (x1, x2)∈X×X-A, then f(x1) ≠ f(x2) implies ∃ disjoint Vj∈CO(Y) such that f(xj)∈Vj, and since f  is sl.rg.c., f -

1(Vj)∈RGO(X, xj) for j = 1,2. Thus (x1, x2) ∈ f -1(V1) × f -1(V2)∈RGO(X× X) and f -1(V1)×f -1(V2)⊂X×X-A. Hence A is 
rg-closed.  
 
Theorem 4.10: If f is sl.r.c.[resp: sl.c.]; g is sl.rg.c[resp: sl.c;]; and Y is UT2, then E = {x∈X:f(x) = g(x)} is rg-closed 
in X. 
 
CONCLUSION: 
 
In this paper we defined slightly-rg-continuous functions, studied its properties and their interrelations with other types 
of slightly-continuous functions. 
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