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ABSTRACT 

In this paper the effect of thermal dispersion and viscous dissipation on MHD radiative non-Darcy mixed 

convection in a fluid saturated porous medium (part a) and the class solutions of a second order fluid past a 

porous boundary and on the performance of fluid flow past an infinite plate with variable suction under the 

influence of magnetic field have been examined (part b). The salient features in both the cases have been 

compared to the best possible extent. Interestingly, some of the parameters in both the cases cause similar 

effect. It is found that, ( f ) in thermal study is analogues to the velocity profiles in case of sinusoidal 

oscillations of the bounding surface while the dispersion parameter in the thermal system is equivalent to the 

frequency of excitation (σ ). Further, the effect of porosity in case of visco elasticity parameter has similar 

effect as that of dispersion and radiation parameters. Also, it is observed that, the porosity of the bounding 

surface and magnetic effects are similar to that of radiation and dispersion parameters in case of thermal 

effects. However, it is noticed that, the investigations stated above are applicable in the boundary layer region. 

 

Key words: Thermal dispersion, Viscous dissipation, Porous medium, Elastico viscous fluid, Sinusoidal 

disturbances, Variable suction 

--------------------------------------------------------------------------------------------------------------------------------------- 

NOMENCLATURE IN PART-A: 

A  : Constant 

a  : Absorption coefficient   

b  : Constant 

B  : Constant 

0B  : Magnetic field strength 

C  : Empirical constant 

p
c  : Specific heat at constant pressure 

D  : Dispersion parameter  

d  : Mean particle diameter 

Ec  : Eckert number  

F  : Inertia parameter  

g  : Gravitational acceleration 

h  : Heat transfer coefficient 
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K  :  Permeability 

k  : Thermal conductivity of medium 
2

M  : Square of the Hartmann number  

Pe  : Peclet number  

Pr  : Prandtl number  

q  : Heat flux 

R  : Radiation parameter  

Ra  : Rayleigh number  

Re  : Reynolds number   

T  : Temperature 

,u v  : Velocity components in the direction of x and   

                 y directions 

U∞  : Free stream velocity 

 

GREEK SYMBOLS: 

α  : Effective thermal diffusivity of the porous                     

                 medium 
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β  : Coefficient of thermal expansion 

γ  : Thermal dispersion coefficient 

ε  : Mixed convection parameter  

η  : Dimensionless similarity variable 

µ  : Viscosity 

υ  : Kinematic viscosity 

ρ  : Density 

θ  : Dimensionless temperature  

σ  : Fluid electrical conductivity 

Rσ  : Stefan – Boltzmann constant 

ψ  : Stream function 

 

SUBSCRIPTS: 

d  : dispersion 

e  : effective 

m  : molecular 

x  : local 

w  : wall 

∞  : free stream conditions 

 

NOMENCLATURE IN PART-B: 

i
A           : Acceleration component in i th direction 

i
a           : Non dimensional acceleration in i th direction 

( ) ( )1 2
,ij ijE E : Strain tensor in the dimensional form 

( ) ( )1 2
,ij ije e : Strain tensor in the non-dimensional form 

, ,X Y ZF F F : External forces applied along ,X Y and    

               Z directions 

( )g s  : Given history 

( )g sα  : Retarded History 

K  : Permeability of the porous bed 

k  : Non dimensionalised porosity factory 

L  : Characteristic length 

M  : Magnetic intensity (dimensional form) 

 

m   : Magnetic intensity (non-dimensional form) 

P  : Indeterminate hydrostatic pressure 

p  : Non dimensional indeterminate pressure 

r  : Polar coordinate 

ijS  : Stress tensor 

T  : Dimensional time parameter 

t  : Non-dimensional time parameter 

,U V  : Dimensional velocity component  

iU  : Dimensional velocity component in i th  

                          direction 

,u v  : Non-dimensional velocity component 

'
u  : Non- dimensional free stream velocity 

'

0u  : Non dimensional form of Magnification  

                 factor for free stream velocity 
'

0v  : Non dimensional form of non zero mean   

                 suction velocity 

,X Y  : Co-ordinate axes (dimensional form) 

,x y  : Co-ordinate axes (non-dimensional form) 

 

GREEK SYMBOLS: 

α  : Retardation factor 

β  : Visco elasticity parameter 

δ  : Polar coordinate 

ε  : Suction parameter 

1φ  : Coefficient of viscosity 

2φ  : Coefficient of elastico viscosity 

3φ  : Coefficient of cross viscosity 

ϑ  : Non dimensionalised cross viscosity factor 

cυ  : Non dimensionalised cross viscosity    

                 parameter 

µ  : Coefficient of viscosity 

ρ  : Density of fluid 

σ  : Non-dimensional frequency of excitation 

INTRODUCTION: 

Heat transfer in porous medium is gaining utmost importance due its applicability in geothermal energy extraction, nuclear waste 

disposal, fossil fuels detection, regenerator bed etc... In plasma physics, liquid metal flow, magneto hydrodynamic accelerators 

and power generation systems, there is acute necessity of studying MHD combined dispersion and dissipation effects in porous 

medium. Understanding the development of hydrodynamic and thermal boundary layers along with the heat transfer 

characteristics is the basic requirement to further investigate the problem. 

 

In 1997 Cheng & Minkowycz [1] have analyzed the steady free convection about a vertical plate embedded in porous medium 

applied to heat transfer from dike. Murthy and Singh [2] using method of similarity solution studied the influence of lateral mass 

flux and thermal dispersion on non-Darcy natural convection over a vertical plate in porous medium. They have discussed the 

combined effect of thermal dispersion and fluid injection on heat transfer. Hassanien et al. [3] have studied the effects of thermal 

dispersion and stratification on non-Darcy mixed convection from a vertical plate in porous medium and investigated the flow and 

temperature fields. Murthy [4] has studied the dispersion and dissipation effects on non-Darcy mixed convection problems and 

established the trend of heat transfer rate. Kuznetsov [5] investigated the effect of transverse thermal dispersion on forced 

convection in porous media and identified the situations favorable to heat transfer under dispersion effects. Mohammadien and El-

Amin [6] studied the dispersion and radiation effects in fluid saturated porous medium on heat transfer rate for both Darcy and 

non-Darcy medium. Chamkha and Quadri [7] examined the heat and mass transfer characteristics under mixed convective 

conditions with thermal dispersion without taking MHD into consideration. Cheng and Lin [8] in their observation pointed out 

that rate of unsteady heat transfer can be accelerated by thermal dispersion. Wang et al. [9] applied an explicit analytical technique 

namely homotopy analysis to solve the non-Darcy natural convection over a horizontal plate with surface mass flux and thermal 

dispersion and obtained a totally analytic and uniformly valid solution. El-Amin [10] obtained the velocity, temperature and 
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concentration profiles with double dispersion. Chamkha et al. [11] highlighted the physical aspects of simultaneous heat and mass 

transfer with thermal dispersion effect. Ibrahim et al. [12] studied the radiative and thermal dispersion effects for non-Newtonian 

fluid from an impermeable vertical plate embedded in a fluid saturated porous medium. However, in the geohydrology, soil 

physics, magma detection and Magneto hydrodynamic power generation, the magnetic field effects also play a vital role and only 

few authors have studied the combined effects of MHD and dispersion in porous medium with variable wall temperature. Sobha 

and Ramakrishna [13] presented the effects of Hartmann number and porosity factor on temperature field, Nusselt number for a 

vertical plate in porous medium with applied magnetic field without considering the dispersion and inertial effects. The non-Darcy 

effect will have considerable impact in the transition flow regime between Re 1 to 10.When the internal effect is prevalent the 

thermal dispersion in porous media is expected to become important [14]. Visco elasticity is the property of the fluid while, the 

thermal dispersion can alter the nature of the property and the magnetic effect can influence the nature of flow entities. Similar 

effects which are found by taking into account the thermal dispersion and viscous dissipation under the influence of magnetic field 

can also be obtained in a suitably equivalent mathematical model (of course) but under different context. A similar such situation 

has been examined in this paper. Sobha, Ramakrishna et al. [15] studied the effect of thermal dispersion and viscous dissipation 

on MHD radiative non-Darcy mixed convection in a fluid saturated porous medium. During the course of analysis it is found that, 

the transverse field applied to the medium suppresses the effect of dispersion while decreasing fluid motion due to applied 

magnetic field and can be compensated by increasing the dispersion parameter. Further, the increase in inertia causes a reduction 

in the velocity under unaided flow conditions and also the effect of radiation is found to be dominant in the absence of dispersion. 

Ramana Murthy and Kulkarni [16] studied on the class of exact solutions of an incompressible second order fluid flow by creating 

the sinusoidal disturbances. In course of analysis it is found that, as the porosity effects the velocity profiles and the frequency of 

excitation shows the decreasing trend on the velocity, also it is noted that, the elastico viscosity parameter has profound effect on 

the magnification factor. 

 

The characteristic performance of elastico viscous fluid past an infinite plate with variable suction under the influence of magnetic 

field has been investigated by Ramana Murthy and Kulkarni [17]. It is found that, the decrease in the porosity of bounding surface 

reduces the amplitude for a constant elastico viscosity parameter and the frequency of excitation of the bounding surface when the 

magnetic field applied on the system is maintained constant. Further, it is also observed that, as the visco elasticity of the fluid 

reduces the amplification factor also reduces. 

Noll [18] defined a simple material as a substance for which stress can be determined with the entire knowledge of the history of 

the strain. This is called a simple fluid, having the property that at all local states, with the same mass density, intrinsically equal 

in response, with all observable differences in response being due to definite differences in the history. For any given history g(s), 

a retarded history ( )g sα can be defined as: 

 

  ( ) ( ); 0 , 0 1g s g s sα α α= < < ∞ < ≤                                                       (1)    

  

α  being termed as a retardation factor. Assuming that the stress is more sensitive to recent deformation that to the deformations 

at distant past, Coleman and Noll [19] proved that, the theory of simple fluids yield the theory of perfect fluids as 0→α  and 

that of  Newtonian Fluids as a correction (up to the order of  α ) to the theory of the perfect fluids. Neglecting all the terms of the 

order of higher than two in α , we have incompressible elastic viscous fluid of second order type whose constitutive relation is 

governed by: 

 

  
2(1) (2) (1)

1 2 3ij ij ij ij ijS P E E Eδ φ φ φ= − + + +                                                                (2) 

where 

   
(1)

, ,ij i j j i
E U U= +                                                 (3) 

and 

   
(2)

, , , ,2
ij i j j i m i m j

E A A U U= + +                                                (4) 

 

In the above equations, 
ijS  is the stress-tensor, ii AU ,  are the components of velocity and acceleration in the direction of the i-th 

coordinate iX  , P is indeterminate hydrostatic pressure and the coefficients 1 2,φ φ and 3φ are material constants. 

The constitutive relation for general Rivlin-Ericksen [20] fluids also reduces to equation (2) when the squares and higher orders of 
2

E are neglected, the coefficients being constants. Also the non-Newtonian models considered by Reiner [21] could be obtained 

from equation (2) when 02 =φ , naming 3φ  as the coefficient of cross viscosity. With reference to the Rivlin – Ericksen fluids 

2φ  may be called as the coefficient of viscosity. It has been reported that, a solution of poly-iso-butylene in cetane behaves as a 

second order fluid and Markovitz [22] determined the constants 1 2,φ φ and 3φ . 

Viscous fluid flow over wavy wall had attracted the attention of relatively few researchers although the analysis of such flows 

finds application in different areas such as transpiration cooling of re-entry vehicles and rocket boosters, cross hatching ablative 

surfaces and film vaporization in combustion chambers. Especially the stream, where the heat and mass transfer takes place in the 
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chemical processing industry. The problem by considering the permeability of the bounding surface in the reactors assumes 

greater significance. 

 

In view of several industrial and technological importances, Ramacharyulu [23] studied the problem of the exact solutions of two 

dimensional flows of a second order incompressible fluid by considering the rigid boundaries. Later, Lekoudis et al. [24] 

presented a linear analysis of the compressible boundary layer flow over a wall. Subsequently, Shankar and Sinha [25] studied the 

problem of Rayleigh for wavy wall. The effect of small amplitude wall waviness upon the stability of the laminar boundary layer 

had been studied by Lessen and Gangwani [26]. Further, the problem of free convective heat transfer in a viscous incompressible 

fluid confined between vertical wavy wall and a vertical flat wall was examined by Vajravelu and Shastri [27] and thereafter by 

Das and Ahmed [28]. The free convective flow of a viscous incompressible fluid in porous medium between two long vertical 

wavy walls was investigated by Patidar and Purohit [29]. Rajeev Taneja and Jain [30] had examined the problem of MHD flow 

with slip effects and temperature dependent heat in a viscous incompressible fluid confined between a long vertical wall and a 

parallel flat plate. 

 

MATHEMATICAL FORMULATION AND SOLUTION: 

 

PART-A: 

Consider a semi infinite vertical flat plate subjected to convective environment as shown in Figure 1. The fluid surrounding the 

plate is considered as gray, emitting and absorbing subjected to transverse applied magnetic field. The variation of the plate wall 

temperature is considered as proportional to x
λ

. The velocity and radiation effect in the x-direction is considered negligible. 

Further, it is assumed that, the convective fluids in the surrounding porous medium are isotropic in nature and have constant 

physical properties. The magnetic Reynolds number is assumed to be small so that the induced magnetic field can be neglected. In 

addition there is no applied electric field and hence the Hall effect and Joule heating are neglected. 

 

 
Figure 1: Physical model of the problem 

 

Under boundary layer approximations the continuity, momentum and energy equations are written as follows. 

The continuity equation is  

 

0
u v

x y

∂ ∂
+ =

∂ ∂
                                                 (5) 

 

The momentum equation is 

 

2

0

2u u C K u T
B u g

K y y K y y

µ µ
σ ρ β

υ
∞

� � � � � � � �∂ ∂ ∂ ∂
+ + =� � � � � � � �

∂ ∂ ∂ ∂� � � � � � � �
                                           (6) 
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The energy equation is 

 
2

1
e

p p

T T T u q
u v

x y y y c y c y

υ
α

ρ

� � � �∂ ∂ ∂ ∂ ∂ ∂
+ = + −� � � �

∂ ∂ ∂ ∂ ∂ ∂� � � �
                                            (7) 

 

where     ( )316 .R

q
a T T T

y
σ ∞ ∞

∂
= − −

∂
 

 

The momentum equation includes both the inertial forces and magnetic influence. In situations of fluid flow and heat transfer in 

porous media, the effective thermal diffusivity is modeled as
e m d

α α α= + , where 
m

α  and 
d

α  are the molecular thermal 

diffusivity and thermal diffusivity of the porous medium due to thermal dispersion respectively. Following the linear model 

proposed by Plumb [31], the dispersion diffusivity is considered to be proportional to the stream-wise velocity component 

i.e.
d

udα γ= , where γ is the dispersion coefficient, which is a function of the structure of the porous medium. 

 

The boundary conditions for the problem are  

 

1

20,

, ,

w
at y T T T Ax and v ax

as y T T u U Bx

λ
λ

λ

−

∞

∞ ∞

�
�= = = + =
	
�→ ∞ = = = 


                                            (8) 

 

Introducing the stream functions ,u v
y x

ψ ψ∂ ∂
= = −

∂ ∂
 the above equations (6) and (7) can be reformulated as  

 

2 2 2
2

02 2 2

2C K T
B g

K y y K y y y

µ ψ ψ µ ψ ψ
σ ρ β

υ
∞

� �� �∂ ∂ ∂ ∂ ∂
+ + =� �� �

∂ ∂ ∂ ∂ ∂� �� �
                                             (9) 

 

( )
2

32

2

16 R
e

p p

a TT T T
T T

y x x y y y c y c

σψ ψ υ ψ
α

ρ
∞

∞

� �� �∂ ∂ ∂ ∂ ∂ ∂ ∂
− = + + −� �� �

∂ ∂ ∂ ∂ ∂ ∂ ∂� � � �
                                             (10) 

 

Introducing the similarity variables as 

 

( )( ) ( )
( )

1
2

1
2

1 2

2
, , , ,

m w

m w m

U x T Ty b
f U x U Bx f

x T T B

λψ η α η θ η
α α

∞ ∞
∞ ∞

∞

� � − −� �
= = = = =� � � �

−� �� �
 

 

 Equations (9) and (10) now reduce to 

 

( )' '' '1 M Ff f εθ+ + =                                                           (11) 

 

  
2' '' '' ' ' ''4 1

1 Pr
3 2

Df R Df f f Ecf
λ

θ θ λ θ
+� � � �

+ + + + − +� � � �
� � � �

0=                                                       (12) 

 

where   

m

u d
D

γ

α
∞=  

The transformed boundary conditions are now redefined as   

 

( )'

0, 1
1

, 0 1

wfat and f

as and f

η θ
λ

η θ

�
= = = �

+ 	
�→ ∞ = ∞ = 


                                                             (13) 
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The system of equations (11) and (12) are split into system of first order ordinary differential equations. Using the boundary 

conditions as in equation (13) the above set of equations are solved by using Runge-Kutta method by applying shooting technique. 

The solution thus obtained is matched with the given values at ( )'
f ∞  and ( )θ ∞ . 

 

PART-B: 

 

In this part the aim of the problem is to investigate a class of exact solutions for the flow of incompressible second order fluid by 

taking into account the porosity factor of the bounding surface when it is subjected to sinusoidal disturbances and then to compare 

the results with those of in Newtonian case and also to find the analogy of the thermal effects as examined earlier. The effects of 

the disturbance due to sinusoidal oscillation of the bottom of a semi infinite depth are examined. The results are expressed in 

terms of a non-dimensional porosity parameter K , which depends on the non-Newtonian coefficient 2φ and the frequency of 

excitation σ . It is noticed that, the flow properties are identical with those of in the Newtonian case ( )K = ∞ . 

 

 
Figure 2: Geometry of the fluid over porous bed 

 

In general, the equations (in the dimensional form) of motions in the X, Y and Z directions are 

 

   
1

1
XX XY XZ

X

DU S S S
F U

DT X Y Z k

µ
ρ ρ

∂ ∂ ∂
= + + + −

∂ ∂ ∂
                                                            (14) 

 

 

   2
2

YX YY YZ
Y

DU S S S
F U

DT X Y Z k

µ
ρ ρ

∂ ∂ ∂
= + + + −

∂ ∂ ∂
                                                       (15) 

 

 

   
3

3
ZX ZY ZZ

Z

DU S S S
F U

DT X Y Z k

µ
ρ ρ

∂ ∂ ∂
= + + + −

∂ ∂ ∂
                                                       (16) 

Introducing the following non-dimensional variables as: 

 

   

22
21 1

2 2

1

i
i

u pL t
U T L P

L L

φ φρ
φ ρ β

ρ φ ρ
= = = =  
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2
2 1

3 2 3

i i i
i i c i

X Y a
x y L A

L L L

φ
φ ρ υ

ρ
= = = =  

 

   
( )

( )
( )

( )1 22 2 3
1 1 1 2 1

2 2 2 4 2

1

ij ij ij

ij ij ij

s e e L
S E E k

L L L K

φ φ φ ρ

ρ ρ ρ φ
= = = =  

 

where T  the (dimensional) time is variable, ρ  is the mass density and L  is a characteristic length. We consider a class of plane 

flows given by the velocity components 

 

   1 ( , )u u y t=  and   2 0u =  while   3 0u =                                                                      (17) 

 

The flow characterized by the velocity in the non-dimensional form is given by 

 

   

2 2

2 2

1u u u
u

t y t y K
β

� �∂ ∂ ∂ ∂
= + −� �

∂ ∂ ∂ ∂� �
                                                                   (18) 

 

where K  is the non-dimensional porosity constant. It may be noted that, the presence of β  changes the order of differential from 

two to three. The oscillations of a classical viscous liquid on the upper half of the plane 0y ≥  with the bottom oscillating with a 

velocity 
i t

e
σα  then 

 

   ( )0, i t
u t e

σα=   and   ( ), 0u t∞ =                                                            (19) 

 

Assuming the trial solution as 

   

   ( ) ( ), i t
u y t e f y

σα=                                                           (20) 

 

   ( ) ( )'' 2
f y p f y=                                                                                 (21) 

 

where   

( )

2

2

2 2

11

1 1

ii
K KKp

i

βσ
βσ σσ

βσ β σ

� � � �
+ + −+ � � � �

� � � �= =
+ +

                                                       (22)  

 

When expressed in the polar form  

 

   cos sin
4 2 4 2

p r i
π δ π δ� �� � � �

= − + −� � � �� �
� � � �� �

                                                        (23) 

 

where  

( )
( )

1
2 2 4

2
2

1

2 2

1 1

, tan
1

K K K
r Q and Q

K

βσ
βσ σ βσ

δ
βσβ σ σ

−

� �� � � � � �+ + −
 �� � � � +� �� � � �
 �� � � �= = =
� �+ −� �
� �

  

 

Also the conditions satisfied are: 

 

   ( ) ( )0 1, 0f f= ∞ =                                                                                (24) 

 

This yields the solution  
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   ( )
cos sin

4 2 4 2
yr i

f y e

π δ π δ� �� � � �
− − + −� �� � � �

� � � �� �=                                                          (25) 

and hence  

   ( )
cos sin

4 2 4 2
,

i t yr i

u y t e

π δ π δ
σ

α

� �� �� � � �
− − + −� �� �� � � �

� � � �� �� �=                                                              (26) 

 

The flow is thus represented by standing transverse wave with its amplitude rapidly diminishing with increasing distance from the 

plane. This phenomenon is independent of 
c

υ as is noticed for all two-dimensional flows. 

 

The magnification factor 
*

A  of the amplitude this wave, with respect to the amplitude of the disturbance ( )α , may be expressed 

as  

 

   ( )( ) ( )( )
2 2* , Im ,A real part of u y t aginary part of u y t= +   

  
cos

* 4 2
y r

A e

π δ

α
� �

− −� �
� �=                                                           (27) 

 

which is in the form of 
** y

A e
χ−=   where   

                                    
* cos sin

2 22

y r
y i

δ δ
χ

� �� � � �
= +� � � �
 �

� � � �� �
                                                                                  (28) 

 

where   

( )

( )2

1 2
2 2 4

11

1
1

Q Q

Q
χ

β σ

+ +
=

+
+

                                                         (29) 

 

and    
( )

( )

1
2 2 4

21
2 2 4

*

2 2

1

1

2 1

y K K
y

βσ
βσ σ

β σ

β σ

� �� � � �
+ + −
 �� � � �

+ � � � �
 �� �=
+

                                                      (30) 

 

 Further, a situation is considered where the fluid is bounded by a porous boundary and a uniform magnetic field is 

introduced which is normal to the bounding surface with variable suction. As considered earlier, the bounding surface is subjected 

to sinusoidal oscillations. 

 

The governing equation of motion in non-dimensional form is given by   

 

( ) ( )
2 3 3

' '

0 02 2 3

1
1 1i t i tu u u u u

v Ae v Ae m u
t y y y t y k

ω ωε β ε
� �∂ ∂ ∂ ∂ ∂ � �

− + = + − + − +� � � �
∂ ∂ ∂ ∂ ∂ ∂ � �� �

                                              (31) 

 

where  ω  is the frequency of the fluctuating stream as well σ  the frequency of excitation of the bounding surface together with 

the conditions 

 

( )0, i tu t e σα=       and  ( ), 0u t∞ =                                                       (32) 

 

The solution of the governing equation of motions under the boundary conditions stated above is given by  

( ) ( )( )' 2

0, 1 1 1i t py
u y t e v y p Q e

σα −� �= + + −� �                                                        (33) 

where   
( ) ( )

2

2

2 2

1 11

1 1

m i mi m
k kk

p
i i

βσ σ βσσ

βσ β σ

� �� � � �� � + + + − ++ + � � � �� �� �
� � � �� � � �= =

+ +
                                                           (34) 
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when expressed in polar form 

 

cos sin
4 2 4 2

p r i
π δ π δ� �� � � �

= − + −� � � �� �
� � � �� �

                                                        (35) 

 

where 

( )
( )

1
22 4

2

1

2 2

1 1

, tan
1

m m
k k

r

βσ σ βσ

δ φ
β σ

−

� �� �� � � �
+ + + − +
 �� � � �� �

� � � �� �
 �� �= =
+

 and  

2 1

1

m
k

m
k

βσ

φ

σ βσ

� �
+ +� �

� �=
� �� �

− +� �� �
� �� �

 

 

The magnification factor 
*

A  of the amplitude of this wave, with respect to the amplitude of the disturbance ( )α , may be written 

as  

 

( )( ) ( )( )
2 2* Re , Im ,A al part of u y t aginary part of u y t= +    

 

    
cos

* 4 2
y r

A e

π δ

α
� �

− −� �
� �=                                                               (36) 

 

which is in the form of  
** y

A e
χ−=  where  

    
* cos sin

2 22

y r
y i

δ δ
χ

� �� � � �
= +� � � �
 �

� � � �� �
                                                       (37) 

 

 

    

( )

( )2

1 2
2 2 4

11

1
1

φ φ
χ

φ
β σ

+ +
=

+
+

                                                         (38) 

 

and  
( )

( )

1
22 4

21
2 2 4

*

2 2

1 1

1

2 1

m m
k ky

y

βσ σ βσ
β σ

β σ

� �� �� � � �
+ + + − +
 �� � � �� �

+ � � � �� �
 �� �=
+

                                                   (39) 

 

RESULTS AND DISCUSSIONS: 

1. Figure 3 shows the combined effect of dispersion and magnetic field on velocity profile for both aided flow ( 1ε = ) and 

opposing flow ( 1ε = − ) conditions. It is observed that, the velocity at a given location increases due to hydrodynamic mixing 

of fluid at pore level. Since the increase in dispersion decreases the slope, it indicates an increase in the boundary layer thickness. 

However, the increase in magnetic field under the same dispersion causes a decrease in velocity, since the magnetic field produces 

a resistive force that decelerates the motion of the particles. It is further clear from the figure that, the rate of increase in velocity 

due to dispersion is less in the presence of magnetic field when compared to without magnetic field. It is also clear that, when 

transverse magnetic field is acting on the system, the reduction in fluid motion is compensated by increase in dispersion 

parameter. The effect is found opposite in aided flow with that of opposed flow. 
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Figure 3: Effect of dispersion and magnetic field on velocity profile. 

 

The nature of the velocity profiles for different values of frequency of excitation (σ ) is illustrated in Figure 4. It is observed that, 

as the frequency of the excitation is increased, there is a decreasing trend in the velocity at the boundary region. Further, it is also 

observed that, there is a backflow in the neighborhood of the plate which subsequently settles down as we move away from the 

plate. The effect is found more dominant at near the plate surface. 

 
            Figure 4: Effect of frequency of excitation (σ ) on the velocity profiles 
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The effect of time ( t ) on the nature of velocity profiles is seen in Figure 5. As t  increases, there is a decreasing trend in the 

velocity profiles near the boundary layer. Further, for certain values of t  even backflow is also observed. However, the flow field 

settles down as we move away from the plate. 

 
Figure 5: Effect of time ( t ) on the velocity profiles. 

From the above figures it is quite evident that, f  in thermal study is analogous to the velocity profiles in case of 

sinusoidal oscillations of the bounding surface. And it can be seen that, the dispersion parameter in the thermal system is 

equivalent to the frequency of excitation, when compared with the latter case. Further, from Figure 5 it can also be noted that, the 

dispersion parameter also produces the same effect as that of time parameter t   in case of visco elastic fluids. 

2. The dispersion and radiation effects on velocity profiles under aided flow conditions are shown in Figure 6. It is clear that, both 

of them tend to increase the velocity in the boundary. However, the rate of increase in velocity under combined effect is 

considerably less when applied individually. Thus, the dispersion effect is slightly suppressed in the presence of radiation. 

 

 
Figure 6: Effect of dispersion and radiation on velocity profile in aided flow. 
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Figure 7 illustrates, the effect of elastico viscosity parameter ( β ) on the magnification factor (
*

A ). It is seen that, as β  

increases, there is an increase trend in the magnification factor. 

 
Figure 7: Effect of elastico viscosity ( β ) on the magnification factor 

Figure 8 shows the effect of porosity on the magnification factor
*

A . It is observed that, as the porosity decreases, the amplitude 

of the propagated wave into the medium also decreases when the viscosity of the medium is maintained constant i.e. the boundary 

layer thickness decreases. 

 

Figure 8: Variation of magnification parameter (
*

A ) with respect to different porosity parameters 
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The influence of magnetic field on the magnification parameter 
*

A  has been illustrated in Figure 9. As the magnetic field 

increases, the magnification also increases, while all other parameters are maintained constant. 

 

Figure 9: Effect of magnetic parameter on magnification (
*

A ) 

The effect of visco elasticity parameter ( )β  on the magnification parameter 
*

A  has been illustrated in Figure 10. As the 

visco elasticity reduces, there is a decreasing trend in the magnification parameter
*

A . This can be attributed to the fact that, less 

molecular forces present in the fluid medium tend to cause the decrease in 
*

A  

 

Figure 10: Effect of elastico viscosity ( β ) on magnification (
*

A ) 
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On comparing the Figures 6, 7, 8, 9 and 10 it can be seen that, the amplification factor 
*

A  in case of the visco elastic fluids is 

similar to that of f  when thermal effects are considered. In both the cases, the profiles show the decreasing trend as we move 

away from the boundary surface. Further, an analogy can be drawn that, the effect of porosity in case of visco elastic fluid has 

similar effect as that of dispersion parameter and radiation parameters. 

3. It is found from Figure 11 that, increase in dispersion and radiation increases local temperature due to increase in convective 

moment within the boundary layer and increases the boundary layer thickness. Further, the increasing effect of radiation is found 

dominant in the absence of dispersion than with dispersion.   

 

 
 Figure 11: Effect of dispersion and radiation on temperature profile.   

 

On comparing Figure 11 with Figure 9 and Figure 10 it can be concluded that, the amplitude parameter 
*

A  in case of visco elastic 

fluid assumes the role of the temperature dissipation. Further, the viscosity of the fluid under consideration and intensity of the 

magnetic field are as that of dispersion and radiation parameters when the thermal effects are taken into account.  

4. Figure 12 shows the combined effect of dispersion and buoyancy on temperature profile. It is observed that, as mixed 

convection parameter increases the thermal boundary layer thickness decreases. Hence, the rate of heat transfer increases with 

increase in ε  or the buoyancy parameter. However, the effect of buoyancy parameter is significant without dispersion when 

compared to with dispersion. 

 

 

 
Figure 12: Effect of buoyancy and dispersion on temperature profile. 
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 On comparing Figure 12 with Figure 7 it is observed that, the effect of buoyancy and dispersion on temperature profile 

has the same effect of elastico viscosity on magnification factor. Further, when compared with Figure 8 it is observed that, 

variation of magnification parameter with respect to different porosity parameters causes the same effect of buoyancy and 

dispersion on temperature profile and vice-versa. 

 

CONCLUSIONS: 

1. The increase in magnetic field and in the frequency of excitation causes same effect i.e. decreases the fluid velocity in the 

boundary region. 

2. The dispersion parameter in thermal system is found equivalent to frequency of excitation. It also observed that, dispersion 

parameter effect and time parameter ( )t  effect on visco elastic fluid is same. 

3. In the presence of radiation, the dispersion effect is suppressed. 

4. With increase in visco elastic parameter or magnetic field strength, there is an increasing trend in magnification factor. 

5. The amplification factor in case of the visco elastic fluid is similar to that of ( )f  when thermal effects are considered. 

6. The effect of porosity in case of visco elastic fluid has similar effect as that of dispersion and radiation parameters. 

7. The effect of buoyancy and dispersion on temperature profiles has the same effect as that of elastico viscosity on 

magnification factor. 

8. Variation of magnification parameter with respect to different porosity parameters causes the same effect of buoyancy and 

dispersion on temperature profile and vice-versa.    
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