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ABSTRACT 
We analyse the effect of chemical reaction on non-Darcy convective Heat and Mass transfer flow of a viscous 
electrically conducting fluid through a porous medium in a vertical channel with constant heat sources.  The governing 
equations flow, heat and mass transfer are solved by using Galerkin finite element technique with quadratic polynomial 
approximations. The approximation solution is written directly as a linear combination of approximation functions 
with unknown nodal values as coefficients. Secondly, the approximation polynomials are chosen exclusively from the 
lower order piecewise polynomials restricted to contiguous elements.  The velocity, temperature, concentration, shear 
stress and rate of Heat and Mass transfer are evaluated numerically for different values of G,M,D-1,N,Sc,γ and α. 
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1. INTRODUCTION 
Non – Darcy effects on natural convection in porous media have received a great deal of attention in recent years 
because of the experiments conducted with several combinations of solids and fluids covering wide ranges of 
governing parameters which indicate that the experimental data for systems other than glass water at low Rayleigh 
numbers, do not agree with theoretical predictions based on the Darcy flow model.  This divergence in the heat transfer 
results has been reviewed in detail in Cheng [1985] among others.  Extensive effects are thus being made to include the 
inertia and viscous diffusion terms in the flow equations and to examine their effects in order to develop a reasonable 
accurate mathematical model for convective transport in porous media.  The work of Vafai and Tien [1987] was one of 
the early attempts to account for the boundary and inertia effects in the momentum equation for a porous medium.  

They found that the momentum boundary layer thickness is of order of .  Vafai and Thiyagaraja [1983] presented 

analytical solutions for the velocity and temperature fields for the interface region using the Brinkman Forchheimer –
extended Darcy equation.  Detailed accounts of the recent efforts on non-Darcy convection have been recently reported 
in Tien and Hong [1978], Cheng [1985], and Kladias and Prasad [2002].  Here, we will restrict our discussion to the 
vertical cavity only.  Poulikakos and Bejan [2000, 1990] investigated the inertia effects through the inclusion of 
Forchheimer’s velocity squared term, and presented the boundary layer analysis for tall cavities.  They also obtained 
numerical results for a few cases in order to verify the accuracy of their boundary layer analysis for tall cavities.  They 
also obtained numerical results for a few cases in order to verify the accuracy of their boundary layer solutions.   This 
result in reversal of flow regimes from boundary layer to asymptotic to conduction as the contribution of the inertia 
term increases in comparison with that of the boundary term.  They also reported a criterion for the Darcy flow limit. 
Anwar Bég et.al [2011] have considered Viscoelastic flow and species transfer in a Dacian high-permeable channel. 
Makinde et al [2005] have discussed Heat transfer to MHD oscillatory flow in a channel filled with porous medium. 
 
The Brinkman – Extended – Darcy modal was considered in Tong and Subramanian [1987], and Lauriat and Prasad 
[1988] to examine the boundary effects on free convection in a vertical cavity.  While Tong and Subramanian 
performed a Weber – type boundary layer analysis, Lauriat and Prasad solved the problem numerically for A=1 and5.  
It was shown that for a fixed modified Rayleigh number, Ra, the Nusselt number; decrease with an increase in the 
Darcy number; the reduction being larger at higher values of Ra.   A scale analysis as well as the computational data 
also showed that the transport term (v. )v, is of low order of magnitude compared to the diffusion plus buoyancy terms 
[1988].  A numerical study based on the Forchheimer-Brinkman-Extended Darcy equation of motion has also been 
reported recently by Beckerman et al [2006].  They demonstrated that the inclusion of both the inertia and boundary 
effects is important for convection in a rectangular packed – sphere cavity. 
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Also in all the above studies the thermal diffusion effect (known as Soret effect) has been neglected.  This assumption 
is true when the concentration level is very low.  Therefore, so ever, exceptions.  The thermal diffusion effects for 
instance, has been utilized for isotropic separation and in mixtures between gases with very light molecular weight 
(H2.He)and the medium molecular weight (N2, air)the diffusion – thermo effects was found to be of a magnitude just it 
can not be neglected [Hakiem2000].  In view of the importance of this diffusion – thermo effect, recently Jha and singh 
[2006] studied the free convection and mass transfer flow in an infinite vertical plate moving impulsively in its own 
plane taking into account the Soret effect.  Kafousias [2005] studied the MHD free convection and mass transfer flow 
taking into account Soret effect.  The analytical studies of Jha and singh and Kafousias [2006, 2005] were based on 
Laplace transform technique.  Abdul Sattar and Alam [1999] have considered an unsteady convection and mass transfer 
flow of viscous incompressible and electrically conducting fluid past a moving infinite vertical porous plate taking into 
the thermal diffusion effects.  Similarity equations of the momentum energy and concentration equations are derived by 
introducing a time dependent length scale.  Malsetty et al [1985] have studied the effect of both the soret coefficient 
and Dufour coefficient on the double diffusive convective with compensating horizontal thermal and solutal gradients. 
Ruksana Begum et al. [2010] have considered a non-darcy convective  heat transfer in a vertical channel with constant 
heat flux. Balasubrahmanyam et.al.[2010] have discussed non-darcy viscous electrically conducting heat and mass 
transfer flow in a vertical channel in the presence of heat sources.  
 
In this paper we investigate effect of chemical reaction on non-Darcy convective het and Mass transfer flow of a 
viscous electrically conducting fluid through a porous medium in a vertical channel in the presence of constant heat 
source.  The governing equations flow, heat and mass transfer are solved by using Galerkin finite element technique 
with quadratic polynomial approximations. The approximation solution is written directly as a linear combination of 
approximation functions with unknown nodal values as coefficients. Secondly, the approximation polynomials are 
chosen exclusively from the lower order piecewise polynomials restricted to contiguous elements.  The velocity, 
temperature, concentration, shear stress and rate of Heat and Mass transfer are evaluated numerically for different 
variations of parameter  
 
2. FORMULATION OF THE PROBLEM 
Consider a fully developed laminar mixed convective heat and mass transfer flow of a viscous, electrically conducting 
fluid through a porous medium in a vertical channel bounded by flat walls. We choose a Cartesian co-ordinate system 
O(x,y,z) with  x- axis in the vertical direction and y-axis normal to the walls. A The walls are taken at y= ± L. The 
walls are maintained at constant temperature and concentration .The temperature gradient in the flow field is sufficient 
to cause natural convection in the flow field .A constant axial pressure gradient is also imposed so that this resultant 
flow is a mixed convection flow. The porous medium is assumed to be isotropic and homogeneous with constant 
porosity and effective thermal diffusivity. The thermo physical properties of porous matrix are also assumed to be 
constant and Boussinesq approximation is invoked by confining the density variation to the buoyancy term. In the 
absence of any extraneous force flow is unidirectional along the x-axis which is assumed to be infinite.  
 
The Brinkman-Forchheimer-extended Darcy equation which account for boundary inertia effects in the momentum 
equation is used to obtain the velocity field. Based on the above assumptions the governing equations are  
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The boundary conditions are  
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The axial temperature and concentration gradients 
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 are assumed to be constant, say, A &B respectively. 

 
where u is the velocity, T, C are the temperature and Concentration, p is the pressure ,ρ is the density of the fluid ,Cp is 
the specific heat at constant pressure, µ is the coefficient of viscosity, k is the permeability of  the porous medium, δ is 
the porosity of the medium,β is the coefficient of thermal expansion ,kf is the coefficient of thermal conductivity ,F is a 
function that depends on the Reynolds number and the microstructure of porous medium, J is the current density vector,  
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H is the magnetic field vector,σ is the electrical conductivity of the fluid,µ is the magnetic permeability of the 
medium, •β  is the volumetric coefficient of expansion with mass fraction concentration and D1 is the chemical 
molecular diffusivity ,K is the chemical reaction coefficient and Q is the strength of the heat source. Here, the thermo 
physical properties of the solid and fluid have been assumed to be constant except for the density variation in the body 
force term (Boussinesq approximation) and the solid particles and the fluid are considered to be in the thermal 
equilibrium. 
 
We define the following non-dimensional variables as  
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Introducing these non-dimensional variables the governing equations in the dimensionless form reduce to [on dropping 
the dashes] 
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The corresponding boundary conditions are  
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3. FINITE ELEMENT ANALYSIS 
To solve these differential equations with the corresponding boundary conditions, we assume if ui,  θI , ci are the 
approximations of u, θ and C we define the errors (residual) i
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These errors are orthogonal to the weight function over the domain of ei under Galerkin finite element technique we 
choose the approximation functions as the weight function. Multiply both sides of the equations (3.1 – 3.3) by the 
weight function i.e. each of the approximation function i

jψ  and integrate over the typical three nodded linear element 

(ηe, ηe+1) we obtain 
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Following the Galerkin weighted residual method and integration by parts method to the equations [3.8] – [3.10] we 
obtain 
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Making use of equations [3.4] we can write above equations as  
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Choosing different i

jΨ ’s corresponding to each element ηe in the equation [3.14] yields a local stiffness matrix of 

order 3×3 in the form  
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Likewise the equation [3.15] & [3.16] gives rise to stiffness matrices 
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3×1 column matrices and such stiffness matrices (3.17) – (3.19) in terms of local nodes in each element are assembled 
using inter element continuity and equilibrium conditions to obtain the coupled global matrices in terms of the global 
nodal values of k, θ & C. In case we choose n-quadratic elements then the global matrices are of order 2n+1. The 
ultimate coupled global matrices are solved to determine the unknown global nodal values of the velocity, temperature 
and concentration in fluid region. In solving these global matrices an iteration procedure has been adopted to include 
the boundary and effects in the porous region. 
 
The shape functions corresponding to 
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4. STIFFNESS MATRICES 
 
The global matrix for θ is  
 

A3 X3 = B3                                   (4.1) 
 
The global matrix for C is  
 

A4 X4 = B4                                   (4.2) 
 
The global matrix u is 
 

A5 X5 = B5                                   (4.3) 
 
In fact, the non-linear term arises in the modified Brinkman linear momentum equation (3.8) of the porous medium. 
The iteration procedure in taking the global matrices is as follows.  We split the square term into a product term and 
keeping one of them say ui’s under  integration, the other is expanded in terms of local nodal values as in  (3.4),  
resulting in the corresponding coefficient matrix )'( sn j

k
i   in (3.17),  whose coefficients involve the unknown ui’s . To 

evaluated (3.18) to begin with choose the initial global nodal values of ui’s as zeros in the zeroth approximation.  We 
evaluate ui’s , θi’s and Ci’s in the usual procedure mentioned earlier.  Later choosing these values of ui’s as first order 
approximation calculate θi’s, Ci’s.  In the second iteration, we substitute for ui’s the first order approximation of and ui’s 
and the first approximation of θi’s and Ci’s obtain second order approximation.  This procedure is repeated till the 
consecutive values of ui’s , θi’s and Ci’s differ by a preassigned percentage. For computational purpose we choose five 
elements in flow region. 
 
Comparision with the earlier work:In the non-magnetic case [M=0] the results coinsides with that of 
kamalakar[2012]. 
 
5. DISCUSSION OF RESULTS 
In this analysis we investigate the effect of chemical reaction on convective heat and mass transfer flow of a viscous 
electrically conducting fluid through a porous medium in a vertical channel maintained at constant temperature & 
concentration. The equations governing the flow of heat and mass transfer are solved numerically using Galerkin finite 
element analysis with quadratic approximation functions. 
 
Figs.1 – 6 represent the variation of the axial velocity (u])with different variations of M, D-1, α, Sc, N and γ. The 
variation of ‘u’ with Hart-man number M and Darcy parameter D-1 shows that higher the Lorentz force lesser the 
permeability of the porous medium smaller |u| in the entire flow region (fig 1 and 2). The variation of ‘u’ with heat 
source parameter α shows that a reversal flow is observed in the entire flow region in the case of heat sink and no such 
reversal flow any where in the flow region in the case of heat source |u| enhances with increase in the strength of heat 
source / sink (fig.3). The variation of ‘u’ with Schmidt number ‘Sc’ , S.T. lesser the molecular diffusivity smaller |u| in 
the entire flow region (fig.5). The variation of ‘u’ with buoyancy ration ‘N’ shows that the molecular buoyancy force 
dominates with the thermal buoyancy force |u| depreciates when the buoyancy forces act in the same direction  and for 
the forces acting in opposite direction it enhances in the entire flow region (fig.5). The influence of chemical reaction 
on ‘u’ is exhibited in fig.6, it is found that the magnitude of u enhances in the degenerating chemical reaction case and 
depreciates in the generating chemical reaction case.  
 



J. Deepthi1* & Prof. D. R. V. Prasada Rao2 / FINITE ELEMENT ANALYSIS OF CHEMICAL REACTION EFFECT ON NON-DARCY …./ 
IJMA- 3(11), Nov.-2012. 

© 2012, IJMA. All Rights Reserved                                                                                                                                                                    3891  

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
0 0.2 0.4 0.6 0.8 1

I

II

III

y

u

 
   Fig.1 Variation of axial velocity(u) with M 
    M=2,D-1=102,α=2 
    I II III 

   M   2 5 10  

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
0 0.2 0.4 0.6 0.8 1

I
II
III

y

u

                
             Fig.2   u with D-1                       
          I     II   III                                                
        D-1      102   3x102   5x102                                               

               
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

I

II

III

IV

V

VI

u

y
 

                                   Fig.3   u with α 
                                   I      II     III      IV     V     VI    
                              α    2      4   6       -2     -4     -6       

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
0 0.2 0.4 0.6 0.8 1

I
II
III
IV

y

u

             
         Fig.4   u with Sc                     
  I II III IV                        
   Sc   0.24      0.6        1.3        2.01                               

            
-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
0 0.2 0.4 0.6 0.8 1

I
II
III
IV

y

u

 
                            Fig.5   u with N  
                      I II III IV    
                                    N      1 2        -0.5      -0.8         

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

I
II
III
IV
V
VI

y

u

                
        Fig.6   u with γ         
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The non-dimensional temperature distribution ‘θ’ is shown in fig.7 – 12 for different parametric values. The variation 
of θ with M and D-1 shows that higher the Lorentz force / lesser the permeability of the porous medium smaller the 
actual temperature in the entire flow region (fig. 7 and 8). The variation of θ with heat source parameter α is shown in 
fig.9, it is found that the actual temperature enhances with increase actual temperature enhances with increase in α>0 
and depreciates with α<0. The variation of θ with Schmidt number Sc shows that lesser the molecular diffusivity 
smaller the actual temperature in the flow region (fig.10). The variation of θ with buoyancy ration N shows that when 
the molecular buoyancy force dominates over the thermal buoyancy force the actual temperature depreciates 
irrespective of the directions of the buoyancy forces (fig.11). The influence of physical reaction on θ is shown in fig 12, 
it is found that the actual temperature enhances in the degenerating chemical reaction case and depreciates in the 
generating chemical reaction case. 
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The non-dimensional concentration (C) is shown in figs.13-18 for different parametric values. From figs.13 & 14, we 
found that the actual concentration enhances with increase in D-1 and depreciates with M. the variation of ‘C’ with Sc 
shows that lesser the molecular diffusivity smaller the concentration in the flow field (fig.15). From fig.16 we find that 
the actual concentration depreciates with increase in the strength of the heat source and enhances with heat sink. The 
variation of θ with buoyancy ratio N shows that the actual concentration enhances with N>0 and depreciates with N<0 
every where in the flow region (fig.17). The influence of chemical reaction effect on ‘C’ is shown in fig.18. It is found 
that the actual concentration enhances in the degenerating chemical reaction k and depreciates in the generating 
chemical reaction case. 
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    Fig.13   Variation of Concentration (C) with M 
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The rate of heat transfer at y = ± 1 is shown in tables 1 – 6 for different parametric values, it is found that the rate of 
heat transfer enhances with increasing |G| at y = ± 1 lesser the permeability of the porous medium smaller |Nu| at both 
the walls. The variation of Nu with Hartman number M shows that(tables 1 and 4) higher the lorentz force larger |Nu| in 
the heating case and smaller in the cooling case. The variation of Nu with buoyancy ratio N shows that(tables 1 and 
4)when the molecular buoyancy force dominates the thermal buoyancy force, the rate of heat transfer experiences an 
enhancement when the buoyancy forces act in same direction and for the forces acting in opposite direction it 
depreciates in the magnitude at both the walls. The variation of Nu with heat source parameter α shows that(tables 2 
and 5) the rate of heat transfer enhances with increase in strength of heat source / sink at y = ± 1 lesser the molecular 
diffusivity smaller |Nu| per G > 0 and larger |Nu| for G<0. The variation of Nu with chemical reaction γ shows that  
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(Table 6) |Nu| enhances in the degenerating chemical reaction case and depreciates in the generating chemical reaction 
case. In general we find that the rate of heat transfer at y= -1 is much greater than that at y = + 1. 

 
Table: 1 

Nusselt number [Nu] at y= +1 
 

G I II III IV V VI VII VIII 
103 39.3931 39.3434 39.3653 39.5076 39.5301 39.3932 39.3929 39.3928 

3X103 39.4795 39.2016 39.2796 39.4089 39.3939 39.5045 39.5408 39.5295 
-103 39.7326 39.6818 39.6537 39.6103 39.5377 39.7336 39.7327 39.7316 

-3X103 40.0818 39.9271 39.8451 39.708 39.6067 40.0829 40.0816 40.0765 
D-1 103 3x103 5x103 103 103 103 103 103 
M 2 2 2 4 8 2 2 2 
N 1 1 1 1 1 2 -0.5 -0.8 

 
Table: 2 

Nusselt number [Nu] at y= +1 
 

G I II III IV V VI VII VIII IX 
103 39.3931 65.6944 91.9957 -13.2095 -39.5108 -65.8121 39.6805 39.5821 39.2042 

3X103 39.4795 65.0326 91.0029 -12.8785 -38.8489 -64.8192 39.5589 39.5603 39.4795 
-103 39.7326 66.3738 93.015 -13.5497 -40.1909 -66.8321 39.4239 39.5279 39.9434 

-3X103 40.0818 67.0722 94.0625 -13.8989 -40.8893 -67.8796 39.1723 39.4739 40.7309 
α 2 4 6 -2 -4 -6 2 2 2 
Sc 1.3 1.3 1.3 1.3 1.3 1.3 0.24 0.6 2.02 

 
Table: 3 

Nusselt number [Nu] at y= +1 
 

G I II III IV V VI 
103 39.3931 40.1787 40.3361 41.7278 40.8008 40.8002 

3X103 39.4795 40.3345 40.5945 42.9913 41.6426 41.3775 
-103 39.7326 40.0246 40.0825 40.5685 40.3021 40.2473 

-3X103 40.0818 39.8722 39.8336 39.5006 39.6784 39.7156 
γ 0.5 1.5 2.5 -0.5 -1.5 -2.5 

 
Table: 4 

Nusselt number [Nu] at y= -1 
 

G I II III IV V VI VII VIII 
103 416.317 415.278 414.433 418.128 418.195 416.318 416.314 415.304 

3X103 417.951 413.354 414.561 416.56 417.958 423.162 418.617 417.672 
-103 421.57 420.784 420.349 417.818 418.597 422.669 421.57 420.37 

-3X103 426.97 424.49 423.308 421.187 420.004 427.974 426.964 424.663 
D-1 103 3x103 5x103 103 103 103 103 103 
M 2 2 2 4 8 2 2 2 
N 1 1 1 1 1 2 -0.5 -0.8 

 
Table: 5 

Nusselt number [Nu] at y= -1 
 

G I II III IV V VI VII VIII IX 
103 416.317 823.066 1229.82 -397.183 -803.933 -1210.68 420.763 419.241 413.395 

3X103 417.951 812.832 1214.46 -392.066 -793.698 -1195.33 419.03 418.966 417.951 
-103 421.57 833.575 1245.58 -402.441 -814.447 -1226.45 416.793 418.403 424.832 

-3X103 426.97 844.375 1261.78 -407.84 -825.245 -1242.65 412.9 417.568 437.002 
α 2 4 6 -2 -4 -6 2 2 2 
Sc 1.3 1.3 1.3 1.3 1.3 1.3 0.24 0.6 2.02 
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Table: 6 

Nusselt number [Nu] at y= -1 
 

G I II III IV V VI 
103 416.317 425.029 426.766 433.697 433.697 431.967 

3X103 417.951 427.424 430.732 461.507 444.182 440.786 
-103 421.57 422.661 422.874 424.717 423.71 423.503 

-3X103 426.97 428.319 429.054 408.509 406.187 409.375 
γ 0.5 1.5 2.5 -0.5 -1.5 -2.5 

 
The rate of mass transfer at  y = ± 1 is exhibited in tables 7 – 12. For different values of G, M, D-1, N, α, Sc and γ. It is 
found that the rate of mass transfer enhances at y=+1 and depreciates at y = -1 with increase in |G|. The variation of Sh 
with Darcy parameter D-1 and Hartman number M shows that (tables 7 and 10)lesser the permeability of the porous 
medium smaller |Sh| at y = ±1 in the heating case and in the cooling case smaller at y =+1 and larger at y = -1, higher 
the lorentz force smaller |Sh| at  = +1. For G>0 and for G<0, smaller at y = +1 and larger at y = -1. The variation of Sh 
with the buoyancy ratio N shows that(tables 7 and 10)when the molecular buoyancy forces dominates over the thermal 
buoyancy forces the rate of mass transfer depreciates at  y = +1 and enhances at y = - 1 and for the forces acting tin 
opposite direction it enhances at y = + 1 and depreciates at y = -1. The variation of Sh with heat source parameter α 
shows that(tables 8 and 11) the rate of mass transfer at y=+1 depreciates with α>0 in the heating case and enhances in 
the cooling case and at y = -1 it enhances with α>0 in the heating case and reduces in the cooling case. We observe α 
reversed effect in the behaviour of |Sh| in the case of heat sink. The variation of Sh with Schmidt number Sc shows that 
(tables 8and 11) lesser the molecular diffusivity smaller |Sh| at y = + 1 and larger at y =- 1 in the heating case and in the 
cooling case larger |Sh| at y = + 1 and smaller at y = -1. The variation of Sh with chemical reaction parameter γ shows 
that (tables 9 and 12)the rate of mass transfer enhances at y = +1 and reduces at y = -1 in the degenerating chemical 
reaction and in the generating chemical reaction case it reduces at y = +1 and enhances at y = -1. In general we find that 
the rate of mass transfer at y = -1 is greater than that at y = +1. 
 

Table: 7 
Sherwood number [Sh] at y= +1 

 
G I II III IV V VI VII VIII 

103 13.0791 13.0609 13.0421 13.06638 13.0428 13.0691 13.0496 13.0590 
3X103 13.0826 13.0712 13.0644 13.0797 13.0788 13.0653 13.0651 13..0874 
-103 13.0931 13.092 13.0899 13.0874 13.0854 13.0831 13.0531 13.0931 

-3X103 13.1076 13.1013 13.0978 13.0921 13.0878 13.0976 13.0736 13.1016 
D-1 103 3x103 5x103 103 103 103 103 103 
M 2 2 2 4 8 2 2 2 
N 1 1 1 1 1 2 -0.5 -0.8 

 
 

Table: 8 
Sherwood number [Sh] at y= +1 

 
G I II III IV V VI VII VIII IX 

103 13.0791 13.0721 13.0651 13.0931 13.1 13.107 13.0846 13.0827 13.07551 
3X103 13.0826 13.0447 13.024 13.1068 13.1275 13.0648 13.0871 13.0892 0.0973 
-103 13.0931 13.1002 13.1073 13.079 13.0719 13.0648 13.0871 13.0892 0.3973 

-3X103 13.1076 13.1291 13.1506 13.0645 13.043 13.0214 13.0897 13.0956 13.1202 
α 2 4 6 -2 -4 -6 2 2 2 
Sc 1.3 1.3 1.3 1.3 1.3 1.3 0.24 0.6 2.02 

 
Table: 9 

Nusselt number [Nu] at y= +1 
 

G I II III IV V VI 
103 13.0791 13.0989 13.1116 13.1232 13.1064 13.1022 

3X103 13.0826 13.0941 13.1088 13.1388 13.1113 13.1052 
-103 13.0931 13.1036 13.1144 13.1088 13.1016 13.094 

-3X103 13.1076 13.1082 13.1172 13.0956 13.0941 13.0926 
γ 0.5 1.5 2.5 -0.5 -1.5 -2.5 
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Table: 10 

Sherwood number [Sh] at y= -1 
 

G I II III IV V VI VII VIII 
103 14.4972 14.4949 14.4948 14.4934 14.492 14.5072 14.4973 14.4863 

3X103 14.4928 14.4638 14.4211 14.4868 14.4831 14.4962 14.4923 14.4706 
-103 14.4858 14.4875 14.4884 14.4866 14.4912 14.4928 14.4807 14.4752 

-3X103 14.474 14.4796 14.482 14.4866 14.4911 14.484 14.4629 14.4519 
D-1 103 3x103 5x103 103 103 103 103 103 
M 2 2 2 4 8 2 2 2 
N 1 1 1 1 1 2 -0.5 -0.8 

 
Table: 11 

Sherwood number [Sh] at y= -1 
 

G I II III IV V VI VII VIII IX 
103 14.4972 14.503 14.5087 14.4858 14.4801 14.4743 14.4928 14.4943 14.5002 

3X103 14.4928 14.5254 14.4745 14.4576 14.4406 14.4919 14.4921 14.4921 14.4928 
-103 14.4858 14.48 14.442 14.4974 14.5032 14.509 14.4907 14.489 14.4824 

-3X103 14.474 14.4563 14.4387 14.5092 14.5269 14.5445 14.4886 14.4837 14.4636 
α 2 4 6 -2 -4 -6 2 2 2 
Sc 1.3 1.3 1.3 1.3 1.3 1.3 0.24 0.6 2.02 

 
Table: 12 

Sherwood number [Sh] at y= -1 
 

G I II III IV V VI 
103 14.4972 14.4682 14.4185 14.4836 14.4993 14.5061 

3X103 14.4928 14.472 14.4207 14.4711 14.4953 14.5037 
-103 14.4858 14.4644 14.4163 14.4951 14.5032 14.5084 

-3X103 14.474 14.4606 14.4142 14.5057 14.5068 14.5106 
γ 0.5 1.5 2.5 -0.5 -1.5 -2.5 
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