
International Journal of Mathematical Archive-3(11), 2012, 3911-3918 
 Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 3 (11), Nov. – 2012                                                                                            3911 

 
A SEMI-CIRCLE THEOREM IN THERMOSOLUTAL CONVECTION  

IN RIVLIN-ERICKSEN VISCOELASTIC FLUID IN A POROUS MEDIUM 
 

Ajaib S. Banyal* 
Department of Mathematics, Govt. College Nadaun (Hamirpur), (HP) INDIA, 177033 

 
(Received on: 21-10-12; Accepted on: 26-11-12) 

 
 

ABSTRACT 
Thermosolutal convection in a layer of Rivlin-Ericksen viscoelastic fluid of Veronis (1965) type is considered in a 
porous medium. Following the linearized stability theory and normal mode analysis, the paper through mathematical 
analysis of the governing equations of Rivlin-Ericksen viscoelastic fluid convection, for any combination of free and 
rigid boundaries of infinite horizontal extension at the top and bottom of the fluid, established that the complex growth 
rate σ  of oscillatory perturbations, neutral or unstable for all wave numbers, must lie inside right half of the a semi-
circle  
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in the irσσ -plane, where sR  is the thermosolutal Rayleigh number, F is the viscoelasticity parameter, 3p is the 

thermosolutal Prandtl number, ε  is the porosity and lP  is the medium permeability. This prescribes the bounds to the 
complex growth rate of arbitrary oscillatory motions of growing amplitude in the Rivlin-Ericksen viscoelastic fluid in 
Veronis (1965) type configuration in a porous medium. A similar result is also proved for Stern (1960) type of 
configuration. The result is important since the result hold for all wave numbers and for any arbitrary combinations of 
dynamically free and rigid boundaries. 
 
Key Words: Thermosolutal convection; Rivlin-Ericksen Fluid; PES; Rayleigh number; Thermosolutal Rayleigh 
number. 
 
 
1.  INTRODUCTION 
The thermal instability of a fluid layer with maintained adverse temperature gradient by heating the underside plays an 
important role in Geophysics, interiors of the Earth, Oceanography and Atmospheric Physics, and has been investigated 
by several authors (e.g., Bénard [ ]4 , Rayleigh [ ]13 , Jeffreys [ ]8 ) under different conditions. A detailed account of the 
theoretical and experimental study of the onset of Bénard Convection in Newtonian fluids, under varying assumptions 
of hydrodynamics and hydromagnetics, has been given by Chandrasekhar [ ]6  in his celebrated monograph. The use of 
Boussinesq approximation has been made throughout, which states that the density changes are disregarded in all other 
terms in the equation of motion except the external force term. The problem of thermohaline convection in a layer of 
fluid heated from below and subjected to a stable salinity gradient has been considered by Veronis[ ]20 . The physics is 
quite similar in the stellar case, in that helium acts like in raising the density and in diffusing more slowly than heat. 
The condition under which convective motions are important in stellar atmospheres are usually far removed from 
consideration of single component fluid and rigid boundaries and therefore it is desirable to consider a fluid acted upon 
by a solute gradient with free or rigid boundaries. The problem is of great importance because of its applications to 
atmospheric physics and astrophysics, especially in the case of the ionosphere and the outer layer of the atmosphere. 
The thermosolutal convection problems also arise in oceanography, limnology and engineering. Bhatia and Steiner [ ]6  
have considered the effect of uniform rotation on the thermal instability of a viscoelastic (Maxwell) fluid and found that 
rotation has a destabilizing influence in contrast to the stabilizing effect on Newtonian fluid. Sharma [ ]16  has studied 
the thermal instability of a layer of viscoelastic (Oldroydian) fluid acted upon by a uniform rotation and found that 
rotation has destabilizing as well as stabilizing effects under certain conditions in contrast to that of a Maxwell fluid 
where it has a destabilizing effect There are many elastico-viscous fluids that cannot be characterized by Maxwell’s 
constitutive relations or Oldroyd’s [ ]11  constitutive relations. Two such classes of fluids are Rivlin-Ericksen’s and  
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Walter’s (model B’) fluids.  Rivlin-Ericksen [ ]14  has proposed a theoretical model for such one class of elastico-

viscous fluids. Sharma and kumar [ ]17  have studied the effect of rotation on thermal instability in Rivlin-Ericksen 
elastico-viscous fluid and found that rotation has a stabilizing effect and introduces oscillatory modes in the system. 
Kumar et al. [ ]9  considered effect of rotation and magnetic field on Rivlin-Ericksen elastico-viscous fluid and found 
that rotation has stabilizing effect; where as magnetic field has both stabilizing and destabilizing effects. A layer of 
such fluid heated from below or under the action of magnetic field or rotation or both may find applications in 
geophysics, interior of the Earth, Oceanography, and the atmospheric physics. With the growing importance of non-
Newtonian fluids in modern technology and industries, the investigations on such fluids are desirable. 
 
In all above studies, the medium has been considered to be non-porous with free boundaries only, in general. In recent 
years, the investigation of flow of fluids through porous media has become an important topic due to the recovery of 
crude oil from the pores of reservoir rocks. When a fluid permeates a porous material, the gross effect is represented by 
the Darcy’s law. As a result of this macroscopic law, the usual viscous term in the equation of Rivlin-Ericksen fluid 

motion is replaced by the resistance term 
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1 µµ , where µ  and 'µ  are the viscosity and 

viscoelasticity of the Rivlin-Ericksen fluid, 1k  is the medium permeability and q  is the Darcian (filter) velocity of the 
fluid. The problem of thermosolutal convection in fluids in a porous medium is of great importance in geophysics, soil 
sciences, ground water hydrology and astrophysics. Generally, it is accepted that comets consist of a dusty ‘snowball’ 
of a mixture of frozen gases which, in the process of their journey, changes from solid to gas and vice-versa. The 
physical properties of the comets, meteorites and interplanetary dust strongly suggest the importance of non-Newtonian 
fluids in chemical technology, industry and geophysical fluid dynamics. Thermal convection in porous medium is also 
of interest in geophysical system, electrochemistry and metallurgy. A comprehensive review of the literature 
concerning thermal convection in a fluid-saturated porous medium may be found in the book by Nield and Bejan [ ]10 . 

 
Pellow and Southwell [ ]12  proved the validity of PES for the classical Rayleigh-Bénard convection problem. Banerjee 

et al [ ]2  gave a new scheme for combining the governing equations of thermohaline convection, which is shown to lead 
to the bounds for the complex growth rate of the arbitrary oscillatory perturbations, neutral or unstable for all 
combinations of dynamically rigid or free boundaries and, Banerjee and Banerjee [ ]1  established a criterion on 

characterization of non-oscillatory motions in hydrodynamics which was further extended by Gupta et al [ ]7  . However 
no such result existed for non-Newtonian fluid configurations in general and in particular, for Rivlin-Ericksen 
viscoelastic fluid configurations. Banyal [ ]3  have characterized the oscillatory motions in Rivlin-Ericksen fluid in the 
presence of magnetic field 
 
Keeping in mind the importance of non-Newtonian fluids, as stated above, the present paper is an attempt to prescribe 
the bounds to the complex growth rate of arbitrary oscillatory motions of growing amplitude, in a thermosolutal 
convection of a layer of incompressible Rivlin-Ericksen fluid configuration Veronis[ ]20  type in a porous medium, 
when the bounding surfaces  are of infinite horizontal extension, at the top and bottom of the fluid and are with any 
arbitrary combination of dynamically free and rigid boundaries. A similar result is also proved for Stern [ ]19  type of 
configuration. The result is important since the result hold for all wave numbers and for any arbitrary combinations of 
dynamically free and rigid boundaries 
 
2. FORMULATION OF THE PROBLEM AND PERTURBATION EQUATIONS 
Here we Consider an infinite, horizontal, incompressible Rivlin-Ericksen viscoelastic  fluid layer, of thickness d, heated 
from below so that, the temperature, density and solute concentrations at the bottom surface z = 0  are 0T , 0ρ and 0C  

at the upper surface z = d are dT , dρ and dC  respectively, and that a uniform adverse temperature 

gradient 







=

dz
dTβ  and a uniform solute gradient 
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dz
dC'β is maintained. The uniform gravity field ( )gg −

→

,0,0  

pervade on the system. This fluid layer is assumed to be flowing through an isotropic and homogeneous porous 
medium of porosityε  and medium permeability 1k . 

Let  p , ρ , T, C ,α , 'α , g and ( )wvuq ,,
→

 denote respectively the fluid pressure, fluid density temperature, solute 
concentration, thermal coefficient of expansion, an analogous solvent coefficientof expansion, gravitational 
acceleration and filter velocity of the fluid.  Then the momentum balance, mass balance, and energy balance equation  
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governing the flow of thermosolutal Rivlin-Ericksen fluid (Rivlin and Ericksen [ ]14 ; Chandrasekhar[ ]6  and Sharma et 

al [ ]18 ) are given by 
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and
'E is a constant analogous to E  but corresponding to solute rather than heat, while sρ ,  sc and 0ρ , ic , 

stands for the density and heat capacity of the solid (porous matrix) material and the fluid, respectively,  ε  is the 

medium porosity and ),,( zyxr
→

.                                                                                                                                          
 
The equation of state is 
                             ( )[ ])(1 0

'
00 CCTT −+−−= ααρρ ,                                                                                          (5) 

 
Where the suffix zero refer to the values at the reference level z = 0. In writing the equation (1), we made use of the 
Boussinesq approximation, which states that the density variations are ignored in all terms in the equation of motion 

except the external force term. The kinematic viscosityν  , kinematic viscoelasticity
'ν , thermal diffusivityκ , the 

solute diffusivity 'κ , and the coefficient of thermal expansion α  are all assumed to be constants. 
 
The steady state solution is 

  ( )0,0,0=
→

q  , )1( ''
0 zz βααβρρ −+= , 0TzT +−= β , 0

' CzC +−= β ,                                          (6)                                                                                                                                                                                                     
 
Here we use the linearized stability theory and the normal mode analysis method. Consider a small perturbations on the 

steady state solution, and letδρ , pδ ,θ , γ  and ( )wvuq ,,
→

  denote respectively the perturbations in densityρ , 

pressure p, temperature T, solute concentration C and velocity )0,0,0(
→

q . The change in densityδρ , caused mainly by 
the perturbation θ  and γ  in temperature and concentration, is given by    

        )( '
0 γααθρδρ −−= .                                                                                                                                          (7)                                                                                                                             

             
Then the linearized perturbation equations of the Rivlin-Ericksen fluid reduces to  
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3. NORMAL MODE ANALYSIS                                
Analyzing the disturbances into two-dimensional waves, and considering disturbances characterized by a particular 
wave number, we assume that the Perturbation quantities are of the form 
     [ ] ( ) ( )[ ])(,,,, zzzWw ΓΘ=γθ exp ( )ntyikxik yx ++ ,                                                                                      (12)                                                                               

Where yx kk ,  are the wave numbers along the x- and y-directions, respectively, ( )2
1

22
yx kkk += , is the resultant 

wave number, n is the growth rate which is, in general, a complex constant )(),( zzW Θ  and )(zΓ  are the functions of 
z only. 
 
Using (12), equations (8)-(11), within the framework of Boussinesq approximations, in the non-dimensional form 
transform to 
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Where we have introduced new coordinates ( )',',' zyx  = (x/d, y/d, z/d) in new units of length d and '/ dzdD = . For 

convenience, the dashes are dropped hereafter. Also we have substituted ,,
2

ν
σ ndkda ==

κ
ν

=1p  is the thermal 
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kPl =  is the dimensionless medium permeability, 
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=  is the dimensionless viscoelasticity parameter of the Rivlin-Ericksen fluid;  

κν
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Rayleigh number and ''

4''
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βα dgRs =  is the thermosolutal Rayleigh number. Also we have 

Substituted ⊕=WW , ⊕Θ=Θ
κ
β 2d

, ⊕Γ=Γ
κ

β 2'd
 and dDD =⊕  and dropped ( )⊕  for convenience. 

 
We now consider the case where both the boundaries are rigid and perfectly conducting and are maintained at constant 
temperature and solute concentration, and then the perturbations in the temperature and solute concentration are zero at 
the boundaries. The appropriate boundary conditions with respect to which equations (13)-(15), must possess a solution 
are 
 
    W  =  0 = Γ=Θ ,          on both the horizontal boundaries,                                                        
    DW = 0,                          on a rigid boundary,                                                                                
    02 =WD ,                    on a dynamically free boundary,                                                                                         (16)                                                    
 
Equations (13)--(15), along with boundary conditions (16), pose an eigenvalue problem for σ  and we wish to 
characterize iσ , when 0≥rσ . 
 
We first note that sinceW and Γ  satisfy )1(0)0( WW ==  and  )1(0)0( Γ==Γ   in addition to satisfying to 

governing equations and hence we have from the Rayleigh-Ritz inequality Schultz [ ]15  

 ∫∫ ≥
1

0

22
1

0

2 dzWdzDW π And ∫∫ Γ≥Γ
1

0

22
1

0

2 dzdzD π                                                                                        (17)                                                                                                                                                                                                          

 



Ajaib S. Banyal*/ A Semi-Circle Theorem in Thermosolutal Convection in Rivlin-Ericksen…./IJMA- 3(11), Nov.-2012. 

© 2012, IJMA. All Rights Reserved                                                                                                                                                                    3915  

 
4. MATHEMATICAL ANALYSIS 
We prove the following lemma: 
 
Lemma 1:  For any arbitrary oscillatory perturbation, neutral or unstable 
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Proof: Further, multiplying equation (15) and its complex conjugate, and integrating by parts each term on right hand 
side of the resulting equation for an appropriate number of times and making use of boundary conditions on Γ  namely 

)1(0)0( Γ==Γ  along with (15), we get 
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Since 0≥rσ , 0≠iσ  therefore the equation (18) gives, 
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It is easily seen upon using the boundary conditions (16) that 
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Upon utilizing the inequalities (19) and (17), above inequality give 
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This completes the proof of lemma. 
 
Lemma 2:  For any arbitrary oscillatory perturbation, neutral or unstable 
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Proof: Further, multiplying equation (14) and its complex conjugate, and integrating by parts each term on right hand 
side of the resulting equation for an appropriate number of times and making use of boundary conditions on Θ  namely 
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Since 0≥rσ , 0≠iσ  therefore the equation (21) gives, 
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It is easily seen upon using the boundary conditions (16) that 
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Upon utilizing the inequalities (22) and (17), above inequality give 

                        ∫∫ +
≤Θ

1

0

2

1
22

1

0

2

)(
1 dzW

Epa
dz

σπ
,                                                                                                   (23)                                                                                              

 
This completes the proof of lemma. 
 
We prove the following theorem: 
 
Theorem 1: If  R 〉 0 , 0〉sR , F 〉 0, 0〉lP , 01〉p , 03 〉p , 0≥rσ  and 0≠iσ  then the necessary condition for the 

existence of non-trivial solution  ( )ΓΘ,,W  of  equations  (13) – (15), together with boundary conditions (16)  is that 
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Proof: Multiplying equation (13) by  ∗W  (the complex conjugate of W) throughout and integrating the resulting 
equation over the vertical range of z, we get 
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Taking complex conjugate on both sides of equation (14), we get 
( ) ∗∗∗ −=Θ−− WEpaD σ1

22 ,                                                                                                                                (25) 
 
Therefore, using (25), we get  
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Taking complex conjugate on both sides of equation (15), we get 
( ) ∗∗∗ −=Γ−− WpEaD σ3

'22 ,                                                                                                                              (27) 
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Therefore, using (27), we get  
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Substituting (26) and (28), in the right hand side of equation (24), we get 

( ) ( ) ( )
1 1 1

2 2 2 2 2 * * 2 * 2 2 ' *
1 3

0 0 0

1 (1 ) s
l

F W D a Wdz Ra D a Ep dz R a D a E p dz
P

σ σ σ σ
ε

∗ 
+ + − = Θ − − Θ − Γ − − Γ 

 
∫ ∫ ∫    (29)                                                         

 
Integrating the terms on both sides of equation (29) for an appropriate number of times and making use of the 
appropriate boundary conditions (16), we get  
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Now equating imaginary parts on both sides of equation (30), and cancelling )0(≠iσ  throughout, we get 
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Now R 〉  0, 01〉p  and 0〉E , utilizing the inequalities (20) and (17), the equation (31) gives,  

0
)(

1)( 1

1

0

2
22

2
22 〈+













+
−








++ ∫ IdzW

a
aR

P
Fa s

l σπε
π ,                                                                                      (32)                                         

 
Where 

∫ Θ=
1

0

2
1

2
1 dzEpRaI , 

 
Is positive definite, therefore, we must have 
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Hence, if 
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Since the minimum value of 
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 is 24π at 022 〉= πa . And this completes the proof of the theorem. 

 
Theorem 2: If  R 〈 0 , 0〈sR , F 〉 0, 0〉lP , 01〉p , 03 〉p , 0≥rσ  and 0≠iσ  then the necessary condition for the 

existence of non-trivial solution  ( )ΓΘ,,W  of  equations  (13) – (15), together with boundary conditions (16)  is that 
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Proof: Replacing R and sR  by  R−   and  sR−  , respectively in equations (13) – (15) and proceeding exactly as in 
Theorem 1 and utilizing the inequality (23), we get the desired result.   
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5. CONCLUSIONS 
The inequality (33) for 0≥rσ  and 0≠iσ , can be written as 
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The essential content of the theorem, from the point of view of linear stability theory is that for the thermosolutal 
configuration of Rivlin-Ericksen viscoelastic fluid of infinite horizontal extension heated form below, having top and 
bottom bounding surfaces of infinite horizontal extension, with any arbitrary combination of dynamically free and rigid 
boundaries in a porous medium, the complex growth rate of an arbitrary oscillatory motions of growing amplitude, lies 
inside a semi-circle in the right half of the rσ iσ  - plane whose centre is at the origin and radius is equal to 
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where sR  is the thermosolutal Rayleigh number, F is the viscoelasticity parameter, ε  is the 

porosity and lP  is the medium permeability. The result is important since the exact solutions of the problem 
investigated in closed form, are not obtainable, for any arbitrary combinations of dynamically free and rigid boundaries. 
The similar conclusions are drawn for the thermosolutal configuration of Stern (1960) type of Rivlin-Ericksen 
viscoelastic fluid of infinite horizontal extension, for any arbitrary combination of free and rigid boundaries at the top 
and bottom of the fluid from Theorem 2. 
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