COST-BENEFIT ANALYSIS OF A TWO-UNIT AUTOMATIC POWER FACTOR CONTROLLER SYSTEM WITH VARIATION IN POWER FACTOR AND OCCURRENCE OF NO OTHER EVENT DURING INSPECTION

GULSHAN TANEJA1, ROOSEL JAIN2,3* and P. K. BHATIA4

1Department of Mathematics, Maharishi Dayanand University, Rohtak-124001, Haryana, India
2Department of Applied Mathematics, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, (Sonepat)-131039 Haryana, India
3Department of Applied Mathematics, Amity Institute of Applied Sciences, Amity University, Noida-201301, U.P., India
4Department of Applied Mathematics, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, (Sonepat)-131039 Haryana, India

(Received on: 31-10-12; Revised & Accepted on: 28-11-12)

ABSTRACT

Failures and financial constraints of complex power systems need the use of probabilistic methods to calculate reliability indices of system effectiveness. The present paper deals with probabilistic analysis of Automatic Power Factor Controller (APFC) working in industrial companies. The power factor correction of electrical loads and energy losses due to poor power factor are the problems common to all industrial companies. To control poor power factor, Automatic Power Factor Controller (APFC) systems are installed in such companies. Here, a system comprising of two identical cold standby units have been analyzed using semi-Markov processes and regenerative point technique. Initially, the system is operative with controlled power factor. Then it may transit to a state with uncontrolled power factor or it may undergo inspection on failure. The inspection is carried out to detect the type of failure which can be due to fuse blown off, transformer burnt, programming problem, output relay faulty. Out of above mentioned failures, first two are irreparable while last two are repairable. It is also assumed that during inspection, no other event takes place. The various reliability indices of system effectiveness are obtained and economic analysis is done to increase the profit of users of such systems graphically.

Key Words: Automatic Power Factor Controller (APFC) system, controlled/uncontrolled power factor, reliability indices of system effectiveness, regenerative point technique, semi-Markov Processes.

2000 Mathematics Subject Classification: 90B25 and 60K10.

1. INTRODUCTION

The probabilistic analysis of the systems is done to calculate various reliability indices of system effectiveness which helps the users to increase the reliability of the system by minimizing failures, energy losses and mainatainences costs. Cold standby systems are analyzed by researchers like Gopalan and Muralidhar [1] including many others like [4], [5], [6] and [9]. In all these research papers, stochastic analysis of various situations is done by considering different failures and repair facilities. Parashar and Taneja [7] also analyzed a two unit PLC hot standby system with two types of repair facilities. Goyal et al [8] also developed a model for analyzing two-unit cold standby sulphated juice pump system working in sugar mill.

Here the system under consideration comprises two automatic power factor controllers wherein initially one unit is operative and the other is cold standby. The power factor correction of electrical loads is a problem common to all industrial companies. Most loads on an electrical distribution system are inductive in nature, therefore, take lagging currents. Some typical examples of such modern systems include transformers, fluorescent lighting, AC induction motors, Arc/induction furnaces etc. which draw not only active power (kW) from the supply but also inductive reactive power (kVAR). Also, apparent power (kVA) is combination of active and reactive power. Power factor is defined as the ratio of active power (kW) to apparent power (kVA) [2].

Corresponding author: ROOSEL JAIN*, Department of Applied Mathematics, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, (Sonepat)-131039 Haryana, India
The low power factor is highly undesirable as it causes an increase in current, resulting in additional losses of active power in all the elements of power systems. APFC is one of the systems which improves power factor and consists of number of capacitors that are switched on/off by means of contactors or relays. The capacitor draws a leading current and partly or completely neutralizes the lagging reactive component of load current. This helps in raising the power factor of the load. The APFC system is programmed to switch on/off capacitors automatically as and when needed to bring the power factor in the desired range (closer to one). The improvement in power factor is very important for consumers and generating stations as they have to pay electricity charges for their maximum demand in kVA plus the units consumed [2]. If the power factor is improved then there is reduction in maximum kVA demand and consequently there will be annual savings due to maximum demand charges. Hence, the reliability and profit aspects of APFC system are of utmost importance in the present scenario.

2. SYMBOLS AND NOTATIONS FOR STATES OF SYSTEM

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>constant rate of failure</td>
</tr>
<tr>
<td>β₁</td>
<td>rate with which power factor changes from controlled mode to uncontrolled mode</td>
</tr>
<tr>
<td>β₂</td>
<td>rate with which power factor changes from uncontrolled mode to controlled mode</td>
</tr>
<tr>
<td>i(t), I(t)</td>
<td>p.d.f. and c.d.f. of inspection time</td>
</tr>
<tr>
<td>p₁</td>
<td>probability of failure of type I (Fuse blown off)</td>
</tr>
<tr>
<td>p₂</td>
<td>probability of failure of type II (Transformer burnt)</td>
</tr>
<tr>
<td>p₃</td>
<td>probability of failure of type III (Programming Problem)</td>
</tr>
<tr>
<td>p₄</td>
<td>probability of failure of type IV (Output relay faulty)</td>
</tr>
<tr>
<td>g₁(t), G₁(t)</td>
<td>p.d.f. and c.d.f. of failure of type I with controlled power factor</td>
</tr>
<tr>
<td>g₂(t), G₂(t)</td>
<td>p.d.f. and c.d.f. of failure of type II with controlled power factor</td>
</tr>
<tr>
<td>g₃(t), G₃(t)</td>
<td>p.d.f. and c.d.f. of failure of type III with controlled power factor</td>
</tr>
<tr>
<td>g₄(t), G₄(t)</td>
<td>p.d.f. and c.d.f. of failure of type IV with controlled power factor</td>
</tr>
<tr>
<td>h(t), H(t)</td>
<td>p.d.f. and c.d.f. of the time of conversion of power factor from uncontrolled to controlled mode</td>
</tr>
<tr>
<td>O</td>
<td>the unit is operative</td>
</tr>
<tr>
<td>CS</td>
<td>cold standby unit</td>
</tr>
<tr>
<td>C</td>
<td>power factor controlled</td>
</tr>
<tr>
<td>Ĉ</td>
<td>power factor not controlled</td>
</tr>
<tr>
<td>F₁</td>
<td>unit is under inspection on failure</td>
</tr>
<tr>
<td>F₁r₁</td>
<td>the main unit is under repair in case of failure of type I (fuse blown off)</td>
</tr>
<tr>
<td>F₁r₂</td>
<td>the main unit is under repair in case of failure of type II (Transformer burnt)</td>
</tr>
<tr>
<td>F₁r₃</td>
<td>the main unit is under repair in case of failure of type III (Programming problem)</td>
</tr>
<tr>
<td>F₁r₄</td>
<td>the main unit is under repair in case of failure of type IV (Output relay faulty)</td>
</tr>
<tr>
<td>W₁</td>
<td>cold stand by unit waiting for inspection by the repairman</td>
</tr>
<tr>
<td>F₁r₁</td>
<td>the continuation of repair of main unit from previous state in case of failure of type I</td>
</tr>
<tr>
<td>F₁r₂</td>
<td>the continuation of repair of main unit from previous state in case of failure of type II</td>
</tr>
<tr>
<td>F₁r₃</td>
<td>the continuation of repair of main unit from previous state in case of failure of type III</td>
</tr>
<tr>
<td>F₁r₄</td>
<td>the continuation of repair of main unit from previous state in case of failure of type IV</td>
</tr>
</tbody>
</table>

3. STATE TRANSITION DIAGRAM AND ASSUMPTIONS

For the transition diagram given in Fig. 1 following assumptions are made:

1. Initially, one unit is operative while other unit is in cold standby mode. Both units are identical.
2. The repairman comes immediately as soon as the unit fails.
3. An inspection is carried out to detect the type of failure.
4. Failure times are assumed to have exponential distribution [3] whereas repair/replacement/inspection times have general distribution.
5. During inspection, no other event can take place.
6. On the arrival of the repairman, power factor is controlled first, if it is not controlled already.
7. All random variables are independent.

The system is analyzed by making use of semi-Markov processes and regenerative point technique. The various reliability indices of system effectiveness are obtained such as mean time to system failure (MTSF), availability when power factor is controlled, availability when power factor is not controlled, busy period of the repairman when fuse is blown off (Type I), busy period of the repairman when transformer is burnt (Type II), busy period of the repairman when there is programming problem (Type III), busy period of the repairman when output relay is faulty (Type IV), expected number of visits of the repairman, expected number of fuse replacement, expected number of transformer
replacement. The profit incurred to the system is also evaluated and graphical study is also done. The data/information on failures, repairs, various costs involved etc. have been collected from a user of such systems. On the basis of the information gathered, estimated values of various rates/costs are obtained which are given as:

- Estimated value of failure rate (λ) = 0.001 per hour
- Estimated value of rate with which power factor changes from controlled mode to uncontrolled mode (β_1) = 0.02 per hour
- Estimated value of rate with which power factor changes from uncontrolled mode to controlled mode (β_2) = 0.2 per hour
- Probability of failure of type I (p_1) = 0.3
- Probability of failure of type II (p_2) = 0.2
- Probability of failure of type III (p_3) = 0.4
- Probability of failure of type IV (p_4) = 0.1
- Expected cost of fuse replacement (C_1) = 50 INR
- Expected cost of transformer replacement (C_2) = 150 INR
- Expected cost of visit of repairman (C_3) = 1000 INR

4. TRANSITION PROBABILITIES AND MEAN SOJOURN TIMES

A transition diagram showing the various states of system is shown in Fig. 1. The epochs of entry into states 0, 1, 2, 3, 4, 5, 6, 7 are regenerative points while 8, 9, 10, 11 are failed states. The transition probabilities from regenerative state to regenerative state are given below:

$$dQ_{01}(t) = \beta_1 e^{-(\lambda + \beta_1)t} dt,$$
$$dQ_{02}(t) = \lambda e^{-(\lambda + \beta_2)t} dt,$$
$$dQ_{10}(t) = \beta_3 e^{-(\lambda + \beta_2)t} dt,$$
$$dQ_{12}(t) = \lambda e^{-(\lambda + \beta_4)t} dt,$$
$$dQ_{20}(t) = p_1 i(t) dt,$$
$$dQ_{21}(t) = p_2 i(t) dt,$$
$$dQ_{23}(t) = h(t) dt,$$
$$dQ_{24}(t) = \frac{1}{2} p_3 i(t) dt,$$
$$dQ_{25}(t) = \frac{1}{2} p_4 i(t) dt,$$
$$dQ_{26}(t) = \frac{1}{2} p_3 i(t) dt,$$
$$dQ_{27}(t) = \frac{1}{2} p_4 i(t) dt,$$
$$dQ_{32}(t) = h(t) dt,$$
$$dQ_{40}(t) = \lambda e^{-\lambda t} G_1(t) dt,$$
$$dQ_{41}(t) = \lambda e^{-\lambda t} G_1(t) dt,$$
$$dQ_{50}(t) = \lambda e^{-\lambda t} G_2(t) dt,$$
$$dQ_{51}(t) = \lambda e^{-\lambda t} G_2(t) dt,$$
$$dQ_{60}(t) = \lambda e^{-\lambda t} G_3(t) dt,$$
$$dQ_{61}(t) = \lambda e^{-\lambda t} G_3(t) dt,$$
$$dQ_{62}(t) = \lambda e^{-\lambda t} G_4(t) dt,$$
$$dQ_{70}(t) = \lambda e^{-\lambda t} G_4(t) dt,$$
$$dQ_{71}(t) = \lambda e^{-\lambda t} G_4(t) dt,$$
$$dQ_{72}(t) = \lambda e^{-\lambda t} G_4(t) dt,$$
$$dQ_{80}(t) = \lambda e^{-\lambda t} G_5(t) dt,$$
$$dQ_{81}(t) = \lambda e^{-\lambda t} G_5(t) dt,$$
$$dQ_{82}(t) = \lambda e^{-\lambda t} G_5(t) dt,$$
$$dQ_{90}(t) = \lambda e^{-\lambda t} G_6(t) dt,$$
$$dQ_{91}(t) = \lambda e^{-\lambda t} G_6(t) dt,$$
$$dQ_{92}(t) = \lambda e^{-\lambda t} G_6(t) dt,$$

Fig. 1: State Transition Diagram
The non-zero element \(p_{ij} = \lim_{s \to 0} q^*_{ij}(s) \) are given by

\[
\begin{align*}
p_{01} &= \frac{\beta_1}{\lambda + \beta_1}, \quad p_{02} = \frac{\lambda}{\lambda + \beta_1}, \quad p_{01} = \frac{\beta_2}{\lambda + \beta_2}, \\
p_{13} &= \frac{\lambda}{\lambda + \beta_2}, \quad p_{24} = p_1, \quad p_{25} = p_2, \quad p_{26} = p_3, \quad p_{27} = p_4, \\
p_{32} &= 1, \quad p_{40} = g_1^*(\lambda), \quad p_{50} = g_2^*(\lambda), \\
p_{60} &= g_3^*(\lambda), \quad p_{70} = g_4^*(\lambda), \quad p_{48} = p_{42} = 1 - g_1^*(\lambda), \\
p_{59} = p_{52} = 1 - g_2^*(\lambda), \quad p_{610} = p_{62} = 1 - g_3^*(\lambda), \quad p_{711} = p_{72} = 1 - g_4^*(\lambda)
\end{align*}
\]

From above mentioned transition probabilities it can be verified that

\[
\begin{align*}
p_{01} + p_{02} &= 1, \quad p_{01} + p_{13} = 1, \quad p_{24} + p_{25} + p_{26} + p_{27} = 1, \quad p_{32} = 1, \quad p_{40} + p_{48} = p_{40} + p_{42} = 1, \\
p_{59} + p_{50} + p_{52} = 1, \quad p_{60} + p_{6,10} = p_{60} + p_{62} = 1, \quad p_{70} + p_{7,11} = p_{70} + p_{72} = 1
\end{align*}
\]

The mean sojourn times \(\mu_i \) in the regenerative state \(i \) is defined as the time of stay in that state before transition to any other state. If \(T \) denotes the sojourn time in the regenerative state \(i \), then

\[
\mu_i = E(T) = Pr(T>y)
\]

\[
\begin{align*}
\mu_0 &= \frac{1}{\lambda + \beta_1}, \quad \mu_1 = \frac{1}{\lambda + \beta_2}, \\
\mu_2 &= \int_0^\infty t\mu(t)dt, \quad \mu_3 = \int_0^\infty t\mu(t)dt, \quad \mu_4 = \frac{1 - g_1^*(\lambda)}{\lambda}, \\
\mu_5 &= \frac{1 - g_3^*(\lambda)}{\lambda}, \quad \mu_7 = \frac{1 - g_4^*(\lambda)}{\lambda}
\end{align*}
\]

The unconditional mean time taken by the system to transit to any regenerative state \(j \) when time is counted from the epoch of entrance into state \(i \) is mathematically stated as

\[
m_j = \int_0^\infty tQ_j(t)dt = q_j^\prime(0)
\]

Also,

\[
m_{01} + m_{02} = m_{10} + m_{12} = m_1, \quad m_{40} + m_{4,12} = m_4, \quad m_{40} + m_{42} = \int_0^\infty tQ_1(t)dt = \kappa_1, \quad m_{50} + m_{59} = m_5
\]

\[
m_{50} + m_{52} = \int_0^\infty tQ_2(t)dt = \kappa_2, \quad m_{60} + m_{6,10} = m_6, \quad m_{60} + m_{62} = \int_0^\infty tQ_3(t)dt = \kappa_3, \quad m_{70} + m_{7,11} = m_7
\]

\[
m_{70} + m_{72} = \int_0^\infty tQ_4(t)dt = \kappa_4
\]

5. **MATHEMATICAL ANALYSIS OF VARIOUS RELIABILITY INDICES**

For all the calculations given below failed states are considered as absorbing states and using the probabilistic arguments used for regenerative processes, the recursive relations are obtained for probabilistic analysis of reliability indices.

5.1 **MEAN TIME TO SYSTEM FAILURE (MTSF)**

This measure is defined as the expected time for which the system is in operation before it completely fails. \(\phi_1(t) \) is defined as the cumulative distribution function of first passage time from ith state to a failed state.

\[
\begin{align*}
\phi_0(t) &= Q_0(t) \mathcal{S} \phi_1(0) + Q_{00}(t) \mathcal{S} \phi_2(0) \\
\phi_1(t) &= Q_0(t) \mathcal{S} \phi_0(t) + Q_{01}(t) \mathcal{S} \phi_2(t) \\
\phi_2(t) &= Q_0(t) \mathcal{S} \phi_4(0) + Q_{22}(t) \mathcal{S} \phi_5(0) + Q_{23}(t) \mathcal{S} \phi_6(0) + Q_{24}(t) \mathcal{S} \phi_7(0) \\
\phi_3(t) &= Q_{32}(t) \mathcal{S} \phi_2(t) \\
\phi_4(t) &= Q_{40}(t) \mathcal{S} \phi_0(t) + Q_{41}(t) \\
\phi_5(t) &= Q_{50}(t) \mathcal{S} \phi_0(t) + Q_{51}(t) \\
\phi_6(t) &= Q_{60}(t) \mathcal{S} \phi_0(t) + Q_{61}(t) \\
\phi_7(t) &= Q_{70}(t) \mathcal{S} \phi_0(t) + Q_{71}(t)
\end{align*}
\]
Taking Laplace Stieltjes Transform on both sides and solving equations for \(\phi_{**}(s) \);

\[
\text{MTSF} = \lim_{s \to 0} \frac{1 - \phi_{**}(s)}{s} = \frac{D_0(0) - N_0(0)}{D_0(0)} = \frac{N_1}{D_1}
\]

where \(D_1 = (1-p_{01} P_{10})(1-P_{27} P_{70} - P_{26} P_{60} - P_{25} P_{50} - P_{24} P_{40}) \)

\[
N_1 = \mu_0 + p_{01} \mu_1 + p_{01} p_{13} \mu_3 + (\mu_2 + p_{24} \mu_4 + p_{25} \mu_5 + p_{26} \mu_6 + p_{27} \mu_7)(1-p_{01} P_{10})
\]

5.2 Availability When Power Factor is Controlled

Using the probabilistic arguments and defining \(AC_i(t) \) as the probability that the system is in up state when power factor is controlled at instant \(t \), given that the system entered regenerative state \(i \) at \(t=0 \), we have the following recursive relations:

\[
AC_0(t) = M_0(t) + \int_0^t (q_{01}(s)) AC_1(t) ds + \int_0^t (q_{02}(s)) AC_2(t) ds
\]

\[
AC_1(t) = M_1(t) + \int_0^t (q_{10}(s)) AC_0(t) ds + \int_0^t (q_{13}(s)) AC_3(t) ds
\]

\[
AC_2(t) = M_2(t) + \int_0^t (q_{24}(s)) AC_0(t) ds + \int_0^t (q_{25}(s)) AC_4(t) ds + \int_0^t (q_{26}(s)) AC_5(t) ds + \int_0^t (q_{27}(s)) AC_6(t) ds + \int_0^t (q_{21}(s)) AC_7(t) ds
\]

\[
AC_3(t) = M_3(t) + \int_0^t (q_{32}(s)) AC_2(t) ds
\]

\[
AC_4(t) = M_4(t) + \int_0^t (q_{40}(s)) AC_0(t) ds + \int_0^t (q_{42}(s)) AC_2(t) ds
\]

\[
AC_5(t) = M_5(t) + \int_0^t (q_{50}(s)) AC_0(t) ds + \int_0^t (q_{52}(s)) AC_2(t) ds
\]

\[
AC_6(t) = M_6(t) + \int_0^t (q_{60}(s)) AC_0(t) ds + \int_0^t (q_{62}(s)) AC_2(t) ds
\]

\[
AC_7(t) = M_7(t) + \int_0^t (q_{70}(s)) AC_0(t) ds + \int_0^t (q_{72}(s)) AC_2(t) ds
\]

where \(M_0(t) = e^{-(\lambda + \beta_1)t} \), \(M_2(t) = e^{-\lambda t} \), \(M_4(t) = e^{-\lambda t} G_1(t) \), \(M_6(t) = e^{-(\lambda + \mu_7)t} \), \(M_7(t) = e^{-4\lambda t} G_4(t) \)

\[
M_0^*(s) = \frac{1}{\lambda + \beta_1 + s}, \quad M_2^*(s) = \frac{1-i^* (\lambda + s)}{\lambda + s}, \quad M_4^*(s) = \frac{1-g_{11}^* (\lambda + s)}{\lambda + s}, \quad M_6^*(s) = \frac{1-g_{33}^* (\lambda + s)}{\lambda + s}, \quad M_7^*(s) = \frac{1-g_{44}^* (\lambda + s)}{\lambda + s}
\]

Taking Laplace transforms on both sides and solving for \(AC_0^*(s) \):

\[
AC_0^*(s) = \frac{N_2(s)}{D_2(s)}
\]

For steady state, availability of the system is given by

\[
AC_0 = \lim_{s \to 0} sAC_0^*(s) = \frac{N_2(0)}{D_2(0)}
\]

where \(N_2(0) = (p_{27} P_{70} + P_{26} P_{60} + P_{25} P_{50} + p_{24} P_{40}) \mu_0 + (1-p_{01} P_{10}) \left[\frac{1-i^* (\lambda)}{\lambda} + \mu_4 P_{24} + \mu_5 P_{25} + \mu_6 P_{26} + \mu_7 P_{27} \right] \)

\[
D_2(0) = (p_{27} P_{70} + P_{26} P_{60} + P_{25} P_{50} + p_{24} P_{40}) (\mu_0 + \mu_1 P_{01}) + (1-P_{01} P_{10}) (\mu_2 + P_{27} \mu_4 + P_{26} \mu_5 + P_{25} \mu_6 + P_{24} \mu_7)
\]

Similarly, Availability when power factor is not controlled can also be calculated using recursive relations as above.

For steady state, availability when power factor is not controlled of the system is given by

\[
AC_0^* = \lim_{s \to 0} sAC_0^*(s) = \frac{N_3(0)}{D_2(0)} \quad \text{where} \quad N_3(0) = p_{01}(p_{27} P_{70} + P_{26} P_{60} + P_{25} P_{50} + p_{24} P_{40}) \mu_0 + (1-P_{01} P_{10}) \left[\mu_2 + P_{13} \frac{1-h^* (\lambda)}{\lambda} \right]
\]

5.3 Busy Period Analysis of Type I Repair

Using the probabilistic arguments and defining \(BF_i(t) \) as the probability that the repairman is busy in the repair of Type I failure at instant \(t \), given that the system entered regenerative state \(i \) at \(t=0 \), we have the following recursive relations:

\[
BF_0(t) = q_{01}(t) BF_1(t) + q_{02}(t) BF_2(t)
\]

\[
BF_1(t) = q_{10}(t) BF_0(t) + q_{13}(t) BF_3(t)
\]

\[
BF_2(t) = q_{24}(t) BF_0(t) + q_{25}(t) BF_4(t) + q_{26}(t) BF_5(t) + q_{27}(t) BF_6(t) + q_{21}(t) BF_7(t)
\]

\[
BF_3(t) = q_{32}(t) BF_2(t)
\]

\[
BF_4(t) = q_{40}(t) BF_0(t) + q_{42}(t) BF_2(t)
\]

\[
BF_5(t) = q_{50}(t) BF_0(t) + q_{52}(t) BF_2(t)
\]

\[
BF_6(t) = q_{60}(t) BF_0(t) + q_{62}(t) BF_2(t)
\]

\[
BF_7(t) = q_{70}(t) BF_0(t) + q_{72}(t) BF_2(t)
\]
BF_2(t) = q_{24}(t) \odot BF_d(t) + q_{25}(t) \odot BF_d(t) + q_{26}(t) \odot BF_d(t) + q_{27}(t) \odot BF_d(t)
BF_3(t) = q_{32}(t) \odot BF_2(t)
BF_d(t) = W_d(t) + q_{40}(t) \odot BF_0(t) + q_{42}(t) \odot BF_2(t)
BF_0(t) = q_{50}(t) \odot BF_0(t) + q_{52}(t) \odot BF_2(t)
BF_4(t) = q_{60}(t) \odot BF_0(t) + q_{62}(t) \odot BF_2(t)
BF_5(t) = q_{70}(t) \odot BF_0(t) + q_{72}(t) \odot BF_2(t)

where W_d(t) = \int_{0}^{\infty} G_1(t) dt = \kappa_1 (say)

For steady state, BF_0 = \frac{N_4(0)}{D_2(0)} where N_4(0) = p_{24}K_1(1-p_0)p_{10}

Similarly, busy period analysis of the repairman when transformer is burnt (Type II failure) (BT_0), busy period analysis of the repairman when there is programming problem (Type III failure) (BP_0), busy period analysis of the repairman when output relay is faulty (Type IV failure) (BO_0) can be evaluated for steady state.

5.4 EXPECTED NUMBER OF VISITS OF REPAIRMAN
Using the probabilistic arguments and defining V_d(t) as the expected number of visits in (0,t], given that the system entered regenerative state i at t=0, we have the following recursive relations :

V_0(t) = Q_{02}(t) \odot V_1(t) + Q_{03}(t) \odot (1 + V_2(t))
V_1(t) = Q_{10}(t) \odot V_0(t) + Q_{13}(t) \odot (1 + V_3(t))
V_2(t) = Q_{24}(t) \odot V_4(t) + Q_{25}(t) \odot V_5(t) + Q_{26}(t) \odot V_6(t) + Q_{27}(t) \odot V_7(t)
V_3(t) = Q_{32}(t) \odot V_2(t)
V_4(t) = Q_{40}(t) \odot V_0(t) + Q_{42}(t) \odot V_2(t)
V_5(t) = Q_{50}(t) \odot V_0(t) + Q_{52}(t) \odot V_2(t)
V_6(t) = Q_{60}(t) \odot V_0(t) + Q_{62}(t) \odot V_2(t)
V_7(t) = Q_{70}(t) \odot V_0(t) + Q_{72}(t) \odot V_2(t)

Taking Laplace Stietjes Transform on both sides and solving for steady state,

V_0 = \frac{N_8(0)}{D_2(0)} where N_8(0) \Rightarrow (p_{27}P_70 + P_{26}P_60 + P_{25}P_50 + P_{24}P_40)(1-p_{01}p_{10})

5.5 EXPECTED NUMBER OF FUSE REPLACEMENTS
Using the probabilistic arguments and defining FR_d(t) as the expected number of replacements in (0,t], given that the system entered regenerative state i at t=0, we have the following recursive relations :

FR_0(t) = Q_{02}(t) \odot FR_1(t) + Q_{03}(t) \odot FR_3(t)
FR_1(t) = Q_{10}(t) \odot FR_0(t) + Q_{13}(t) \odot FR_3(t)
FR_2(t) = Q_{24}(t) \odot FR_4(t) + Q_{25}(t) \odot FR_5(t) + Q_{26}(t) \odot FR_6(t) + Q_{27}(t) \odot FR_7(t)
FR_3(t) = Q_{32}(t) \odot FR_2(t)
FR_4(t) = Q_{40}(t) \odot (1 + FR_d(t)) + Q_{42}(t) \odot (1 + FR_2(t))
FR_5(t) = Q_{50}(t) \odot (1 + FR_4(t)) + Q_{52}(t) \odot FR_2(t)
FR_6(t) = Q_{60}(t) \odot (1 + FR_4(t)) + Q_{62}(t) \odot FR_2(t)
FR_7(t) = Q_{70}(t) \odot FR_4(t) + Q_{72}(t) \odot FR_2(t)
Taking Laplace Stietjes Transform on both sides and solving for steady state,
\[
FR_0 = \frac{N_0(0)}{D_2(0)} \quad \text{where} \quad N_0(0) = p_{24}(1-p_{01}p_{10})
\]

Also calculations are done to find expected number of transformer replacements \((TR_0)\) and following result is obtained for steady state,
\[
TR_0 = \frac{N_{10}(0)}{D_2(0)} \quad \text{where} \quad N_{10}(0) = p_{25}(1-p_{01}p_{10})
\]

6. COST-BENEFIT ANALYSIS
At steady state, the expected total profit \(P\) per unit time incurred to the system is given by:
\[
P = C_0(AC_0 + A\overline{C}_0) - C_{21}BF_0 - C_{22}BT_0 - C_{23}BP_0 - C_{24}BO_0 - C_1FR_0 - C_2TR_0 - C_3V_0 - A\overline{C}_0 \overline{L}\overline{C}
\]
\[
\begin{align*}
C_0 & \quad \text{revenue per unit up time} \\
C_{21} & \quad \text{cost per unit up time for which the repairman is busy for repairing the unit having failure of type I} \\
C_{22} & \quad \text{cost per unit up time for which the repairman is busy for repairing the unit having failure of type II} \\
C_{23} & \quad \text{cost per unit up time for which the repairman is busy for repairing the unit having failure of type III} \\
C_{24} & \quad \text{cost per unit up time for which the repairman is busy for repairing the unit having failure of type IV} \\
C_1 & \quad \text{cost per fuse replacement} \\
C_2 & \quad \text{cost per transformer replacement} \\
C_3 & \quad \text{cost per visit of the repairman} \\
\overline{L}\overline{C} & \quad \text{loss per unit time when power factor is not controlled}
\end{align*}
\]

7. DISCUSSION AND CONCLUSION
A particular case is discussed by assuming the repair/replacement is exponentially distributed as under:
\[
i(t) = \beta e^{-\beta t}, \quad g_1(t) = \alpha_1 e^{-\alpha_1 t}, \quad g_2(t) = \alpha_2 e^{-\alpha_2 t}, \quad g_3(t) = \alpha_3 e^{-\alpha_3 t}, \quad g_4(t) = \alpha_4 e^{-\alpha_4 t}, \quad h(t) = \gamma e^{-\gamma t}
\]
Using the values estimated from the data/information collected i.e. \((p_1 = 0.3, p_2 = 0.2, p_3 = 0.4, p_4 = 0.1, \alpha_1 = 4, \alpha_2 = 2, \alpha_3 = 6, \alpha_4 = 10, \gamma = 2, \beta = 6, \beta_1 = 0.02, \beta_2 = 0.2, \lambda = 0.001, C_0 = 1000, C_1 = 50, C_2 = 250, C_3 = 1000, C_{21} = 100, C_{22} = 150, C_{23} = 50, C_{24} = 75, \overline{L}\overline{C} = 500\) the values of various indices of reliability effectiveness can be obtained.

![Graph](image)

Fig. 2. Profit \((P)\) versus revenue per unit up time with \((C_0)\) for different values of the rate with which power factor changes from controlled mode to uncontrolled mode \((\beta_i)\).

Fig. 2 shows the behavior of profit \((P)\) with respect to revenue \((C_0)\) per unit up time for different values of the rate with which power factor changes from controlled mode to uncontrolled mode \((\beta_i)\). It can be concluded that the profit \((P)\) increases with the increase in the value of \(C_0\) and has higher values for lower rates of \(\beta_i\). It can also be noticed that:

(i) For \(\beta_i = 0.7\) then \(P > 0 = \beta < 0 < 57\). So, for the model to be beneficial for \(\beta_i = 0.18\), the \(C_0\) should be \(> 57\).

(ii) Similarly, for \(\beta_i = 0.74\) and \(\beta_i = 0.78\), the values for \(C_0\) should be greater than 60 and 63 respectively.
Fig. 3. Profit (P) versus loss due to uncontrolled power factor (LC̅) for different values of the rate with which power factor changes from uncontrolled mode to controlled mode (β2)

Fig. 3 reveals the behavior of profit (P) with respect to loss (LC̅) due to uncontrolled power factor for different values of the rate with which power factor changes from uncontrolled mode to controlled mode (β2). It can be concluded that the profit decreases with the increase in the value of LC̅ and has higher values for higher rates of β2. It can also be noticed that:

(i) For β2 = 0.01 then P < or = or > 0 accordingly as LC̅ > or = or < 2295. So, for the model to be beneficial for β2 = 0.01, LC̅ should be < 2295.

(ii) Similarly, for β2 = 0.012 and β2 = 0.014, the values of LC̅ should be less than 2450 and 2550 respectively.

Many other graphs can be plotted by the users of such systems from the data/information given above to get the cut-off points so that profit can be increased to fix the cost of the product by the manufacturers.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared