International Journal of Mathematical Archive-3(11), 2012, 3961-3966

 (ब) MA Available online through www.ijma.info ISSN 2229-5046

 (ब) MA Available online through www.ijma.info ISSN 2229-5046}

On Left F-derivations of d-algebras

N. KANDARAJ* \& M. CHANDRAMOULEESWARAN**
*Department of Mathematics, SBK College, Aruppukottai- 626101, India
** Department of Mathematics, SBK College, Aruppukottai- 626101, India

(Received on: 01-09-12; Revised \& Accepted on: 15-11-12)

Abstract

Motivated by some results on derivations in rings and derivations of BCI algebras recently we introduce the notion of derivations on d-algebras and f-derivations on d-algebras. In this paper we introduce the notion of left F-derivations of d-algebras and investigate some simple and interesting results.

Keywords: d-algebra, edge d-algebras, derivations, f-derivations, endomorphism, left F-derivations.
Subject Classification: 03G25, 06F35.

1. INTRODUCTION

Y. Imai and K. Iseki introduced two classes of abstract algebras BCK-algebras and BCI-algebras ([1] [2] [3]). It is known that the class of BCK-algebras is a proper sub class of the class of BCI-algebras. In ([4] [5]) Q.P.Hu and X. Li introduced a wide class of abstract algebras. BCH-algebras and have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim [6] introduced the notion of d-algebra, which is another generalization of BCK-algebras.

In 2004 Y. B. Jun and X. L. Xin [7] introduced the notion of derivations of BCI-algebras which was motivated from a lot of work done on derivations of rings and near rings. Motivated by the work of Lie and X in recently, we have [8] introduced the notion of derivations and f-derivations [9] on a d-algebras. In this paper we introduce the notion of left F-derivations on d-algebras and study some simple but elegant results.

2. PRELIMINARIES

Definition 2.1 [6] A d-algebra is a non empty set X with a constant 0 and a binary operation * satisfying the following axioms:

1. $\mathrm{x} * \mathrm{x}=0$
2. $0 * x=0$
3. $\mathrm{x} * \mathrm{y}=0$ and $\mathrm{y} * \mathrm{x}=0$ implies $\mathrm{x}=\mathrm{y}$.

Definition 2.2 [6] Let S be a non-empty subset of a d-algebra X, then S is called sub algebra of X if $x * y \in S$ for all x, $y \in S$.

Definition 2.3 Let X be a d-algebra and I be a subset of X , then I is called d- ideal of X if it satisfies the following conditions:

1. $0 \in \mathrm{I}$
2. $x * y \in I$ and $y \in I$ implies $x \in I$.
3. $x \in I$ and $y \in X$ implies $x * y \in I$.

Definition 2.4 [6] Let $\left(X,{ }^{*}, 0\right)$ be a d-algebra and $x \in X$.
Define $x * X=\{x * a \mid a \in X\}$. X is said to be an edge d-algebra if for any $x \in X, X * X=\{x, 0\}$.
Properties: In any d-algebra X the following properties hold for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
. $(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) * \mathrm{y}$.
2. $0 *(x * y)=(0 * x) *(0 * y)$.
3. $(x *(x * y)) * y=0$
4. $x^{*}(x * y)=y$.
5. $x^{*}\left(y^{*} z\right) \geq(x * y) * z$.
6. $((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})) \leq(\mathrm{z} * \mathrm{y})$.
7. $((x * z) *(y * z)) *(x * y)=0$.
8. $x * 0=0 \Rightarrow x=0$.
9. $\mathrm{x} * \mathrm{a}=\mathrm{x} * \mathrm{~b} \Rightarrow \mathrm{a}=\mathrm{b}$.
10. $a * x=b * x \Rightarrow a=b$.
11. If $\mathrm{x} \leq \mathrm{y} \Rightarrow \mathrm{x} * \mathrm{z} \leq \mathrm{y}^{*} \mathrm{z}$ and $\mathrm{z}^{*} \mathrm{y} \leq \mathrm{z}^{*} \mathrm{x}$.

Definition 2.6 For any $x_{0} \in X$, the set $A\left(x_{0}\right)=\left\{x \in X \mid x_{0} \leq x\right\}$ is known as the branch of X determined by x_{0}. Each branch $\mathrm{A}\left(\mathrm{x}_{0}\right) \neq \emptyset$ at $\mathrm{x}_{0} * \mathrm{x}_{0}=0 \Rightarrow \mathrm{x}_{0} \in \mathrm{~A}\left(\mathrm{x}_{0}\right)$.

Clearly we observe that $A\left(x_{0}\right)$ contains all those elements of X that succeed x_{0}.
Properties. Let X be a d-algebra. The following properties hold.

1. If $x \leq y$, then x and y are contained in the same branch of X.
2. If $x \in A\left(x_{0}\right), y \in A\left(y_{0}\right)$ then $x * y \in A\left(x_{0} * y_{0}\right)$.
3. Let $x_{0}, y_{0} \in X$ and $y \in A\left(y_{0}\right)$ then $x_{0} * y=x_{0} * y_{0}$.
4. Let $x_{0}, y_{0} \in X$ and $x \in A\left(x_{0}\right)$ then $x * y_{0}=x_{0} * y_{0}$.
5. If $A\left(x_{0}\right) \subseteq X$, then $x, y \in A\left(x_{0}\right) \Rightarrow x * y, y^{*} x \in X$.

Definition 2.6 Let X be a d-algebra. A map $\theta: \mathrm{X} \rightarrow \mathrm{X}$ is a left-right derivations (briefly (l,r)-derivation) of X if it satisfies the identity $\theta(x * y)=(\theta(x) * y \wedge x * \theta(y))$ for all $x, y \in X$.

If θ satisfies the identity $\theta\left(x^{*} y\right)=(x * \theta(y) \wedge \theta(x) * y)$ for all $x, y \in X$, then θ is a right-left derivation (briefly (r,l)derivation) of X . Moreover if θ is both a (l,r)-derivation and (r, l)-derivation, then θ is a derivation of X .

Definition 2.7 A mapping f of a d-algebra X into itself is called an endomorphism if $f(x * y)=f(x) * f(y)$. Note that $\mathrm{f}(0)=0$.

3. LEFT F-DERIVATIONS

In this section we introduce the notion of left F-derivation of a d-algebra and give some examples to explain the theory of left F-derivation in d-algebras and prove some simple but elegant properties.

Definition 3.1 Let X be a d-algebra. By a left F-derivation of X, we mean a self map θ_{F} of X satisfying the identity θ_{F} $\left.(\mathrm{x} * \mathrm{y})=\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge \theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right)$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, where F is an endomorphism of X .

Definition 3.2 A left F-derivation θ_{F} of a d-algebra X is said to be regular if $\theta_{\mathrm{F}}(0)=0$. Otherwise it is called an irregular left F-derivation.

Example 3.3 Let $\mathrm{X}=\{0,1,2,3\}$ be a d-algebra with the following Cayley table

$*$	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	3	3	0

Define a self map $\theta_{\mathrm{F}}: \mathrm{X} \rightarrow \mathrm{X}$ as follows $\theta_{\mathrm{F}}(\mathrm{x})=3$ if $\mathrm{x}=0,1,2,3$.
Define an endomorphism $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{X}$ as follows $\mathrm{F}(\mathrm{x})=0$ if $\mathrm{x}=0,1,2$ and $\mathrm{F}(\mathrm{x})=2$ if $\mathrm{x}=3$.
Then it is easily checked that θ_{F} is a left F-derivation of X .
Theorem 3.4 Let θ_{F} be a regular left F-derivation of a d-algebra X . If $\mathrm{F}(\mathrm{x})$ and $\theta_{\mathrm{F}}(\mathrm{x})$ belong to the same branch of X , then $\theta_{\mathrm{F}}(\mathrm{x})=\mathrm{F}(\mathrm{x})$.

N. KANDARAJ* \& M. CHANDRAMOULEESWARAN**/ On Left F-derivations of d-algebras/IJMA- 3(11), Nov.-2012.

Proof: Since $\mathrm{F}(\mathrm{x})$ and $\theta_{\mathrm{F}}(\mathrm{x})$ belong to the same branch of X ,
$\mathrm{F}(\mathrm{x}) \leq \theta_{\mathrm{F}}(\mathrm{x})$
Since θ_{F} is a regular left derivation of $\mathrm{X}, \theta_{\mathrm{F}}(0)=0$.
Now $\theta_{\mathrm{F}}(0)=\theta_{\mathrm{F}}\left(\mathrm{X}^{*} \mathrm{X}\right)$

$$
\begin{array}{ll}
=\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})\right) \wedge\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})\right) & \text { (using left F-derivation) } \\
=\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})\right) *\left(\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})\right) *\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})\right)\right) & \begin{array}{l}
\text { (using } \mathrm{x} \wedge \mathrm{y}=\mathrm{y} *(\mathrm{y} * \mathrm{x})) \\
=\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})
\end{array} \\
(\text { using } \mathrm{x} *(\mathrm{x} * \mathrm{y})=\mathrm{y})
\end{array}
$$

Since $\theta_{\mathrm{F}}(0)=0, \theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})=0$.
Hence $\theta_{\mathrm{F}}(\mathrm{x}) \leq \mathrm{F}(\mathrm{x})$
From (1) and (2), it follows $\theta_{\mathrm{F}}(\mathrm{x})=\mathrm{F}(\mathrm{x})$.
Theorem 3.5 Let θ_{F} be a self map and $\mathrm{A}\left(\mathrm{x}_{0}\right)$ be any branch of a d-algebra X . If for any $\mathrm{x} \in \mathrm{A}\left(\mathrm{x}_{0}\right), \theta_{\mathrm{F}}(\mathrm{x})=\mathrm{F}\left(\mathrm{x}_{0}\right)$, then θ_{F} is a left F-derivation.

Proof: Let θ_{F} be a self map and $\mathrm{A}\left(\mathrm{x}_{0}\right)$ be any branch of a d-algebra X determined by x_{0}.
According to given condition for any $\mathrm{x} \in \mathrm{A}\left(\mathrm{x}_{0}\right), \theta_{\mathrm{F}}(\mathrm{x})=\mathrm{F}\left(\mathrm{x}_{0}\right)$
Now for $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ following two cases arise.
Case 1: Both x and y belongs to the same branch of X.
Case 2: x and y belongs to different branches of X .
Case 1: Let $x, y \in A\left(x_{0}\right)$, So $x_{0} \leq x$ and $x_{0} \leq y$.
Then $\mathrm{x} * \mathrm{y} \in \mathrm{A}\left(\mathrm{x}_{0} * \mathrm{x}_{0}\right)=\mathrm{A}(0)$. (By result)
So using (1), $\theta_{\mathrm{F}}(\mathrm{x} * \mathrm{y})=\mathrm{F}(0)=0$
Also $\mathrm{x}_{0} \leq \mathrm{y} \Rightarrow \mathrm{x}_{0} * \mathrm{y}=0$ and $\mathrm{x}_{0} \leq \mathrm{x} \Rightarrow \mathrm{x}_{0} * \mathrm{x}=0$
Further, as F is an endomorphism,

$$
0=\mathrm{F}(0)=\mathrm{F}\left(\mathrm{x}_{0} * \mathrm{y}\right)=\mathrm{F}\left(\mathrm{x}_{0}\right) * \mathrm{~F}(\mathrm{y}) \text { and } 0=\mathrm{F}(0)=\mathrm{F}\left(\mathrm{x}_{0} * \mathrm{x}\right)=\mathrm{F}\left(\mathrm{x}_{0}\right) * \mathrm{~F}(\mathrm{x})
$$

Now
$\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right)=\left(\mathrm{F}\left(\mathrm{x}_{0}\right) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\mathrm{F}\left(\mathrm{x}_{0}\right) * \mathrm{~F}(\mathrm{x})\right)$ (using (1)).

$$
=0 \wedge 0=0 *(0 * 0)=0 * 0=0 .
$$

That is, $\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right)=0=\theta_{\mathrm{F}}(\mathrm{x} * \mathrm{y})$ (using (2))
which implies θ_{F} is a left F-derivation.
Case 2: Let $\mathrm{x} \in \mathrm{A}\left(\mathrm{x}_{0}\right)$ and $\mathrm{y} \in \mathrm{A}\left(\mathrm{y}_{0}\right) . \$$
Then $\mathrm{x}^{*} \mathrm{y} \in \mathrm{A}\left(\mathrm{x}_{0} * \mathrm{y}_{0}\right) \quad$ (By result)
So using (1) $\theta_{\mathrm{F}}(\mathrm{x} * \mathrm{y})=\mathrm{F}\left(\mathrm{x}_{0} * \mathrm{y}_{0}\right)$
Now

$$
\begin{aligned}
\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right) & =\left(\mathrm{F}\left(\mathrm{x}_{0}\right) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\mathrm{F}\left(\mathrm{y}_{0}\right) * \mathrm{~F}(\mathrm{x})\right) \\
& =\left(\mathrm{F}\left(\mathrm{y}_{0}\right) * \mathrm{~F}(\mathrm{x})\right) *\left(\left(\mathrm{~F}\left(\mathrm{y}_{0}\right) * \mathrm{~F}(\mathrm{x})\right) *\left(\mathrm{~F}\left(\mathrm{x}_{0}\right) * \mathrm{~F}(\mathrm{y})\right)\right) \\
& =\mathrm{F}\left(\mathrm{x}_{0}\right) * \mathrm{~F}(\mathrm{y}) \quad \text { (Since } \mathrm{F} \text { is an endomorphism) } \\
& =\mathrm{F}\left(\mathrm{x}_{0} * \mathrm{y}\right) \quad
\end{aligned}
$$

N. KANDARAJ* \& M. CHANDRAMOULEESWARAN**/ On Left F-derivations of d-algebras/IJMA- 3(11), Nov.-2012.

$$
\begin{aligned}
& =\mathrm{F}\left(\mathrm{x}_{0} * \mathrm{y}_{0}\right) \\
& =\theta_{\mathrm{F}}(\mathrm{x} * \mathrm{y})
\end{aligned}
$$

(By result)
(using (4))
which implies θ_{F} is a left F-derivation.
This completes the proof.
Lemma 3.6 Let θ_{F} be a self map of a d-algebra X . If θ_{F} is a left F-derivation of X . Then the following hold.

1. $\quad \theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})=\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{y})$.
2. $\quad \theta_{\mathrm{F}}(\mathrm{x})=\theta_{\mathrm{F}}(\mathrm{x}) \wedge \theta_{\mathrm{F}}(0)$.

Proof:

1. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. Then

$$
\theta_{\mathrm{F}}(0)=\theta_{\mathrm{F}}\left(\mathrm{x}^{*} \mathrm{x}\right)
$$

$$
\begin{align*}
& =\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})\right) \wedge\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})\right) \\
& =\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})\right) *\left(\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})\right) *\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})\right)\right) \\
& =\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x}) \tag{1}
\end{align*}
$$

Similarly $\theta_{\mathrm{F}}(0)=\theta_{\mathrm{F}}(\mathrm{y} * \mathrm{y})=\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{y})$
From (1) and (2), it follows that $\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{x})=\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{y})$.
2. Let $x \in X$. Then

$$
\begin{array}{rlrl}
\theta_{\mathrm{F}}(\mathrm{x}) & =\theta_{\mathrm{F}}(\mathrm{x} * 0) & \\
& =\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(0)\right) \wedge\left(\theta_{\mathrm{F}}(0) * \mathrm{~F}(\mathrm{x})\right) \\
& =\left(\theta_{\mathrm{F}}(\mathrm{x}) * 0\right) \wedge\left(\theta_{\mathrm{F}}(0) * \mathrm{~F}(\mathrm{x})\right) & \\
& =\theta_{\mathrm{F}}(\mathrm{x}) \wedge\left(\theta_{\mathrm{F}}(0) * \mathrm{~F}(\mathrm{x})\right) & \\
& =\left(\theta_{\mathrm{F}}(0) * \mathrm{~F}(\mathrm{x})\right) *\left(\left(\theta_{\mathrm{F}}(0) * \mathrm{~F}(\mathrm{x})\right) * \theta_{\mathrm{F}}(\mathrm{x})\right) & \\
& =\left(\theta_{\mathrm{F}}(0) * \mathrm{~F}(\mathrm{x})\right) *\left(\left(\theta_{\mathrm{F}}(0) * \theta_{\mathrm{F}}(\mathrm{x})\right) * \mathrm{~F}(\mathrm{x})\right) & ((\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) * \mathrm{y}) \\
& \leq \theta_{\mathrm{F}}(0) *\left(\theta_{\mathrm{F}}(0) * \theta_{\mathrm{F}}(\mathrm{x})\right) & ((\mathrm{x} * \mathrm{y}) *(\mathrm{z} * \mathrm{y}) \leq \mathrm{x} * \mathrm{z}) \\
& =\theta_{\mathrm{F}}(\mathrm{x}) & (\mathrm{x} *(\mathrm{x} * \mathrm{y})=\mathrm{y})
\end{array}
$$

Thus $\theta_{\mathrm{F}}(\mathrm{x}) \leq \theta_{\mathrm{F}}(0) *\left(\theta_{\mathrm{F}}(0) * \theta_{\mathrm{F}}(\mathrm{x})\right) \leq \theta_{\mathrm{F}}(\mathrm{x})$.
Therefore $\theta_{\mathrm{F}}(\mathrm{x})=\theta_{\mathrm{F}}(0) *\left(\theta_{\mathrm{F}}(0) * \theta_{\mathrm{F}}(\mathrm{x})\right)$, which implies that $\theta_{\mathrm{F}}(\mathrm{x})=\theta_{\mathrm{F}}(\mathrm{x}) \wedge \theta_{\mathrm{F}}(0)$.
Theorem 3.7 A self map θ_{F} of a d-algebra X , defined as $\theta_{\mathrm{F}}(\mathrm{x})=\mathrm{F}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$ is a left F -derivation of X , where F is an endomorphism of X .

Proof: Let θ_{F} be a self map of a d-algebra X , where F is an endomorphism of X defined as follows
$\theta_{\mathrm{F}}(\mathrm{x})=\mathrm{F}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$
As for $x, y \in X, x * y \in X$.
Therefore $\theta_{\mathrm{F}}\left(\mathrm{x}^{*} \mathrm{y}\right)=\mathrm{F}\left(\mathrm{x}^{*} \mathrm{y}\right)=\mathrm{F}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})$

$$
\begin{align*}
\operatorname{Now}\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right) & =(\mathrm{F}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})) \wedge(\mathrm{F}(\mathrm{y}) * \mathrm{~F}(\mathrm{x}))(\text { using }(1)) \tag{2}\\
& =(\mathrm{F}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})) *((\mathrm{~F}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})) *(\mathrm{~F}(\mathrm{x}) * \mathrm{~F}(\mathrm{y}))) \\
& =\mathrm{F}(\mathrm{x}) * \mathrm{~F}(\mathrm{y}) \quad \\
& =\mathrm{F}(\mathrm{x} * \mathrm{y}) \quad(\text { Since } \mathrm{F} \text { is an endomorphism) } \\
& =\theta_{\mathrm{F}}(\mathrm{x} * \mathrm{y}) \quad \text { (using (2)) }
\end{align*}
$$

Thus $\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right)=\theta_{\mathrm{F}}(\mathrm{x} * \mathrm{y})$.
which implies that θ_{F} is a left F-derivation.
Theorem 3.8. Let θ_{F} be a left F-derivation of a d-algebra X where F is an endomorphism of X. Then

1. $\mathrm{x} \leq \mathrm{y}$ implies $\theta_{\mathrm{F}}(\mathrm{x})$ and $\theta_{\mathrm{F}}(\mathrm{y})$ belongs to the same branch of X .
2. $\mathrm{y} \leq \mathrm{x}$ implies $\theta_{\mathrm{F}}(\mathrm{y})$ and $\theta_{\mathrm{F}}(\mathrm{x})$ belongs to the same branch of X .

Proof:

1. Let θ_{F} be a left F-derivation of a d-algebra X, where F is an endomorphism of X.

Since X is a d-algebra, $\mathrm{x} \leq \mathrm{y}$ implies $\mathrm{x} * \mathrm{y}=0$.
when θ_{F} is a left F -derivation

$$
\begin{align*}
\text { Now } \theta_{\mathrm{F}}(\mathrm{x}) & =\theta_{\mathrm{F}}(\mathrm{y} *(\mathrm{y} * \mathrm{x})) \quad\left(\mathrm{y}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)=\mathrm{x}\right) \\
& =\left(\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{y} * \mathrm{x})\right) \wedge\left(\theta_{\mathrm{F}}(\mathrm{y} * \mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \\
& =\left(\theta_{\mathrm{F}}(\mathrm{y} * \mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) *\left(\left(\theta_{\mathrm{F}}(\mathrm{y} * \mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) *\left(\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{y} * \mathrm{x})\right)\right) \\
& =\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{y} * \mathrm{x}) . \tag{1}
\end{align*}
$$

which implies $\theta_{\mathrm{F}}(\mathrm{x})=\theta_{\mathrm{F}}(\mathrm{y}) *(\mathrm{~F}(\mathrm{y}) * \mathrm{~F}(\mathrm{x}))$ (Since F is an endomorphism)
Since $\mathrm{x} \leq \mathrm{y}$ implies $\mathrm{x} * \mathrm{y}=0$.
Therefore $0=\mathrm{F}(0)=\mathrm{F}(\mathrm{x} * \mathrm{y})=\mathrm{F}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})$.
That is $\mathrm{F}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})=0$ implies $\mathrm{F}(\mathrm{x}) \leq \mathrm{F}(\mathrm{y})$.
As $\mathrm{F}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})=0$, So $\mathrm{F}(\mathrm{y}) * \mathrm{~F}(\mathrm{x}) \neq 0$,
Otherwise because of property of \$d-\$algebra $\mathrm{F}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})=0=\mathrm{F}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})$.
$\Rightarrow \mathrm{F}(\mathrm{x})=\mathrm{F}(\mathrm{y})$, a contradiction.
(1) $\Rightarrow \theta_{\mathrm{F}}(\mathrm{x})=\theta_{\mathrm{F}}(\mathrm{y}) *(\mathrm{~F}(\mathrm{y}) * \mathrm{~F}(\mathrm{x}))$.

$$
\begin{aligned}
\theta_{\mathrm{F}}(\mathrm{x}) * \theta_{\mathrm{F}}(\mathrm{y}) & =\left(\theta_{\mathrm{F}}(\mathrm{y}) *(\mathrm{~F}(\mathrm{y}) * \mathrm{~F}(\mathrm{x}))\right) * \theta_{\mathrm{F}}(\mathrm{y}) \\
& =\left(\theta_{\mathrm{F}}(\mathrm{y}) * \theta_{\mathrm{F}}(\mathrm{y})\right) *(\mathrm{~F}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})) \\
& =0 *(\mathrm{~F}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})) \\
& =0
\end{aligned}
$$

Which implies $\theta_{\mathrm{F}}(\mathrm{x}) \leq \theta_{\mathrm{F}}(\mathrm{y})$.
By property, it follows that $\theta_{\mathrm{F}}(\mathrm{x})$ and $\theta_{\mathrm{F}}(\mathrm{y})$ belong to the same branch of X .
2. Interchanging the role of x and y in (1), we have $y \leq x$ implies $\theta_{\mathrm{F}}(\mathrm{y}) \leq \theta_{\mathrm{F}}(\mathrm{x})$.

This implies $\theta_{\mathrm{F}}(\mathrm{y})$ and $\theta_{\mathrm{F}}(\mathrm{x})$ belong to the same branch of X .
Definition 3.9 Let X be a d-algebra and $\theta_{F}, \theta_{F}^{\prime}$ be two self maps of X. We define $\theta_{F} \circ \theta_{F}^{\prime}: X \rightarrow X$ as

$$
\theta_{\mathrm{F}} \circ \theta_{\mathrm{F}}^{\prime}(\mathrm{x})=\theta_{\mathrm{F}}\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{x})\right) \text { for all } \mathrm{x} \in \mathrm{X} .
$$

Notation: Der(X) denotes the set of all F-derivations (both right F-derivation and left F-derivation) on X.
Definition 3.10. Let $\theta_{\mathrm{F}}, \theta_{\mathrm{F}}^{\prime} \in \operatorname{Der}(\mathrm{X})$. Define the binary operation \wedge as

$$
\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F})}^{\prime}(\mathrm{x})=\theta_{\mathrm{F}}(\mathrm{x}) \wedge \theta_{\mathrm{F}}^{\prime}(\mathrm{x}) .\right.
$$

Lemma 3.11. Let X be d-algebra. θ_{F} and θ_{F}^{\prime} are left F-derivation of X. Then $\theta_{F} \wedge \theta_{F}^{\prime}$ is also a left F-derivation of X.
Proof: Let X be a d-algebra, θ_{F} and $\theta_{\mathrm{F}}^{\prime}$ are left F-derivation of X . Then

$$
\begin{aligned}
\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right)(\mathrm{x} * \mathrm{y}) & =\theta_{\mathrm{F}}(\mathrm{x} * \mathrm{y}) \wedge \theta_{\mathrm{F}}^{\prime}(\mathrm{x} * \mathrm{y}) \\
& =\left[\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right)\right] \wedge\left[\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right)\right] \\
& =\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \\
& =\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y}) \\
& =\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{x}) *\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{x}) * \theta_{\mathrm{F}}^{\prime}(\mathrm{x})\right)\right) * \mathrm{~F}(\mathrm{y}) \\
& =\left(\theta_{\mathrm{F}}(\mathrm{x}) \wedge \theta_{\mathrm{F}}^{\prime}(\mathrm{x})\right) * \mathrm{~F}(\mathrm{y}) \\
& =\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right)(\mathrm{x}) * \mathrm{~F}(\mathrm{y}) \\
& =\left(\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right)(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right) *\left(\left(\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right)(\mathrm{y}) * \mathrm{~F}(\mathrm{x}) *\left(\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right)(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right)\right)\right. \\
& =\left(\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right)(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}\right)(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right)
\end{aligned}
$$

N. KANDARAJ* \& M. CHANDRAMOULEESWARAN**/ On Left F-derivations of d-algebras/IJMA- 3(11), Nov.-2012.

This shows that $\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right)$ is a left F -derivation of X .
This completes the proof.
Theorem 3.12 Let X be a d-algebra and $\theta_{\mathrm{F}}, \theta_{\mathrm{F}}^{\prime}, \theta_{\mathrm{F}}$ are left F -derivations of X . Then

$$
\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right) \wedge \theta_{\mathrm{F}}=\theta_{\mathrm{F}} \wedge\left(\theta_{\mathrm{F}}^{\prime} \wedge \theta_{\mathrm{F}}^{\prime \prime}\right) .
$$

Proof: Let $\theta_{\mathrm{F}}, \theta_{\mathrm{F}}^{\prime}$ and $\theta_{\mathrm{F}}^{\prime} \in \operatorname{Der}(\mathrm{X})$.
Then by definition

$$
\begin{align*}
\left(\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right) \wedge \theta_{\mathrm{F}}^{\prime \prime}\right)(\mathrm{x} * \mathrm{y}) & =\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right)(\mathrm{x} * \mathrm{y}) \wedge \theta_{\mathrm{F}}^{\prime \prime}(\mathrm{x} * \mathrm{y}) \\
& =\theta_{\mathrm{F}}^{\prime \prime}(\mathrm{x} * \mathrm{y}) *\left(\theta_{\mathrm{F}}^{\prime \prime}(\mathrm{x} * \mathrm{y}) *\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right)(\mathrm{x} * \mathrm{y})\right) \\
& =\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right)(\mathrm{x} * \mathrm{y}) \\
& =\theta_{\mathrm{F}}\left(\mathrm{x}^{*} \mathrm{y}\right) \wedge \theta_{\mathrm{F}}^{\prime}\left(\mathrm{x}^{*} \mathrm{y}\right) \\
& =\left[\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right)\right] \wedge \\
& {\left[\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right)\right] } \\
& =\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \\
& =\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y}) \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \text { Also consider the following } \\
& \begin{aligned}
\left(\theta_{\mathrm{F}} \wedge\left(\theta_{\mathrm{F}}^{\prime} \wedge \theta_{\mathrm{F}}^{\prime \prime}\right)\right)(\mathrm{x} * \mathrm{y}) & =\theta_{\mathrm{F}}(\mathrm{x} * \mathrm{y}) \wedge\left(\theta_{\mathrm{F}}^{\prime} \wedge \theta_{\mathrm{F}}{ }^{\mathrm{F}}\right)(\mathrm{x} * \mathrm{y}) \\
& =\theta_{\mathrm{F}}(\mathrm{x} * \mathrm{y}) \wedge\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{x} * \mathrm{y}) \wedge \theta_{\mathrm{F}}^{\prime \prime}(\mathrm{x} * \mathrm{y})\right) \\
& =\theta_{\mathrm{F}}(\mathrm{x} * \mathrm{y}) \wedge \theta_{\mathrm{F}}^{\prime}(\mathrm{x} * \mathrm{y}) \\
& \left.=\left[\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right)\right] \wedge\left[\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{y}) * \mathrm{~F}(\mathrm{x})\right)\right)\right] \\
& =\left(\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \wedge\left(\theta_{\mathrm{F}}^{\prime}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})\right) \\
& =\theta_{\mathrm{F}}(\mathrm{x}) * \mathrm{~F}(\mathrm{y})
\end{aligned}
\end{align*}
$$

From (1) and (2) it follows that
$\left(\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right) \wedge \theta_{\mathrm{F}}^{\prime \prime}\right)(\mathrm{x} * \mathrm{y})=\left(\theta_{\mathrm{F}} \wedge\left(\theta_{\mathrm{F}}^{\prime} \wedge \theta_{\mathrm{F}}^{\prime}\right)\right)(\mathrm{x} * \mathrm{y})$.
Put $y=0$, we have $\left(\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right) \wedge \theta^{\prime \prime} \mathrm{F}\right)(\mathrm{x})=\left(\theta_{\mathrm{F}} \wedge\left(\theta_{\mathrm{F}}^{\prime} \wedge \theta^{\prime \prime} \mathrm{F}\right)\right)(\mathrm{x})$.
which implies that $\left(\theta_{\mathrm{F}} \wedge \theta_{\mathrm{F}}^{\prime}\right) \wedge \theta_{\mathrm{F}}=\theta_{\mathrm{F}} \wedge\left(\theta_{\mathrm{F}}^{\prime} \wedge \theta_{\mathrm{F}}\right)$.
Thus $\operatorname{Der}(\mathrm{X})$ form a semi group.

4. REFERENCES

[1] .Imai y. and Iseki K: On axiom systems of Propositional calculi, XIV, Proc. Japan Acad. Ser A, Math Sci., 42(1966),19-22.
[2] .Iseki k: An algebra related with a propositional calculi, Proc. Japan Acad. Ser A Math. Sci., 42 (1966), 26-29.
[3] Iseki K and Tanaka S: An introduction to theory of BCK-algebras, Math. Japo., 23 (1978) 1-26.
[4] Hu,Q.P., and Li,X: On BCH-algebras, Math. Seminar Notes, Kobe univ.,\} 11 (1983) 313-320.
[5] Hu,Q.P., and Li,X : ON proper BCH-algebras, Math. Japan 30, (1985) 659-669.
[6] Neggers,J. and Kim,H.S.: On d-algebras, Math. Slovaca, Co., 49 (1999) 19-26.
[7] Jun,Y.B. and Xin,X.L.: On derivations of BCI-algebras, Inform. Sci., 159 (2004) 167-176.
[8] M.Chandramouleeswaran and N.Kandaraj: Derivations on d-algebras, International Journal of Mathematical Sciences and applications, Volume 1. Number 1. January (2011), 231-237.
[9] M.Chandramouleeswaran and N.Kandaraj: d-algebras and f-derivations, Proceedings of the Heber international conference on applications of mathematics and statistics\}, 5-7 January (2012), 98-102.

Source of support: Nil, Conflict of interest: None Declared

