International Journal of Mathematical Archive-3(11), 2012, 3961-3966

On Left F-derivations of d-algebras

N. KANDARAJ* & M. CHANDRAMOULEESWARAN**

*Department of Mathematics, SBK College, Aruppukottai- 626101, India ** Department of Mathematics, SBK College, Aruppukottai- 626101, India

(Received on: 01-09-12; Revised & Accepted on: 15-11-12)

ABSTRACT

M otivated by some results on derivations in rings and derivations of BCI algebras recently we introduce the notion of derivations on d-algebras and f-derivations on d-algebras. In this paper we introduce the notion of left F-derivations of d-algebras and investigate some simple and interesting results.

Keywords: d-algebra, edge d-algebras, derivations, f-derivations, endomorphism, left F-derivations.

Subject Classification: 03G25, 06F35.

1. INTRODUCTION

Y. Imai and K. Iseki introduced two classes of abstract algebras BCK-algebras and BCI-algebras ([1] [2] [3]). It is known that the class of BCK-algebras is a proper sub class of the class of BCI-algebras. In ([4] [5]) Q.P.Hu and X. Li introduced a wide class of abstract algebras. BCH-algebras and have shown that the class of BCI-algebras is a proper subclass of the class of BCI-algebras of BCI-algebras. J. Neggers and H. S. Kim [6] introduced the notion of d-algebra, which is another generalization of BCK-algebras.

In 2004 Y. B. Jun and X. L. Xin [7] introduced the notion of derivations of BCI-algebras which was motivated from a lot of work done on derivations of rings and near rings. Motivated by the work of Lie and X in recently, we have [8] introduced the notion of derivations and f-derivations [9] on a d-algebras. In this paper we introduce the notion of left F-derivations on d-algebras and study some simple but elegant results.

2. PRELIMINARIES

Definition 2.1 [6] A d-algebra is a non empty set X with a constant 0 and a binary operation * satisfying the following axioms:

1. x * x = 0

2. 0 * x = 0

3. x * y = 0 and y * x = 0 implies x = y.

Definition 2.2 [6] Let S be a non-empty subset of a d-algebra X, then S is called sub algebra of X if $x * y \in S$ for all x, $y \in S$.

Definition 2.3 Let X be a d-algebra and I be a subset of X, then I is called d- ideal of X if it satisfies the following conditions:

 $1. \quad 0 \in I$

- 2. $x * y \in I$ and $y \in I$ implies $x \in I$.
- 3. $x \in I$ and $y \in X$ implies $x * y \in I$.

Definition 2.4 [6] Let (X, *, 0) be a d-algebra and $x \in X$.

Define $x * X = \{x * a \mid a \in X\}$. X is said to be an edge d-algebra if for any $x \in X$, $x * X = \{x, 0\}$.

Properties: In any d-algebra X the following properties hold for all $x, y, z \in X$.

1. (x * y) * z = (x * z) * y.2. 0 * (x * y) = (0 * x) * (0 * y).3. (x * (x * y)) * y = 0

> **Corresponding author:** M. CHANDRAMOULEESWARAN** ** Department of Mathematics, SBK College, Aruppukottai- 626101, India

4. x * (x * y) = y. 5. $x * (y * z) \ge (x * y) * z$. 6. $((x * y) * (x * z)) \le (z * y)$. 7. ((x * z) * (y * z)) * (x * y) = 0. 8. $x * 0 = 0 \Rightarrow x = 0$. 9. $x * a = x * b \Rightarrow a = b$. 10. $a * x = b * x \Rightarrow a = b$. 11. If $x \le y \Rightarrow x * z \le y * z$ and $z * y \le z * x$.

Definition 2.6 For any $x_0 \in X$, the set $A(x_0) = \{x \in X \mid x_0 \le x\}$ is known as the branch of X determined by x_0 . Each branch $A(x_0) \ne \emptyset$ at $x_0 * x_0 = 0 \Rightarrow x_0 \in A(x_0)$.

Clearly we observe that $A(x_0)$ contains all those elements of X that succeed x_0 .

Properties. Let X be a d-algebra. The following properties hold.

- 1. If $x \le y$, then x and y are contained in the same branch of X.
- 2. If $x \in A(x_0)$, $y \in A(y_0)$ then $x * y \in A(x_0 * y_0)$.
- 3. Let $x_0, y_0 \in X$ and $y \in A(y_0)$ then $x_0 * y = x_0 * y_0$.
- 4. Let $x_0, y_0 \in X$ and $x \in A(x_0)$ then $x * y_0 = x_0 * y_0$.
- 5. If $A(x_0) \subseteq X$, then $x, y \in A(x_0) \Rightarrow x * y, y * x \in X$.

Definition 2.6 Let X be a d-algebra. A map $\theta : X \to X$ is a left-right derivations (briefly (l,r)-derivation) of X if it satisfies the identity $\theta(x * y) = (\theta(x) * y \land x * \theta(y))$ for all $x, y \in X$.

If θ satisfies the identity $\theta(x^*y) = (x^* \theta(y) \land \theta(x)^* y)$ for all $x, y \in X$, then θ is a right-left derivation (briefly (r,l)-derivation) of X. Moreover if θ is both a (l,r)-derivation and (r,l)-derivation, then θ is a derivation of X.

Definition 2.7 A mapping f of a d-algebra X into itself is called an endomorphism if $f(x^*y) = f(x) * f(y)$. Note that f (0) =0.

3. LEFT F-DERIVATIONS

In this section we introduce the notion of left F-derivation of a d-algebra and give some examples to explain the theory of left F-derivation in d-algebras and prove some simple but elegant properties.

Definition 3.1 Let X be a d-algebra. By a left F-derivation of X, we mean a self map θ_F of X satisfying the identity $\theta_F(x^*y) = (\theta_F(x) * F(y)) \land \theta_F(y) * F(x))$ for all $x, y \in X$, where F is an endomorphism of X.

Definition 3.2 A left F-derivation θ_F of a d-algebra X is said to be regular if $\theta_F(0) = 0$. Otherwise it is called an irregular left F-derivation.

Example 3.3 Let $X = \{0, 1, 2, 3\}$ be a d-algebra with the following Cayley table

*	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	3	3	0

Define a self map $\theta_F : X \to X$ as follows $\theta_F(x) = 3$ if x = 0, 1, 2, 3.

Define an endomorphism F: X \rightarrow X as follows F(x) = 0 if x = 0, 1, 2 and F(x) = 2 if x = 3.

Then it is easily checked that θ_F is a left F-derivation of X.

Theorem 3.4 Let θ_F be a regular left F-derivation of a d-algebra X. If F(x) and $\theta_F(x)$ belong to the same branch of X, then $\theta_F(x) = F(x)$.

Proof: Since F(x) and $\theta_F(x)$ belong to the same branch of X,

$$\mathbf{F}(\mathbf{x}) \le \mathbf{\theta}_{\mathbf{F}}(\mathbf{x}) \tag{1}$$

Since θ_F is a regular left derivation of X, $\theta_F(0) = 0$.

Now
$$\theta_{F}(0) = \theta_{F}(x^*x)$$

$$= (\theta_{F}(x) * F(x)) \land (\theta_{F}(x) * F(x)) \qquad (using left F-derivation)$$

$$= (\theta_{F}(x) * F(x)) * ((\theta_{F}(x) * F(x)) * (\theta_{F}(x) * F(x))) \qquad (using x \land y = y * (y * x))$$

$$= \theta_{F}(x) * F(x) \qquad (using x * (x * y) = y)$$

Since $\theta_{F}(0) = 0$, $\theta_{F}(x) * F(x) = 0$.

Hence $\theta_F(x) \leq F(x)$

From (1) and (2), it follows $\theta_F(x) = F(x)$.

Theorem 3.5 Let θ_F be a self map and $A(x_0)$ be any branch of a d-algebra X. If for any $x \in A(x_0)$, $\theta_F(x) = F(x_0)$, then θ_F is a left F-derivation.

Proof: Let θ_F be a self map and A(x₀) be any branch of a d-algebra X determined by x₀.

According to given condition for any
$$x \in A(x_0)$$
, $\theta_F(x) = F(x_0)$ (1)

Now for x, $y \in X$ following two cases arise.

Case 1: Both x and y belongs to the same branch of X.

Case 2: x and y belongs to different branches of X.

Case 1: Let x, $y \in A(x_0)$, So $x_0 \le x$ and $x_0 \le y$.

Then $x * y \in A(x_0 * x_0) = A(0)$. (By result)

So using (1), $\theta_F(x * y) = F(0) = 0$ (2)

Also $x_0 \le y \Rightarrow x_0 * y = 0$ and $x_0 \le x \Rightarrow x_0 * x = 0$ (3)

Further, as F is an endomorphism,

 $0 = F(0) = F(x_0 * y) = F(x_0) * F(y)$ and $0 = F(0) = F(x_0 * x) = F(x_0) * F(x)$

Now $(\theta_F(x) * F(y)) \land (\theta_F(y) * F(x)) = (F(x_0) * F(y)) \land (F(x_0) * F(x)) (using (1)).$ $= 0 \land 0 = 0 * (0 * 0) = 0 * 0 = 0.$

That is, $(\theta_F(x) * F(y)) \land (\theta_F(y) * F(x)) = 0 = \theta_F(x*y)$ (using (2))

which implies θ_F is a left F-derivation.

Case 2: Let $x \in A(x_0)$ and $y \in A(y_0)$.\$

Then $x^*y \in A(x_0 * y_0)$ (By result)

So using (1) $\theta_F(x * y) = F(x_0 * y_0)$

Now

$$\begin{aligned} (\theta_F(x) * F(y)) \wedge (\theta_F(y) * F(x)) &= (F(x_0) * F(y)) \wedge (F(y_0) * F(x)) \\ &= (F(y_0) * F(x)) * ((F(y_0) * F(x)) * (F(x_0) * F(y))) \\ &= F(x_0) * F(y) \\ &= F(x_0 * y) \end{aligned}$$
 (Since F is an endomorphism)

(4)

(2)

$= F(x_0 * y_0)$	(By result)
$= \theta_{\rm F}({\rm x * y})$	(using (4))

which implies θ_F is a left F-derivation.

This completes the proof.

Lemma 3.6 Let θ_F be a self map of a d-algebra X. If θ_F is a left F-derivation of X. Then the following hold. 1. $\theta_F(x) * F(x) = \theta_F(y) * F(y)$.

2. $\theta_{\rm F}({\rm x}) = \theta_{\rm F}({\rm x}) \wedge \theta_{\rm F}(0).$

Proof:

1. Let x, y \in X. Then $\theta_F(0) = \theta_F(x^*x)$ $= (\theta_F(x) *F(x)) \land (\theta_F(x) *F(x))$ $= (\theta_F(x) *F(x)) * ((\theta_F(x) *F(x)) * (\theta_F(x) *F(x)))$ $= \theta_F(x) *F(x)$

Similarly $\theta_F(0) = \theta_F(y * y) = \theta_F(y) * F(y)$

From (1) and (2), it follows that $\theta_F(x) * F(x) = \theta_F(y) * F(y)$.

2. Let $x \in X$. Then

 $\begin{array}{l} \theta_F(x) &= \theta_F(x^*0) \\ &= (\ \theta_F(x) * F(0)) \land (\theta_F(0) * F(x)) \\ &= (\theta_F(x) * 0) \land (\theta_F(0) * F(x)) \\ &= \theta_F(x) \land (\theta_F(0) * F(x)) \\ &= (\theta_F(0) * F(x)) * ((\theta_F(0) * \theta_F(x)) * \theta_F(x)) \\ &= (\theta_F(0) * F(x)) * ((\theta_F(0) * \theta_F(x)) * F(x)) & ((x^*y) * z = (x^*z) * y) \\ &\leq \theta_F(0) * (\theta_F(0) * \theta_F(x)) & ((x^*y) * (z^*y) \leq x^*z) \\ &= \theta_F(x) & (x^*(x^*y) = y) \end{array}$

Thus $\theta_F(x) \le \theta_F(0) * (\theta_F(0) * \theta_F(x)) \le \theta_F(x)$.

Therefore $\theta_F(x) = \theta_F(0) * (\theta_F(0) * \theta_F(x))$, which implies that $\theta_F(x) = \theta_F(x) \land \theta_F(0)$.

Theorem 3.7 A self map θ_F of a d-algebra X, defined as $\theta_F(x) = F(x)$ for all $x \in X$ is a left F-derivation of X, where F is an endomorphism of X.

Proof: Let θ_F be a self map of a d-algebra X, where F is an endomorphism of X defined as follows

$\theta_F(x) = F(x)$ for all $x \in X$			(1	1)
As for x, $y \in X$, $x * y \in X$.				
Therefore $\theta_F(x^*y) = F(x^*y) = F(x)^*$	F(y)		(2	2)
:		(F(y) * F(x)) (using (1)) ((F(y) * F(x)) * (F(x) * F(y))) (Since F is an endomorphism) (using (2))		

Thus $(\theta_F(x) * F(y)) \land (\theta_F(y) * F(x)) = \theta_F(x * y).$

which implies that θ_F is a left F-derivation.

Theorem 3.8. Let θ_F be a left F-derivation of a d-algebra X where F is an endomorphism of X. Then

- 1. $x \le y$ implies $\theta_F(x)$ and $\theta_F(y)$ belongs to the same branch of X.
- 2. $y \le x$ implies $\theta_F(y)$ and $\theta_F(x)$ belongs to the same branch of X.

(1)

(2)

Proof:

1. Let θ_F be a left F-derivation of a d-algebra X, where F is an endomorphism of X.

Since X is a d-algebra, $x \le y$ implies x * y = 0.

when θ_F is a left F-derivation

Now
$$\theta_{F}(x) = \theta_{F}(y * (y * x))$$
 (y* (y*x) = x)
= ($\theta_{F}(y) * F(y * x)$) $\land (\theta_{F}(y * x) * F(y))$
= ($\theta_{F}(y * x) * F(y)$) $\land ((\theta_{F}(y * x) * F(y)) * ((\theta_{F}(y) * F(y * x)))$
= $\theta_{F}(y) * F(y * x)$.

which implies $\theta_F(x) = \theta_F(y) * (F(y) * F(x))$ (Since F is an endomorphism)

Since $x \le y$ implies x * y = 0.

Therefore 0 = F(0) = F(x * y) = F(x) * F(y).

That is F(x) * F(y) = 0 implies $F(x) \le F(y)$.

As F(x) * F(y) = 0, So $F(y) * F(x) \neq 0$,

Otherwise because of property of d-F(x) = 0 = F(y) = 0

 \Rightarrow F(x) = F(y) , a contradiction.

(1)
$$\Rightarrow \theta_F(x) = \theta_F(y) * (F(y) * F(x)).$$

$$\begin{split} \theta_F(x) &* \theta_F(y) = (\; \theta_F(y) * (F(y) * F(x))) * \theta_F(y) \\ &= (\theta_F(y) * \theta_F(y)) * (F(y) * F(x)) \\ &= 0 * (F(y) * F(x)) \\ &= 0 \end{split}$$

Which implies $\theta_F(x) \leq \theta_F(y)$.

By property, it follows that $\theta_F(x)$ and $\theta_F(y)$ belong to the same branch of X.

2. Interchanging the role of x and y in (1), we have $y \le x$ implies $\theta_F(y) \le \theta_F(x)$.

This implies $\theta_F(y)$ and $\theta_F(x)$ belong to the same branch of X.

Definition 3.9 Let X be a d-algebra and θ_F , θ'_F be two self maps of X. We define $\theta_F \circ \theta'_F : X \to X$ as

$$\theta_{F} \circ \theta'_{F}(x) = \theta_{F}(\theta'_{F}(x))$$
 for all $x \in X$.

Notation: Der(X) denotes the set of all F-derivations (both right F-derivation and left F-derivation) on X.

Definition 3.10. Let $\theta_F, \theta'_F \in Der(X)$. Define the binary operation \wedge as

$$(\theta_F \wedge \theta'_{F})(x) = \theta_F(x) \wedge \theta'_F(x).$$

Lemma 3.11. Let X be d-algebra. θ_F and θ'_F are left F-derivation of X. Then $\theta_F \wedge \theta'_F$ is also a left F-derivation of X.

Proof: Let X be a d-algebra, θ_F and θ'_F are left F-derivation of X. Then

$$\begin{aligned} (\theta_{F} \wedge \theta'_{F})(x * y) &= \theta_{F} (x * y) \wedge \theta'_{F}(x * y) \\ &= \left[\left(\theta_{F}(x) * F(y) \right) \wedge \left(\theta_{F}(y) * F(x) \right) \right] \wedge \left[\left(\theta'_{F}(x) * F(y) \right) \wedge \left(\theta'_{F}(y) * F(x) \right) \right] \\ &= \left(\theta_{F}(x) * F(y) \right) \wedge \left(\theta'_{F}(x) * F(y) \right) \\ &= \left(\theta'_{F}(x) * \left(\theta'_{F}(x) * \theta'_{F}(x) \right) \right) * F(y) \\ &= \left(\theta_{F}(x) \wedge \theta'_{F}(x) \right) * F(y) \\ &= \left(\theta_{F} \wedge \theta'_{F} \right) (x) * F(y) \\ &= \left(\left(\theta_{F} \wedge \theta'_{F} \right) (y) * F(x) \right) * \left(\left(\left(\theta_{F} \wedge \theta'_{F} \right) (y) * F(x) \right) * \left(\left(\theta_{F} \wedge \theta'_{F} \right) (x) * F(y) \right) \right) \\ &= \left(\left(\theta_{F} \wedge \theta'_{F} \right) (x) * F(y) \right) \\ &= \left(\left(\theta_{F} \wedge \theta'_{F} \right) (x) * F(y) \right) \wedge \left(\left(\theta_{F} \wedge \theta'_{F} \right) (y) * F(x) \right) \end{aligned}$$

(1)

This shows that $(\theta_F \land \theta'_F)$ is a left F-derivation of X.

This completes the proof.

Theorem 3.12 Let X be a d-algebra and θ_F , θ'_F , θ''_F are left F-derivations of X. Then

$$(\theta_{\rm F} \wedge \theta'_{\rm F}) \wedge \theta''_{\rm F} = \theta_{\rm F} \wedge (\theta'_{\rm F} \wedge \theta''_{\rm F})$$

Proof: Let θ_F , θ'_F and $\theta''_F \in Der(X)$.

Then by definition

$$\begin{aligned} ((\theta_{F} \wedge \theta'_{F}) \wedge \theta''_{F})(x * y) &= (\theta_{F} \wedge \theta'_{F})(x * y) \wedge \theta''_{F}(x * y) \\ &= \theta''_{F}(x * y) * (\theta''_{F}(x * y) * (\theta_{F} \wedge \theta'_{F})(x * y)) \\ &= (\theta_{F} \wedge \theta'_{F})(x * y) \\ &= \theta_{F}(x * y) \wedge \theta'_{F}(x * y) \\ &= [(\theta_{F}(x) * F(y)) \wedge (\theta_{F}(y) * F(x))] \wedge \\ &\qquad [(\theta'_{F}(x) * F(y)) \wedge (\theta'_{F}(y) \wedge (\theta'_{F}(y) * F(x))] \\ &= (\theta_{F}(x) * F(y)) \wedge (\theta'_{F}(x) * F(y)) \\ &= \theta_{F}(x * F(y)) \wedge (\theta'_{F}(x) * F(y)) \end{aligned}$$
(1)

Also consider the following

$$\begin{aligned} (\theta_{F} \land (\theta'_{F} \land \theta''_{F}))(x * y) &= \theta_{F}(x * y) \land (\theta'_{F} \land \theta''_{F})(x * y) \\ &= \theta_{F}(x * y) \land (\theta'_{F} (x * y) \land \theta''_{F}(x * y)) \\ &= \theta_{F}(x * y) \land \theta'_{F}(x * y) \\ &= [(\theta_{F}(x) * F(y)) \land (\theta_{F}(y) * F(x))] \land [(\theta'_{F}(x) * F(y)) \land (\theta'_{F}(y) * F(x)))] \\ &= (\theta_{F}(x) * F(y)) \land (\theta'_{F}(x) * F(y)) \\ &= \theta_{F}(x) * F(y)$$
(2)

From (1) and (2) it follows that

 $((\theta_{F} \land \theta'_{F}) \land \theta''_{F})(x * y) = (\theta_{F} \land (\theta'_{F} \land \theta''_{F}))(x * y).$

Put y = 0, we have $((\theta_F \land \theta'_F) \land \theta''_F)(x) = (\theta_F \land (\theta'_F \land \theta''_F))(x)$.

which implies that $(\theta_F \land \theta'_F) \land \theta''_F = \theta_F \land (\theta'_F \land \theta''_F)$.

Thus Der(X) form a semi group.

4. REFERENCES

- [1] .Imai y. and Iseki K: On axiom systems of Propositional calculi, XIV, Proc. Japan Acad. Ser A, Math Sci., 42(1966),19-22.
- [2] .Iseki k: An algebra related with a propositional calculi, Proc. Japan Acad. Ser A Math. Sci., 42 (1966), 26-29.
- [3] Iseki K and Tanaka S: An introduction to theory of BCK-algebras, Math. Japo., 23 (1978) 1-26.
- [4] Hu,Q.P., and Li,X: On BCH-algebras, Math. Seminar Notes, Kobe univ., } 11 (1983) 313-320.
- [5] Hu,Q.P., and Li,X: ON proper BCH-algebras, Math. Japan 30, (1985) 659-669.
- [6] Neggers, J. and Kim, H.S.: On d-algebras, Math. Slovaca, Co., 49 (1999) 19-26.
- [7] Jun, Y.B. and Xin, X.L.: On derivations of BCI-algebras, Inform. Sci., 159 (2004) 167-176.
- [8] M.Chandramouleeswaran and N.Kandaraj: Derivations on d-algebras, *International Journal of Mathematical Sciences and applications*, Volume 1. Number 1. January (2011), 231-237.
- [9] M.Chandramouleeswaran and N.Kandaraj: d-algebras and f-derivations, *Proceedings of the Heber international conference on applications of mathematics and statistics*}, 5 7 January (2012), 98-102.

Source of support: Nil, Conflict of interest: None Declared