International Journal of Mathematical Archive-3(11), 2012, 3967-3974

(ccsMA Available online through www.ijma.info ISSN 2229-5046

DERIVATIONS ON TM-ALGEBRAS

T. Ganeshkumar* \& M. Chandramouleeswaran**
*Department of Mathematics, M.S.S Wakf Board College Madurai-625020, India
**Department of Mathematics, S.B.K. College Aruppukottai-626101, India

(Received on: 01-09-12; Revised \& Accepted on: 05-10-12)

Abstract

In 2010 Tamilarasi and Manimegalai introduced a new class of algebra called TM-algebra. Motivated by the works on derivations on rings and near rings, in this paper we introduced the notion of derivation on TM-algebra.

1. INTRODUCTION

It is well known that BCK and BCI-algebras are two classes of algebras of logic. They were introduced by Imai and Iseki [1] and have been extensively investigated by many researchers. BCK/BCI algebras form an algebraic semantic for CA Meriedith's logic. They are also the generalizations propositional calculi. It is known that the class of BCKalgebras is a proper sub class of the BCI-algebras. In [5], [6] Q.P.Hu and X. Li introduced a wider class of abstract algebras: BCH-algebras and have shown that the class of BCI- algebras is a proper subclass of the class of BCHalgebras. J. Neggers and H.S. Kim [7] introduced the notion of d-algebras which is another generalization of BCKalgebras. Another algebraic formulation of the proportitional calculi is TM-algebra introduced by Tamilarasi and Manimegalai [3].

The notion of derivation on rings is quite old. However it got its significance only after Ponser's work [2] in 1957. After this many researcher started working in this direction.

In [4] the authors introduced the notion of derivations on d-algebras another generalization of BCK-algebras. This notion of derivation is the same as that in ring theory and the usual algebraic theory. Motivated by this, in this paper, we introduce the notion of derivation on a TM-algebra and study some simple but elegant results.

2. PRELIMINARIES

Definition 2.1. A d-algebra ($\mathrm{X},{ }^{*}, 0$) is a non empty set X with a constant 0 and a binary operation * satisfying the following axioms:

1. $\mathrm{x} * \mathrm{x}=0$
2. $0 * x=0$
3. $x * y=0$ and $y * x=0 \Rightarrow x=y$ for all $x, y \in X$.

Definition 2.2. A TM-algebra ($\mathrm{X},{ }^{*}, 0$) is a non empty set X with a constant 0 and binary operation ${ }^{*}$ satisfying the following axioms:
$\mathrm{x} * 0=\mathrm{x}$
$(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})=\mathrm{z} * \mathrm{y}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Definition 2.3. Let X be a d-algebra. A map $\theta: X \rightarrow X$ is a left-right derivation ($(1, r)$-derivation) of X it satisfies the identity $\theta(x * y)=((\theta(x) * y) \wedge(x * \theta(y))$ for all $x, y \in X$. If θ satisfies the identity $\theta(x * y)=(x * \theta(y)) \wedge(\theta(x) * y)$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, then θ is a right-left derivation ((r, l)-derivation) of X . Moreover if θ is both a (l, r)-derivation and ($\mathrm{r}, \mathrm{l})$ derivation then θ is a derivation of X.

3. DERIVATIONS ON TM-ALGEBRAS

In this section, we introduce the notion of derivation on a TM-algebra and prove some simple results.
Definition 3.1. Let $\left(X,{ }^{*}, 0\right)$ be a TM-algebra. A self map $d: X \rightarrow X$ is said to be a (l, r)-derivation on X if $d(x * y)=$ $(d(x) * y) \wedge(x * d(y))$.

T. Ganeshkumar* \& M. Chandramouleeswaran**/ DERIVATIONS ON TM-ALGEBRAS/IJMA- 3(11), Nov.-2012.

We now present an example of a TM-algebra, in which the notion of derivation can be defined.
Example 3.2. Let ($\mathrm{X}, *, 0$) be a TM-algebra with the following Cayley table.

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

A self map $\mathrm{d}: \mathrm{X} \rightarrow \mathrm{X}$ be defined by $\mathrm{d}(0)=1, \mathrm{~d}(1)=2, \mathrm{~d}(2)=0$. Then d is a (l, r)-derivation.
Remark 3.3. One can observe that if $\mathrm{d}: \mathrm{X} \rightarrow \mathrm{X}$ is a (l, r)-derivation on X , then

$$
\mathrm{d}(\mathrm{x} * \mathrm{y})=\mathrm{d}(\mathrm{x}) * \mathrm{y}
$$

Definition 3.4. Let $(X, *, 0)$ be a TM-algebra. A self map d: $X \rightarrow X$ is said to be a (r, 1)-derivation on X if

$$
\mathrm{d}(\mathrm{x} * \mathrm{y})=(\mathrm{x} * \mathrm{~d}(\mathrm{y})) \wedge(\mathrm{d}(\mathrm{x}) * \mathrm{y})
$$

Remark 3.5. As in remark 3.3, we observe that if the self map d: $\mathrm{X} \rightarrow \mathrm{X}$ is a (r, l)-derivation on X , then

$$
d(x * y)=x * d(y)
$$

Definition 3.6. Let $d: X \rightarrow X$ be a self map on TM-algebra ($X,{ }^{*}, 0$). The map d is said to be a derivation on X if d is both a (l, r)-derivation and a (r, l)-derivation on X .

Remark 3.7. From remarks 3.3 and 3.5 we observe that if d is a derivation on X then,

$$
d(x * y)=d(x) * y=x * d(y)
$$

We now present another example of a TM-algebra in which one can define a derivation.
Example 3.8. Let ($\mathrm{X},{ }^{*}, 0$) be a TM-algebra with the following Cayley table.

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

The self map $\mathrm{d}: \mathrm{X} \rightarrow \mathrm{X}$ be defined by $\mathrm{d}(0)=3, \mathrm{~d}(1)=2, \mathrm{~d}(2)=1, \mathrm{~d}(3)=0$ is a derivation.
Definition 3.9. Let X be a TM-algebra. A self map d: $X \rightarrow X$ is said to be regular if $d(0)=0$.
Definition 3.10. If X is a TM-algebra then we define a partial ordering \leq such that $\mathrm{x} \leq \mathrm{y}$ whenever $\mathrm{x} * \mathrm{y}=0$.
Proposition 3.11. Let $\left(X,{ }^{*}, 0\right)$ be a TM-algebra. If $d: X \rightarrow X$ is a regular $(r, 1)$-derivation on X then $x \leq d(x)$ for all $x \in$ X.

Proof:

$$
\begin{array}{ll}
\mathrm{d}(0)=0 & \\
\mathrm{~d}\left(\mathrm{x}^{*} \mathrm{x}\right)=0 & (\mathrm{x} * \mathrm{x}=0) \\
\mathrm{x}^{*} \mathrm{~d}(\mathrm{x})=0 & (\text { By remark 3.5 }) \\
\text { Therefore } \mathrm{x} \leq \mathrm{d}(\mathrm{x}) & \text { (By definition 3.10) }
\end{array}
$$

Proposition 3.12. Let $\left(X,{ }^{*}, 0\right)$ be a TM-algebra. Let $\mathrm{d}: \mathrm{X} \rightarrow \mathrm{X}$ is a derivation.
If $x * d(x)=0$ for all $x \in X$, then d is regular.
If $d(x) * x=0$ for all $x \in X$, then d is regular.

Proof:

1. Given $\mathrm{x} * \mathrm{~d}(\mathrm{x})=0$ and d is a derivation.

Now,

$$
\begin{aligned}
\mathrm{d}(0) & =\mathrm{d}(\mathrm{x} * \mathrm{x}) \\
& \left.=\mathrm{x}^{*} \mathrm{~d}(\mathrm{x}) \text { (By definition } 3.4\right) \\
& =0 \text {, thus proving that } \mathrm{d} \text { is regular. }
\end{aligned}
$$

2. Given $\mathrm{d}(\mathrm{x}) * \mathrm{x}=0$ and d is a (l, r$)$-derivation.

Now,

$$
\begin{aligned}
\mathrm{d}(0) & =\mathrm{d}(\mathrm{x} * \mathrm{x}) \\
& =\mathrm{d}(\mathrm{x}) * \mathrm{x} \quad \text { (By remark } 3.3) \\
& =0 \text {, thus proving that } \mathrm{d} \text { is regular. }
\end{aligned}
$$

Proposition 3.13. Let d be a self map of a TM-algebra X.

1. If d is regular (l, r)-derivation on X, then $d(x)=d(x) \wedge x$.
2. If d is regular (r, l)-derivation on X, then $d(x)=x \wedge d(x)$.

Proof:

1. Given d is regular. Therefore $\mathrm{d}(0)=0$.

Now,

$$
\begin{aligned}
\mathrm{x} & =\mathrm{x} * 0 \\
\mathrm{~d}(\mathrm{x}) & =\mathrm{d}(\mathrm{x} * 0) \\
& =(\mathrm{d}(\mathrm{x}) * 0) \wedge(\mathrm{x} * \mathrm{~d}(0)) \quad(\text { By definition 3.1) } \\
& =\mathrm{d}(\mathrm{x}) \wedge(\mathrm{x} * 0) \\
& =\mathrm{d}(\mathrm{x}) \wedge \mathrm{x}
\end{aligned}
$$

2. Given d is regular (r, l)-derivation on X .

$$
\begin{aligned}
\mathrm{d}(\mathrm{x}) & =\mathrm{d}(\mathrm{x} * 0) \\
& =(\mathrm{x} * \mathrm{~d}(0)) \wedge(\mathrm{d}(\mathrm{x}) * 0)(\text { By definition 3.4) } \\
& =(\mathrm{x} * 0) \wedge \mathrm{d}(\mathrm{x}) \\
& =\mathrm{x} \wedge \mathrm{~d}(\mathrm{x})
\end{aligned}
$$

Definition 3.14. Let d_{1}, d_{2} be self maps on a TM-algebra X. We define $d_{1} \circ d_{2}$ as follows.

$$
\left(d_{1} \circ d_{2}\right)(x)=d_{1}\left(d_{2}(x)\right) \text { for all } x \in X
$$

Lemma 3.15. Let $(X, *, 0)$ be a TM-algebra. Let d_{1}, d_{2} be two (l, r)-derivations on X. Then $\left(d_{1} \circ d_{2}\right)$ is also a (l, r)derivation on X .

Proof: Given d_{1} is a (l, r)-derivation on X. Hence $d_{1}(x * y)=d_{1}(x) * y$, for all $x, y \in X$.
Similarly $\mathrm{d}_{2}(\mathrm{x} * \mathrm{y})=\mathrm{d}_{2}(\mathrm{x}) * \mathrm{y}$.
Now,

$$
\begin{array}{rlrl}
\left(\mathrm{d}_{1} \circ \mathrm{~d}_{2}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{1}\left(\mathrm{~d}_{2}(\mathrm{x} * \mathrm{y})\right) \\
& =\mathrm{d}_{1}\left(\mathrm{~d}_{2}(\mathrm{x}) * y\right) & \text { (By definition 3.14) } \\
& =\left(\mathrm{d}_{1}\left(\mathrm{~d}_{2}(\mathrm{x})\right)\right) * \mathrm{y} \\
& =\left(\mathrm{d}_{1} \circ \mathrm{~d}_{2}\right)(\mathrm{x}) * \mathrm{y} \text { remark 3.3) }
\end{array}
$$

Therefore $\left(d_{1} \circ d_{2}\right)$ is a (l, r)-derivation on X .
Lemma 3.16. Let $\left(X,{ }^{*}, 0\right)$ be a TM-algebra. Let d_{1}, d_{2} be two (r, l)-derivation on X, then $\left(d_{1} \circ d_{2}\right)$ is also a (r, l)derivation on X .

Proof: Given d_{1} is a (r, l)-derivation on X .
$d_{1}(x * y)=x * d_{1}(y)$, for all $x, y \in X$. (By remark 3.5)
Similarly $\mathrm{d}_{2}(\mathrm{x} * \mathrm{y})=\mathrm{x} * \mathrm{~d}_{2}(\mathrm{y})$.

$$
\begin{aligned}
\text { Now }\left(\mathrm{d}_{1} \circ \mathrm{~d}_{2}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{1}\left(\mathrm{~d}_{2}(\mathrm{x} * \mathrm{y})\right) \quad \text { (By definition 3.14) } \\
& =\mathrm{d}_{1}\left(\mathrm{x}^{*} \mathrm{~d}_{2}(\mathrm{y})\right) \\
& =\mathrm{x}^{*}\left(\mathrm{~d}_{1}\left(\mathrm{~d}_{2}(\mathrm{y})\right)\right) \\
& =\mathrm{x}^{*} *\left(\left(\mathrm{~d}_{1} \circ \mathrm{~d}_{2}\right)(\mathrm{y})\right)
\end{aligned}
$$

Hence $\left(d_{1} \circ d_{2}\right)$ is a (r, l)-derivation on X.
By combining the above two lemmas 3.15 and 3.16 , we get the following theorem.
Theorem 3.17. Let $(X, *, 0)$ be a TM-algebra and d_{1}, d_{2} be derivations on X then $\left(d_{1} \circ d_{2}\right)$ is also a derivation on X.
Theorem 3.18. Let $(X, *, 0)$ be a TM-algebra. Let d_{1}, d_{2} be two derivations on X, then $\left(d_{1} \circ d_{2}\right)=\left(d_{2} \circ d_{1}\right)$.
Proof: Since d_{1}, d_{2} be two derivations on X, d_{1}, d_{2} are both (I, r) and (r, I)-derivations on X.
Now,

$$
\begin{align*}
\left(\mathrm{d}_{1} \circ \mathrm{~d}_{2}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{1}\left(\mathrm{~d}_{2}(\mathrm{x} * \mathrm{y})\right) \\
& =\mathrm{d}_{1}\left(\mathrm{~d}_{2}(\mathrm{x}) * \mathrm{y}\right) \quad(\text { By remark 3.3) } \\
& =\mathrm{d}_{2}(\mathrm{x})^{*} \mathrm{~d}_{1}(\mathrm{y}) \quad(\text { By remark 3.5 }) \tag{1}
\end{align*}
$$

Also

$$
\begin{align*}
\left(\mathrm{d}_{2} \circ \mathrm{~d}_{1}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{2}\left(\mathrm{~d}_{1}(\mathrm{x} * \mathrm{y})\right) \\
& =\mathrm{d}_{2}\left(\mathrm{x}^{*} \mathrm{~d}_{1}(\mathrm{y})\right) \quad\left(\mathrm{d}_{1} \text { is }(\mathrm{r}, \mathrm{l}) \text {-derivation }\right) \\
& =\mathrm{d}_{2}(\mathrm{x}) * \mathrm{~d}_{1}(\mathrm{y}) \quad\left(\mathrm{d}_{2} \text { is }(\mathrm{l}, \mathrm{r}) \text {-derivation }\right) \tag{2}
\end{align*}
$$

From (1) and (2), $\left(d_{1} \circ d_{2}\right)(x * y)=\left(d_{2} \circ d_{1}\right)(x * y)$, thus proving that $\left(d_{1} \circ d_{2}\right)=\left(d_{2} \circ d_{1}\right)$.
Definition 3.19. Let $\left(X,{ }^{*}, 0\right)$ be a TM-algebra. Let d_{1}, d_{2} be two self maps on X.
We define $\left(\mathrm{d}_{1} * \mathrm{~d}_{2}\right): \mathrm{X} \rightarrow \mathrm{X}$ as $\left(\mathrm{d}_{1} * \mathrm{~d}_{2}\right)(\mathrm{x})=\mathrm{d}_{1}(\mathrm{x}) * \mathrm{~d}_{2}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$.
Theorem 3.20. Let $\left(X,{ }^{*}, 0\right)$ be a TM-algebra and d_{1}, d_{2} be two derivations of X, then $d_{1} * d_{2}=d_{2} * d_{1}$.
Proof:

$$
\begin{array}{rlrl}
\left(\mathrm{d}_{1} \circ \mathrm{~d}_{2}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{1}\left(\mathrm{~d}_{2}(\mathrm{x} * \mathrm{y})\right) \\
& =\mathrm{d}_{1}\left(\mathrm{~d}_{2}(\mathrm{x}) * \mathrm{y}\right) & & (\text { By remark 3.3) } \\
& =\mathrm{d}_{2}(\mathrm{x}) * \mathrm{~d}_{1}(\mathrm{y}) & & (\text { By remark 3.5 }) \tag{1}
\end{array}
$$

Again,

$$
\begin{array}{rlrl}
\left(\mathrm{d}_{1} \circ \mathrm{~d}_{2}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{1}\left(\mathrm{~d}_{2}(\mathrm{x} * \mathrm{y})\right) \\
& =\mathrm{d}_{1}\left(\mathrm{x} * \mathrm{~d}_{2}(\mathrm{y})\right) & \text { (By remark 3.5) } \\
& =\mathrm{d}_{1}(\mathrm{x}) * \mathrm{~d}_{2}(\mathrm{y}) & (\text { By remark 3.3) } \tag{2}
\end{array}
$$

Combining (1) and (2), we get $d_{2}(x) * d_{1}(y)=d_{1}(x) * d_{2}(y)$
Substituting $\mathrm{y}=\mathrm{x}$ in (3) we get,

$$
\begin{gathered}
\mathrm{d}_{2}(\mathrm{x}) * \mathrm{~d}_{1}(\mathrm{x})=\mathrm{d}_{1}(\mathrm{x}) * \mathrm{~d}_{2}(\mathrm{x}) \\
\left(\mathrm{d}_{2} * \mathrm{~d}_{1}\right)(\mathrm{x})=\left(\mathrm{d}_{1} * \mathrm{~d}_{2}\right)(\mathrm{x})
\end{gathered}
$$

Since this is true for all elements x in X, we conclude that $d_{2} * d_{1}=d_{1} * d_{2}$
Lemma 3.21. In a TM-algebra both right and left cancellation law hold good.
Proof: Let $\left(X,{ }^{*}, 0\right)$ be a TM-algebra. Assume that $\mathrm{x} * \mathrm{y}=\mathrm{x} * \mathrm{z}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
Now

$$
\begin{aligned}
y & =x *(x * y) \\
& =x *(x * z) \\
& =z
\end{aligned}
$$

This proves that the left cancellation law holds in X.
Assume now that $\mathrm{y} * \mathrm{x}=\mathrm{z} * \mathrm{x}$.

Consider $\quad \mathrm{x} * \mathrm{y}=(\mathrm{y} * \mathrm{y}) *(\mathrm{y} * \mathrm{x}) \quad$ (By definition)

$$
\begin{aligned}
& =0 *(\mathrm{z} * \mathrm{x}) \\
& =(\mathrm{z} * \mathrm{z}) *(\mathrm{z} * \mathrm{x})
\end{aligned}
$$

Thus $\mathrm{x} * \mathrm{y}=\mathrm{x} * \mathrm{z}$
Therefore $y=z \quad$ (By Left Cancellation Law)
Hence the Right Cancellation Law holds in X.
Theorem 3.22. Let d be a (l, r)-derivation of TM-algebra X, then

1. $\mathrm{d}(0)=\mathrm{d}(\mathrm{x}) * \mathrm{x}$.
2. d is $1-1$.
3. If d is regular then d is the identity map.
4. If there is an element $x \in X$ such that $d(x)=x$, then d is the identity map.
5. If there is an element $x \in X$ such that $d(y) * x=0$ or $x * d(y)=0$ for all $y \in X$, then $\mathrm{d}(\mathrm{y})=\mathrm{x}$, (ie) d is a constant map.

Proof:

1. $\mathrm{x} * \mathrm{x}=0$, therefore $\mathrm{d}(0)=\mathrm{d}(\mathrm{x} * \mathrm{x})=\mathrm{d}(\mathrm{x}) * \mathrm{x} \quad$ (Since d is (l, r)-derivation)
2. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{d}(\mathrm{x})=\mathrm{d}(\mathrm{y})$.

Now $d(0)=d(x * x)=d(x) * x$
Again $\mathrm{d}(0)=\mathrm{d}(\mathrm{y} * \mathrm{y})=\mathrm{d}(\mathrm{y}) * \mathrm{y}=\mathrm{d}(\mathrm{x}) * \mathrm{y}($ Since $\mathrm{d}(\mathrm{x})=\mathrm{d}(\mathrm{y}))$
From (1) and (2), $\mathrm{d}(\mathrm{x}) * \mathrm{x}=\mathrm{d}(\mathrm{x}) * \mathrm{y}$.
$\Rightarrow \mathrm{x}=\mathrm{y} \quad$ (By L.C.L)
3. Given d is regular. Therefore $\mathrm{d}(0)=0$.
$d(0)=d(x) * x \quad(B y(1))$.
$0=d(x) * x$.
$x * x=d(x) * x$
Applying Right Cancellation Law in a TM-algebra,
we get $\mathrm{x}=\mathrm{d}(\mathrm{x})$, proving that d is the identity map.
4. Let $x \neq y, x, y \in X$.

Given that there is an element $\mathrm{x} \in \mathrm{X}$ such that $\mathrm{d}(\mathrm{x})=\mathrm{x}$
Now,

$$
\begin{array}{rlrl}
\mathrm{y} & =\mathrm{x}^{*}(\mathrm{x} * \mathrm{y}) & \\
\mathrm{d}(\mathrm{y}) & =\mathrm{d}(\mathrm{x}) *(\mathrm{x} * \mathrm{y}) & & \text { (since dis (l, r)-derivation) } \\
& =\mathrm{x} *(\mathrm{x} * \mathrm{y}) & & \text { (using (3)) } \\
& =\mathrm{y} &
\end{array}
$$

Therefore d is the identity map.
5. Given $\mathrm{d}(\mathrm{y}) * \mathrm{x}=0$

$$
\begin{aligned}
& \mathrm{d}(\mathrm{y}) * \mathrm{x}=\mathrm{x} * \mathrm{x} . \\
& \Rightarrow \mathrm{d}(\mathrm{y})=\mathrm{x} \quad(\text { By R.C.L) }
\end{aligned}
$$

Again if $x * d(y)=0$

$$
\begin{align*}
& x^{*} \mathrm{~d}(\mathrm{y})=\mathrm{x} * \mathrm{x} \\
& \Rightarrow \mathrm{~d}(\mathrm{y})=\mathrm{x} \tag{ByL.C.L}
\end{align*}
$$

Hence $d(y)=x$, for all $y \in X$.
Therefore d is a constant map.

T. Ganeshkumar* \& M. Chandramouleeswaran**/ DERIVATIONS ON TM-ALGEBRAS/IMMA- 3(11), Nov.-2012.

Theorem 3.23. Let d be a (r, l)-derivation of TM-algebra X, then

1. $\mathrm{d}(0)=\mathrm{x} * \mathrm{~d}(\mathrm{x})$.
2. $d(x)=d(x) \wedge x$ for all $x \in X$.
3. d is $1-1$.
4. If d is regular then d is the identity map.
5. If there is an element $x \in X$ such that $d(x)=x$, then d is the identity map.
6. If there is an element $x \in X$ such that $d(y) * x=0$ or $x * d(y)=0$ for all $y \in X$ then $d(y)=x$ (ie) d is a constant map

Proof: (1), (3), (4), (5) and (6) are analogous to results (1) to (5) of the above theorem 3.22.
Hence we prove only the property (2).
Now, $\mathrm{d}(\mathrm{x}) \wedge \mathrm{x}=\mathrm{x} *(\mathrm{x} * \mathrm{~d}(\mathrm{x}))=\mathrm{d}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$. $\quad($ Since $\mathrm{x} *(\mathrm{x} * \mathrm{y})=\mathrm{y})$

Theorem 3.24. Let X be a TM-algebra and $d_{1}, d_{2}, \ldots, d_{n}$ be derivations on X, then $d_{n}\left(d_{n-1}\left(d_{n-2}\left(d_{n-3} \ldots\left(d_{2}\left(d_{1}(x)\right)\right)\right)\right) \leq x\right.$.
Proof: $d_{n}\left(d_{n-1}\left(d_{n-2}\left(d_{n-3} \ldots\left(d_{2}\left(d_{1}(x)\right)\right)\right)\right)=d_{n}\left(d_{n-1}\left(d_{n-2}\left(d_{n-3} \ldots\left(d_{2}\left(d_{1}(x)\right)\right) \ldots\right)\right)\right)\right.$

$$
\leq \mathrm{d}_{\mathrm{n}-1}\left(\mathrm{~d}_{\mathrm{n}-2}\left(\ldots\left(\mathrm{~d}_{2}\left(\mathrm{~d}_{1}(\mathrm{x})\right)\right) \ldots\right)\right)
$$

$$
\leq \mathrm{d}_{1}(\mathrm{x})
$$

$$
\leq \mathrm{x}
$$

Definition 3.25. Let $\mathrm{L} \operatorname{Der}(\mathrm{X})$ denote the set of all (l, r)-derivations on X . Define the binary operation \wedge on $\mathrm{L} \operatorname{Der}(\mathrm{X})$ as follows. For $d_{1}, d_{2} \in L \operatorname{Der}(X)$, define $\left(d_{1} \wedge d_{2}\right)(x)=d_{1}(x) \wedge d_{2}(x)$ for all $x \in X$.

Lemma 3.26. If d_{1} and d_{2} are (l, r)-derivations on X, then $\left(d_{1} \wedge d_{2}\right)$ is also a (l, r)-derivation.
Proof: To Prove: $\left(d_{1} \wedge d_{2}\right)(x * y)=\left(d_{1} \wedge d_{2}\right)(x) * y$ for all $x, y \in X$.

$$
\begin{align*}
\left(\mathrm{d}_{1} \wedge \mathrm{~d}_{2}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{1}(\mathrm{x} * \mathrm{y}) \wedge \mathrm{d}_{2}(\mathrm{x} * \mathrm{y}) \quad \text { [By definition 3.25] } \\
& =\left(\mathrm{d}_{1}(\mathrm{x}) * \mathrm{y}\right) \wedge\left(\mathrm{d}_{2}(\mathrm{x}) * y\right) \\
& =\left(\mathrm{d}_{2}(\mathrm{x}) * \mathrm{y}\right) *\left(\left(\mathrm{~d}_{2}(\mathrm{x}) * \mathrm{y}\right) *\left(\mathrm{~d}_{1}(\mathrm{x}) * \mathrm{y}\right)\right) \\
& =\mathrm{d}_{1}(\mathrm{x}) * \mathrm{y} \tag{1}
\end{align*}
$$

$$
\begin{align*}
\left(\mathrm{d}_{1} \wedge \mathrm{~d}_{2}\right)(\mathrm{x}) * \mathrm{y} & =\left(\mathrm{d}_{1}(\mathrm{x}) \wedge \mathrm{d}_{2}(\mathrm{x})\right) * \mathrm{y} \\
& =\left(\mathrm{d}_{2}(\mathrm{x}) *\left(\mathrm{~d}_{2}(\mathrm{x}) * \mathrm{~d}_{1}(\mathrm{x})\right)\right) * \mathrm{y} \\
& =\mathrm{d}_{1}(\mathrm{x}) * \mathrm{y} \tag{2}
\end{align*}
$$

From (1) and (2), $\left(d_{1} \wedge d_{2}\right)(x * y)=\left(d_{1} \wedge d_{2}\right)(x) * y$.
Therefore $\left(d_{1} \wedge d_{2}\right)$ is a (l, r)-derivation.
Lemma 3.27. The binary composition \wedge defined on $L \operatorname{Der}(\mathrm{X})$ is associative.
Proof: Let X be a TM-algebra.
Let $\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}$ are (l, r)-derivations.
Now,
$\left(\left(d_{1} \wedge d_{2}\right) \wedge d_{3}\right)(x * y)=\left(d_{1} \wedge d_{2}\right)(x * y) \wedge d_{3}(x * y)$

$$
\begin{align*}
& =\left(d_{1}(\mathrm{x}) * \mathrm{y}\right) \wedge\left(\mathrm{d}_{3}(\mathrm{x}) * \mathrm{y}\right) \text { (using lemma 3.26\} in (1)) } \\
& =\left(\mathrm{d}_{3}(\mathrm{x}) * \mathrm{y}\right) *\left(\left(\mathrm{~d}_{3}(\mathrm{x}) * \mathrm{y}\right) *\left(\mathrm{~d}_{1}(\mathrm{x}) * \mathrm{y}\right)\right) \\
& =\mathrm{d}_{1}(\mathrm{x}) * \mathrm{y} \tag{1}
\end{align*}
$$

Again,

$$
\begin{align*}
\left(\mathrm{d}_{1} \wedge\left(\mathrm{~d}_{2} \wedge \mathrm{~d}_{3}\right)\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{1}(\mathrm{x} * \mathrm{y}) \wedge\left(\left(\mathrm{d}_{2} \wedge \mathrm{~d}_{3}\right)(\mathrm{x} * \mathrm{y})\right) \\
& =\left(\mathrm{d}_{1}(\mathrm{x}) * y\right) \wedge\left(\mathrm{d}_{2}(\mathrm{x}) * y\right) \\
& =\left(\mathrm{d}_{2}(\mathrm{x}) * \mathrm{y}\right) *\left(\left(\mathrm{~d}_{2}(\mathrm{x}) * y\right) *\left(\mathrm{~d}_{1}(\mathrm{x}) * \mathrm{y}\right)\right) \\
& =\mathrm{d}_{1}(\mathrm{x}) * \mathrm{y} \tag{2}
\end{align*}
$$

Combining (1) and (2) we get, $\left(d_{1} \wedge d_{2}\right) \wedge d_{3}=d_{1} \wedge\left(d_{2} \wedge d_{3}\right)$.

Combining the above two lemmas we get following theorem.
Theorem 3.28. $\operatorname{LDer}(X)$ is a semi-group under the binary composition \wedge defined by $\left(d_{1} \wedge d_{2}\right)(x)=d_{1}(x) \wedge d_{2}(x)$ for all $x \in X$ and $d_{1}, d_{2} \in \operatorname{LDer}(X)$.

Analogously we can prove that
Theorem 3.29. $R \operatorname{Der}(X)$ is a semi-group under the binary operation \wedge defined by $\left(d_{1} \wedge d_{2}\right)(x)=d_{1}(x) \wedge d_{2}(x)$, for all $x \in$ X and $\mathrm{d}_{1}, \mathrm{~d}_{2} \in \mathrm{RDer}(\mathrm{X})$.

Combining the above two theorem, we get the following theorem.
Theorem 3.30 If $\operatorname{Der}(\mathrm{X})$ denotes the set of all derivations on X , it is a semi-group under the binary operation \wedge defined by $\left(d_{1} \wedge d_{2}\right)(x)=d_{1}(x) \wedge d_{2}(x)$, for all $x \in X$ and $d_{1}, d_{2} \in \operatorname{Der}(X)$.

4. 0 COMMUTATIVE

It is to be observed that many of the TM-algebras are not commutative in the sense of commutativeness defined for BCI-algebras. However, we observe that 0 -commutativeness can be defined in a TM-algebra. This section introduces the notion of 0 -commutative in a TM-algebra and give some simple properties.

Definition 4.1. A TM-algebra $\left(X,{ }^{*}, 0\right)$ is said to be 0 -commutative if $x *(0 * y)=y *(0 * x)$ for all $x, y \in X$.
Example 4.2. Let ($\mathrm{X},{ }^{*}, 0$) be a TM-algebra with the Cayley table.

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

($\mathrm{X},{ }^{*}, 0$) form the 0 -commutative TM-algebra.
Lemma 4.3. If $(X, *, 0)$ is a 0 -commutative TM-algebra then

1. $(0 * x) *(0 * y)=y * x$
2. $(\mathrm{z} * \mathrm{y}) *(\mathrm{z} * \mathrm{x})=\mathrm{x} * \mathrm{y}$
3. $(x * y) * z=(x * z) * y$
4. $(\mathrm{x} *(\mathrm{x} * \mathrm{y})) * \mathrm{y}=0$
5. $(\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{t})=(\mathrm{t} * \mathrm{y}) *(\mathrm{z} * \mathrm{x})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t} \in \mathrm{X}$.
6. $x *(x * y)=y$

Proof: Results 1-4 follows easily. We give the proofs for 5 and 6 only. 5 is true because,

$$
\begin{aligned}
(\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{t}) & =(0 *(\mathrm{y} * \mathrm{t})) *(0 *(\mathrm{x} * \mathrm{z})) \quad[\operatorname{In~TM} \text { algebra }(\mathrm{y} * \mathrm{z})=(0 * \mathrm{y}) *(0 * \mathrm{z})] \\
& =((0 * \mathrm{y}) *(0 * \mathrm{t})) *((0 * \mathrm{x}) *(0 * \mathrm{z})) \\
& =(\mathrm{t} *(0 *(0 * \mathrm{y}))) *(\mathrm{z} *(0 *(0 * \mathrm{x})) \quad[\text { By definition 3.22] } \\
& =(\mathrm{t} * \mathrm{y}) *(\mathrm{z} * \mathrm{x})
\end{aligned}
$$

Similarly 6 follows as $\mathrm{x} *(\mathrm{x} * \mathrm{y})=(\mathrm{x} * 0) *(\mathrm{x} * \mathrm{y})=\mathrm{y} * 0=\mathrm{y}$.
Theorem 4.4/ Let $\left(X,{ }^{*}, 0\right)$ be a 0 -commutative TM-algebra and d be a derivation on X. Then $d(x) * d(y)=x * y$.
Proof: Since X is 0 -commutative, by definition $\mathrm{x} *(0 * y)=y *(0 * x)$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

```
\(\mathrm{d}\left(\mathrm{x} *\left(0^{*} \mathrm{y}\right)\right)=\mathrm{d}\left(\mathrm{y} *\left(0^{*} \mathrm{x}\right)\right)\)
\(\mathrm{d}(\mathrm{x}) *(0 * y)=\mathrm{d}(\mathrm{y}) *(0 * x)\)
\([\mathrm{d}(\mathrm{x}) *(0 * \mathrm{y})] * \mathrm{y}=[\mathrm{d}(\mathrm{y}) *(0 * \mathrm{x})] * \mathrm{y}\)
\((\mathrm{d}(\mathrm{x}) * \mathrm{y}) *(0 * \mathrm{y})=(\mathrm{d}(\mathrm{y}) * \mathrm{y}) *(0 * \mathrm{x}) \quad(\) since \((\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) * \mathrm{y})\)
    \(=0 *(0 * x) \quad(\) since \(d(y) \leq y) \$\)
    \(=x \quad(\) since \(x *(x * y)=y)\)
```


T. Ganeshkumar* \& M. Chandramouleeswaran**/ DERIVATIONS ON TM-ALGEBRAS/IJMA- 3(11), Nov.-2012.

That is $(\mathrm{d}(\mathrm{x}) * \mathrm{y}) *(0 * y)=\mathrm{x}$
Interchanging x and y in (1) we have
$(\mathrm{d}(\mathrm{y}) * \mathrm{x}) *(0 * x)=\mathrm{y}$
From (1) and (2)

$$
\begin{array}{rlr}
(\mathrm{x} * \mathrm{y}) & =((\mathrm{d}(\mathrm{x}) * \mathrm{y}) *(0 * \mathrm{y})) *((\mathrm{~d}(\mathrm{y}) * \mathrm{x}) *(0 * \mathrm{x})) \\
& =((\mathrm{y} * 0) *(\mathrm{y} * \mathrm{~d}(\mathrm{x})) *((\mathrm{x} * 0) *(\mathrm{x} * \mathrm{~d}(\mathrm{y})) \quad[\text { By lemma 4.3(5)] } \\
& =[\mathrm{y} *(\mathrm{y} * \mathrm{~d}(\mathrm{x}))] *[\mathrm{x} *(\mathrm{x} * \mathrm{~d}(\mathrm{y}))] \quad \\
& =\mathrm{d}(\mathrm{x}) * \mathrm{~d}(\mathrm{y}) & (\mathrm{x} *(\mathrm{x} * \mathrm{y})=\mathrm{y})
\end{array}
$$

5. REFERENCES

[1] Imai Y. and Iseki K: On axiom systems of Propositional calculi., XIV, Proc. Japan Acad. Ser A, Math Sci., 42,(1966),19-22.
[2] Ponser E: Derivations in prime rings, Proc. Amer. Math. Sci., 8, (1957), 1093-1100.
[3] A. Tamilarasi and K. Megalai: TM-algebra an introduction, CASCT., (2010).
[4] M. Chandramouleeswaran and N. Kandaraj: Derivations on d-algebras\}, International Journal of Mathematical Sciences and applications., 1,(2011), 231-237.
[5] Hu, Q.P., and LI, X: On BCH-algebras, Math. Seminar Notes, Kobe univ., 11, (1983), 313-320.
[6] Hu, Q.P., and Li, X: ON proper BCH-algebras, Math. Japan 30, (1985), 659-669.
[7] Neggers, J. and Kim, H.S: On d-algebras, Math. Slovaca, Co., 49, (1999), 19-26.
Source of support: Nil, Conflict of interest: None Declared

