g**-Quasi - FH-closed spaces and g**-Quasi - CH-closed spaces

Sr. Pauline Mary Helen*

Associate Professor, Nirmala College, Coimbatore, India

Mrs. Ponnuthai Selvarani

Associate Professor, Nirmala College, Coimbatore, India

Mrs. Veronica Vijayan

Aassociate Professor, Nirmala College, Coimbatore, India

Mrs. Punitha Tharani

Associate Professor, St. Mary's College, Tuticorin, India

(Received on: 12-11-12; Revised & Accepted on: 21-12-12)

ABSTRACT

In this paper we have introduced τ - g^{**} boundary, g^{**} -Quasi-FH-closed, g^{**} -FH-closed, g^{**} -Quasi-CH-closed, g^{**} -CH-closed, g^{**} -meager and few results on these new definitions have been established.

Key Words: τ - g^{**} boundary, g^{**} -Quasi-FH-closed, g^{**} -FH-closed, g^{**} -Quasi-CH-closed, g^{**} -meager.

1. INTRODUCTION

Levine [2] and M.K.R.S. Veerakumar [7] introduced the class of g-closed sets and g*-closed sets in the year 1970 and 1991 respectively. T.R. Hamlett and D. Jankovic[1] have introduced the class of Quasi-H-closed and H-closed sets in the year 1990. R.L. Newcomb [5] have introduced Quasi-H-closed modulo *I* in the year 1967. We have introduced g**-closed sets[4], separation axioms via g**-closed sets[5] and strongly g**-regular and strongly g**-normal spaces[6] and investigated many of their properties and in this paper we have introduced g**-Quasi-FH-closed and g**-Quasi-CH-closed and discussed their characteristics.

2. PRELIMINARIES

Definition 2.1: A subset A of a topological space (X, τ) is called

- 1) generalized closed (briefly g-closed)[2] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 2) generalized star closed (briefly g*-closed)[12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g- open in (X, τ) .
- 3) generalized star star closed (briefly g^{**} -closed)[6] if $cl(A) \subset U$ whenever $A \subset U$ and U is g^{*} open in (X, τ) .

Definition 2.2: [9] A topological space (X, τ) is said to be g^{**} -Lindelof if every g^{**} -open cover has a countable sub cover.

Definition 2.3: [7] The topological space (X, τ) is said to be g^{**} -additive if arbitrary union of g^{**} -closed sets is g^{**} -closed. Equivalently arbitrary intersection of g^{**} -open sets is g^{**} -open.

Definition 2.4: [7] A topological space (X, τ) is said to be $g^{**}-multiplicative$ if arbitrary intersection of $g^{**}-closed$ sets is $g^{**}-closed$. Equivalently arbitrary union of $g^{**}-open$ sets is $g^{**}-open$.

Definition 2.5: [9] The topological space (X, τ) is said to be g^{**} - finitely additive if finite union of g^{**} -closed sets is g^{**} -closed.

Definition 2.6:[3] An ideal I on a non empty set X is a collection of subsets of X which satisfies the following properties.(i) $A \in I$, $B \in I \implies A \cup B \in I$ (ii) $A \in I$, $B \subset A \implies B \in I$. A topological space (X, τ) with an ideal I on X is called an ideal topological space and is denoted by (X, τ, I) .

Sr. Pauline Mary Helen* et al./ q**-Quasi - FH-closed spaces and q**-Quasi - CH-closed spaces/IJMA- 3(12), Dec.-2012.

Definition 2.7: [8] An ideal topological space (X, τ, I) is said to be g^{**} -compact modulo I if for every g^{**} -open covering $\{U_{\alpha}\}_{\alpha\in\Delta}$ of X, there exists a finite subset Δ_0 of Δ such that $X-\bigcup_{\alpha\in\Delta_0}U_{\alpha}\in I$.

Definition 2.8: [10] An ideal topological space (X,τ) is said to be g^{**} -Lindelof modulo I if for every g^{**} -open cover $\{U_{\alpha}\}_{\alpha\in\Omega}$, there exists a countable subset Ω_0 such that $X-\bigcup_{\alpha\in\Omega_0}U_{\alpha}\in I$.

Definition 2.9: [7] A topological space (X, τ) is said to be a g^{**} - T_2 space if for every pair of distinct points x, y in X there exists disjoint g^{**} -open sets U and V in X such that $x \in U$ and $y \in V$.

Definition 2.10: [8] A topological space (X, τ) is said to be g^{**} -compact if every g^{**} -open covering of X contains a finite sub collection that also covers X. A subset A of X is said to be g^{**} -compact if every g^{**} -open covering of A contains a finite sub collection that also covers A

Definition 2.11: [7] Let A be a subset of X. A point $x \in X$ is said to be a g^{**} limit point of A if every g^{**} neighbourhood of x contains a point of A other than x.

Definition 2.12: [7] Let A be a subset of a topological space (X, τ) . g **cl(A) is defined to be the intersection of all g **-closed sets containing A.

If (X, τ) is g^{**} -multiplicative then g^{**} cl(A) is g^{**} -closed.

Definition 2.13: [9] A subset A of a space (X, τ) is said to be g^{**} -dense in X, if g^{**} cl(A) = X.

Definition 2.14: [7] Let (X, τ) be a topological space and A be a subset of X. A point $x \in A$ is said to be g^{**} interior point of A if there exists $g^{**} - open$ set U such that $x \in U \subseteq A$.

Definition 2.15: [7] Let A be a subset of a topological space (X, τ) . g^{**} int(A) is defined to be the union of all g^{**} – open sets contained in A.

If (X, τ) is g^{**} -multiplicative then g^{**} int(A) is g^{**} -open.

Definition 2.16: [11] A topological space (X, τ) is said to be a g^{**} -space if (X, τ) is g^{**} -finitely additive and g^{**} -multiplicative.

Definition 2.17: [1] A topological space (X, τ) is said to be Quasi-H-closed or QHC if every open cover of a space contains a finite sub collection whose closures cover the space X.

Definition 2.18: [5] Let (X, τ) be a topological space and I be an ideal on X. Then X is said to be Quasi-H-closed modulo I if for every open cover $U = \{U_{\alpha} \mid \alpha \in \Omega\}$ of X there exists a finite sub family $\{U_{\alpha_i} \mid i-1,2,....n\}$ of U such that $X - \bigcup_{i=1}^n cl(U_{\alpha_i}) \in I$.

Definition 2.19: [1] A T₂ space which is QHC is said to be H-closed.

Definition 2.20: [5] A space (X, τ, I) is called τ -boundary if $\tau \cap I = \{\varphi\}$.

Example 2.21: [5] Let X be an infinite set, $\tau = \{A \subseteq X / A^c \text{ is finite}\}$. $I_F = \{\text{ finite subsets of } X\}$. Then $\tau \cap I_F = \varphi$.

3. g**-Quasi – FH-closed spaces and g**-Quasi – CH-closed spaces

Definition 3.1 Given an ideal topological space (X, τ, I) , I is called g**-codense in X if G ** $O(X) \cap I = \{ \varphi \}$

Example 3.2: Let X be an infinite set with cofinite topology and $I_F = \{$ finite subsets of X $\}$. Then $G **O(X) \cap I_F = \{ \emptyset \}$

Definition 3.3: A space (X, τ) is said to be g^{**} -Quasi-FH-closed (briefly g^{**} -QFHC) if every g^{**} -open cover of X contains a finite sub collection whose g^{**} -closures cover X.

Definition 3.4: A g**-T₂ space which is g**-QFHC is said to be g**-FH-closed.

Definition 3.5: A space (X, τ) is said to be g^{**} -Quasi-CH-closed (briefly g^{**} -QCHC) if every g^{**} -open cover of X contains a countable sub collection whose g^{**} -closures cover X.

Definition 3.6: A g**-T₂ space which is g**-QCHC is said to be g**-CH-closed.

Theorem 3.7: Every g**-compact space is g**-QFHC.

Proof: Let $\{U_{\alpha} / \alpha \in \Omega\}$ be a g**-open cover for X. Then there exists $\alpha_1, \alpha_2, \ldots$ such that $X = \bigcup_{i=1}^n U_{\alpha_i}$ and this implies $X = \bigcup_{i=1}^n \overline{U_{\alpha_i}}$. Therefore X is g**-QFHC.

Note: Any finite space is g^{**} -compact and hence g^{**} -QFHC.

Theorem 3.8: Every g**-Lindelof space is g**-QCHC.

Proof: similar to the above.

Example 3.9: An infinite cofinite topological space (X, τ) is g^{**} -compact and hence g^{**} -QFHC.

Example 3.10: In infinite indiscrete topological space (X,τ) , all subsets are g^{**} -open and g^{**} -closed. $\{\{x\}/x\in X\}$ is a g^{**} -open cover which has no finite sub cover such that g^{**} -closures can cover X and hence (X,τ) is g^{**} -T₂ but not g^{**} -QFHC and hence not g^{**} -FH.

Example 3.11: A finite indiscrete topological space (X, τ) is g^{**} -T₂ and g^{**} -QFHC and hence it is g^{**} -FH-closed.

Example 3.12: An infinite, cofinite topological space is g^{**} -QFHC but not g^{**} -T₂ and hence it is not g^{**} -FH-closed.

Remark 3.13: Any g**-QFHC space is g**-QCHC space and g**-FH-closed space is g**-CH-closed. Converse need not be true as seen in the following example.

Example 3.14: A countably infinite indiscrete topological space is g^{**} -QCHC and g^{**} -CH-closed but not g^{**} -QFHC and g^{**} -FH-closed.

Definition 3.15: A subset A of (X, τ) is said to be nowhere g^{**} -dense if g^{**} int[g^{**} cl(A)] = φ .

Theorem 3.16: If A is g^{**} -closed then A is nowhere g^{**} -dense if and only if A^c is g^{**} -dense.

Proof: Let $x \in X$ and g **cl(A) = A. $\therefore g **int[g **cl(A)] = g **int[A] = \varphi$. Therefore every g **-open set containing x should intersect $A^c : A^c$ is g **-dense in X. Let A^c be g **-dense in X. $\therefore g **cl(A^c) = X$. For $x \in X$, every g **-open set containing x should intersect $A^c : g **int(A) = \varphi$. Therefore A is nowhere g **-dense.

Theorem 3.17: Let (X, τ) be a g^{**} -space. Then $g^{**}(I_n) = \{$ nowhere g^{**} -dense subsets of $X \}$ is an ideal in X.

Proof: Let $A \in g **(I_n)$ and $B \subseteq A$ then $g ** \operatorname{int}[g **cl(B)] \subseteq g ** \operatorname{int}[g **cl(A)] = \varphi$. $\therefore B \in g **(I_n)$. Let $A, B \in g **(I_n)$.

Sr. Pauline Mary Helen* et al./ q**-Quasi – FH-closed spaces and q**-Quasi – CH-closed spaces/IJMA- 3(12), Dec.-2012.

Under the given hypothesis, $g **cl(A \cup B) = g **cl(A) \cup g **cl(B)$.

$$\therefore g ** \inf[g ** cl(A \cup B) = g ** \inf[g ** cl(A) \cup g ** cl(B)] = g ** \inf[g ** cl(A)] \cup [g ** \inf[g ** cl(B)] = \varphi.$$

 $\therefore A \cup B \in g **(I_n)$. Therefore $g **(I_n)$ is an ideal.

Theorem 3.18: If an ideal topological space (X, τ, I) is g^{**} -multiplicative, g^{**} -compact modulo I and $G^{**}O(X) \cap I = \{\varphi\}$ then (X, τ) is g^{**} -QFHC.

Proof: Let $\{U_{\alpha} / \alpha \in \Omega\}$ be a g**-open cover for X. Therefore there exists $U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_n}$ such that $X - \bigcup_{i=1}^n U_{\alpha_i} \in I$.

Case (1): If
$$X - \bigcup_{i=1}^n U_{\alpha_i} = \varphi$$
, then $X = \bigcup_{i=1}^n U_{\alpha_i} \dots X = \bigcup_{i=1}^n g **cl(U_{\alpha_i})$ Therefore (X, τ) is g^{**} -QFHC.

Case (2): If
$$X - \bigcup_{i=1}^{n} U_{\alpha_i} \neq \emptyset$$
, then $X - \bigcup_{i=1}^{n} U_{\alpha_i} = \bigcup_{\alpha \neq \alpha_i} U_{\alpha} \in I$. But $\bigcup_{\alpha \neq \alpha_i} U_{\alpha} \in G^{**}O(X)$ (since X is g^{**} -

$$\text{multiplicative).} \ \ \therefore \ \underset{\alpha \neq \alpha_i}{\cup} \ U_\alpha \in G \ ^**O(X) \cap I = \{ \varphi \}. \ \ \vdots \ \ X = \underset{i=1}{\overset{n}{\cup}} U_{\alpha_i} \ \text{and this implies} \ \ X = \underset{i=1}{\overset{n}{\cup}} g \ ^**cl(U_{\alpha_i}).$$

Theorem 3.19: Let (X,τ) be a g^{**} -multiplicative space. If (X,τ,I) is g^{**} -Lindeloff modulo I and $G^{**}O(X) \cap I = \{\varphi\}$ then (X,τ) is g^{**} -QCHC.

Proof: Similar to the above proof.

Theorem 3.20: Let (X, τ) be a g**-space.

- (1) Then (X, τ) is g^{**} -compact modulo $g^{**}(I_n)$ if and only if (X, τ) is g^{**} -QFHC.
- (2) If (X,τ) is g^{**} T₂ then (X,τ) is g^{**} -compact modulo $g^{**}(I_n)$ if and only if (X,τ) is g^{**} -FH-closed.

Proof

(1) Necessity: (1) Let (X,τ) be g^{**} -compact modulo $g^{**}(I_n)$ and $\{U_\alpha\}_{\alpha\in\Omega}$ be a g^{**} -open cover for X. Then there exists $U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n}$ such that $X = \bigcup_{i=1}^n U_{\alpha_i} \in g^{**}(I_n) \ldots X = \bigcup_{i=1}^n U_{\alpha_i}$ is nowhere g^{**} -dense in X and it is g^{**} -closed. Therefore $\left[X = \bigcup_{i=1}^n U_{\alpha_i}\right]^c$ is g^{**} -dense in X. Hence $g^{**}cl(\bigcup_{i=1}^n U_{\alpha_i}) = X$. In a g^{**} -space, $g^{**}cl(\bigcup_{i=1}^n U_{\alpha_i}) = \bigcup_{i=1}^n g^{**}cl(U_{\alpha_i}) \ldots X = \bigcup_{i=1}^n g^{**}cl(U_{\alpha_i})$. Therefore (X,τ) is g^{**} -QFHC.

Sufficiency: Let (X, τ) be g^{**} -QFHC.

Since (X,τ) is g^{**} -space, $g^{**}(I_n)$ is an ideal in X. Let $\{U_\alpha/\alpha\in\Omega\}$ be a g^{**} -open cover. Then there exists $\alpha_1,\alpha_2....\alpha_n$ such that $X=\bigcup_{i=1}^n g^{**}cl(U_{\alpha_i})=g^{**}cl\bigcup_{i=1}^n U_{\alpha_i}$... $\bigcup_{i=1}^n U_{\alpha_i}$ is g^{**} -dense in X. ... $\left[\bigcup_{i=1}^n U_{\alpha_i}\right]^c$ is nowhere g^{**} -dense in X by theorem 3.16 and so $X-\bigcup_{i=1}^n U_{\alpha_i}\in g^{**}(I_n)$.

(2) By (1), (X,τ) is g^{**} -compact modulo g^{**} (I_n) if and only if (X,τ) is g^{**} -QFHC. By definition (3.4), (X,τ) is g^{**} -compact modulo g^{**} (I_n) if and only if it is g^{**} FH-closed.

Theorem 3.21: Let (X, τ) be g^{**} -multiplicative, g^{**} -countably additive space. Then

1) (X, τ) is g^{**} -QCHC space if and only if (X, τ) is g^{**} -Lindeloff modulo $g^{**}(I_n)$.

2) If (X,τ) is g^{**} - T_2 then (X,τ) is g^{**} -Lindeloff modulo g^{**} - (I_n) if and only if (X,τ) is g^{**} -CH-closed.

Proof: Since
$$(X, \tau)$$
 is g^{**} -multiplicative and g^{**} -countably additive, $\bigcup_{i=1}^{\infty} g^{**}cl(U_{\alpha_i}) = g^{**}cl\bigcup_{i=1}^{\infty} U_{\alpha_i}$

The rest of the proof is similar to the proof of theorem (3.20)

Definition 3.24: A space (X, τ) is said to be g^{**} -meager or g^{**} - first category if it is a countable union of nowhere g^{**} -dense sets.

Theorem 3.25: Let (X, τ) be a g^{**} -space and let $g^{**}(I_m) = \{g^{**}$ -meager subsets of $X\}$. Then $g^{**}(I_m)$ is an ideal in X.

Proof: Let $A \in g^{**}(I_m)$ and $B \subseteq A$. Then $A = \bigcup_{i=1}^{\infty} G_i$ where each G_i is nowhere g^{**} -dense subsets. Now $B = \bigcup_{i=1}^{\infty} (B \cap G_i)$. and $g^{**}cl(B \cap G_i) \subseteq g^{**}cl(B) \cap g^{**}cl(G_i)$.

Therefore

$$g ** int[g ** cl(B \cap G_i)] \subseteq g ** int[g ** cl(B) \cap g ** cl(G_i)] = g ** int[g ** cl(B)] \cap g ** int[g ** cl(G_i)]$$

Since X is a g**-space. Therefore $B \cap G_i$ is nowhere g**-dense for all i and so $B \in g$ ** (I_m) . Obviously $A, B \in g$ ** $(I_m) \Rightarrow A \cup B \in g$ ** (I_m) . Therefore g ** (I_m) is an ideal in X.

Definition 3.26: A topological space (X, τ) is said to be of g^{**} -second category if it is not of g^{**} -first category.

Definition 3.27: A g^{**} -space (X, τ) is said to be a g^{**} -Baire space if $G^{**}O(X) \cap g^{**}(I_m) = \{\varphi\}$.

Theorem 3.28: Let (X, τ) be a g**-baire space. Then

- (1) (X,τ) is g^{**} -compact modulo $g^{**}(I_m)$ if and only if (X,τ) is g^{**} -QFHC.
- (2) In addition if (X, τ) is g^{**} -T₂ then (X, τ) is g^{**} -compact modulo $g^{**}(I_m)$ if and only if (X, τ) is g^{**} -FH-closed.

Proof: (1) Let (X,τ) be g^{**} -Baire space and g^{**} -compact modulo $g^{**}(I_m)$.Let $\{U_\alpha\}$ be a g^{**} -open cover for

X. Then there exists $U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_n}$ such that $X - \bigcup_{i=1}^n U_{\alpha_i} \in g **(I_m)$.

Case (i): $X - \bigcup_{i=1}^{n} U_{\alpha_i} = \varphi$ then $X = \bigcup_{i=1}^{n} g **cl(U_{\alpha_i})$ and so it is g**-QFHC.

Case (ii):
$$X - \bigcup_{i=1}^n U_{\alpha_i} \neq \varphi$$
 then $X - \bigcup_{i=1}^n U_{\alpha_i} = \bigcup_{\alpha \neq \alpha} U_{\alpha_i} \in G **O(X)$ (since (X, τ) is a g^{**} -space).

$$\therefore X - \bigcup_{i=1}^{n} U_{\alpha_i} \in G^{**}O(X) \cap g^{**}(I_m) = \varphi. \quad \therefore X = \bigcup_{i=1}^{n} g^{**}cl(U_{\alpha_i}). \text{ (by case(i))}. \text{ Therefore X is } g^{**}\text{-QFHC}.$$

Conversely, let (X,τ) be g^{**} -QFHC. By theorem (3.20), (X,τ) is g^{**} -compact modulo $g^{**}(I_n)$.

This implies that (X,τ) is g^{**} -compact modulo $g^{**}(I_m)$, since $g^{**}(I_n) \subseteq g^{**}(I_m)$. (2)Follows from (1) and definition of g^{**} -FH-closed space.

Theorem 3.29: Let (X, τ) be a g**-baire space which is g**-countably additive. Then

(1) (X,τ) is g^{**} -Lindeloff modulo $g^{**}(I_m)$ if and only if (X,τ) is g^{**} -QCHC.

(2) In addition if (X, τ) is g^{**} -T₂ then (X, τ) is g^{**} -Lindeloff modulo $g^{**}(I_m)$ if and only if (X, τ) is g^{**} -CH-closed.

Proof: Similar to the above proof.

4. g**-Quasi-H-closed modulo an ideal

Definition 4.1: An ideal topological space (X, τ, I) is said to be g^{**} -QFHC modulo an ideal if for every g^{**} -open cover $\{U_{\alpha} \mid \alpha \in \Omega\}$ of X there exists a finite sub family $\{U_{\alpha_i} \mid i=1,2,....n\}$ such that $X - \bigcup_{i=1}^n g^{**} cl(U_{\alpha}) \in I$. Such a sub family is said to be proximate g^{**} -sub cover modulo I.

Definition 4.2: A subset A of (X, τ) is said to be g^{**} -pre-open if $A \subseteq g^{**}(g^{**}$ int(A)). The collection of all g^{**} -preopen sets is denoted by G^{**} -PO(X).

Definition 4.3: An ideal I in (X, τ) is said to be completely g^{**} -codense if $I \cap G^{**}PO(X) = \varphi$.

Note: (1) $G^{**}O(X) \subseteq G^{**}PO(X)$.

(2)
$$I \cap G **PO(X) = \varphi \Rightarrow I \cap G **O(X) = \varphi$$
.

Therefore every completely g^{**} -codense ideal is g^{**} -codense. But the converse is not true as seen in the following example.

Example 4.4: Consider R with cofinite topology. A subset is g^{**} -closed if and only if it is finite. Let I_c be the ideal of all countable subsets. Then $G^{**}O(R) \cap I_c = \varphi$ and so I_c is g^{**} -codense.

$$g^{**}cl(Q) = R. \ g^{**}int(g^{**}cl(Q)) = g^{**}int(R) = R. \ \therefore Q \in G^{**}PO(R). \ \therefore Q \in I_c \cap G^{**}PO(R).$$

Therefore I_c is not completely g^{**} -codense in this space.

Theorem 4.5: For a space (X, τ) , the following statements are equivalent.

- (1) (X,τ) is g**-QFHC.
- (2) (X, τ) is g^{**} -QFHC modulo φ .
- (3) (X, τ) is g**-QFHC modulo I_F

If (X, τ) is a g**-space then these are equivalent to

(4) (X, τ) is g**-QFHC modulo I for every g**-codense ideal I.

Proof: (1) \Leftrightarrow (2) is obvious. (2) \Rightarrow (3) is obvious.

(3) \Rightarrow (1) : Let $\{U_{\alpha}\}$ be a g**-open cover for X. Then there exists $U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_n}$ such that

$$X - \bigcup_{i=1}^{n} g **cl(U_{\alpha_{i}}) \in I_{F}. \text{ Let } X - \bigcup_{i=1}^{n} g **cl(U_{\alpha_{i}}) = \{x_{1}, x_{2}, \dots, x_{k}\}. \text{ Choose } U_{\beta_{i}} \text{ such that } x_{i} \in U_{\beta_{i}}.$$

Let
$$\Delta_0 = \{\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_k\}$$
. Then Δ_0 is finite and $X = \bigcup_{\alpha \in \Delta_0} g **cl(U_\alpha)$.

Therefore X is g**-OFHC.

- $(1) \Rightarrow (4)$ is obvious.
- $(4) \Rightarrow (1)$: Let I be g^{**} -codense ideal. Let $\{U_{\alpha}\}_{\alpha \in \Omega}$ be a g^{**} -open cover in X. Then there exists

$$\{U_{\alpha_i}/i=1,2....n\}$$
 such that $X-\bigcup_{i=1}^n g^{**}cl(U_{\alpha_i})\in I$. But $X-\bigcup_{i=1}^n g^{**}cl(U_{\alpha_i})\in G^{**}O(X)$, since X is a

g**-space. But
$$G **O(X) \cap I = \varphi$$
. $\therefore X = \bigcup_{i=1}^n g **cl(U_{\alpha_i})$. $\therefore (X, \tau)$ is g**-QFHC.

Theorem 4.6: For a topological space (X, τ) the following statements are equivalent.

- (1) (X, τ) is g**-QCHC.
- (2) (X, τ) is g^{**} -QCHC modulo $\{\phi\}$.
- (3) (X, τ) is g**-QCHC modulo $\{I_c\}$.

Sr. Pauline Mary Helen* et al./ q**-Quasi – FH-closed spaces and q**-Quasi – CH-closed spaces/IJMA- 3(12), Dec.-2012.

If (X,τ) is a g**-multiplicative and g**-countably additive then these are equivalent to (4) (X,τ) is g**-QCHC modulo I for every g**-codense ideal I.

Proof: Similar to the above proof, since (X, τ) is g^{**} -countably additive implies $\bigcup_{i=1}^{\infty} g^{**}cl(U_{\alpha_i})$ is g^{**} -closed.

Remark 4.7: In theorem (4.6) the condition I is g^{**} -codense is necessary as seen in the following example.

Example 4.8: Consider R with indiscrete topology τ . Let $A = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a finite subset of R. then $I = \wp(R - A)$ is an ideal in R. Since all subsets are g^{**} -open, $G^{**}O(X) \cap I \neq \varphi$.

Therefore I is not g^{**} -codense. Let $\{U_{\alpha} \mid \alpha \in \Omega\}$ be a g^{**} -open cover for X. Choose U_{α_i} such that $a_i \in U_{\alpha_i}$. Then $R - \bigcup_{i=1}^n U_{\alpha_i} \in I$. But $R - \bigcup_{i=1}^n g **cl(U_{\alpha_i}) \subseteq R - \bigcup_{i=1}^n U_{\alpha_i} \dots R - \bigcup_{i=1}^n g **cl(U_{\alpha_i}) \in I$.

Therefore R is g^{**} -QFHC modulo I. $\{\{x\}/x \in R\}$ is a g^{**} -open cover which has no finite sub cover whose g^{**} -closures cover X. Therefore R is not g^{**} -QFHC.

Remark 4.9: In theorem (4.7) the condition I is g^{**} -codense is necessary as seen in the following example.

Example 4.10: In example (4.8), (R, τ) is g^{**} -QCHC modulo I but not g^{**} -QCHC. The following theorem contains a number of characterizations of g^{**} -QFHC modulo I spaces.

Theorem 4.11: For a topological space (X, τ) and an ideal I on X, the following statements are equivalent.

- (1) (X, τ) is G^{**} -QFHC modulo I.
- (2) For each family $A' = \{A_{\alpha} \mid \alpha \in \Omega\}$ of g^{**} -closed sets having empty intersection there exists a finite sub family $\{A_{\alpha_1}, A_{\alpha_2}, \dots, A_{\alpha_n}\}$ such that $\bigcap_{i=1}^n g^{**} \operatorname{int}(A_{\alpha_i}) \in I$.
- (3) For each family $A' = \{A_{\alpha} \mid \alpha \in \Omega\}$ of g^{**} -closed sets such that $\{g^{**} \text{int}(A_{\alpha}) \mid \alpha \in \Omega\}$ with FIP modulo I one has, $\bigcap_{A \in A'} A \neq \emptyset$.

Proof: (1) \Rightarrow (2) Let $A' = \{A_{\alpha} \mid \alpha \in \Omega\}$ be a family of g^{**} -closed sets such that $\bigcap_{\alpha \in \Omega} A_{\alpha} = \varphi$. Then $X = \bigcup_{\alpha \in \Omega} (G_{\alpha})$ where $G_{\alpha} = X - A_{\alpha}$ is g^{**} -open. By (1), there exists $\{G_{\alpha_{1}}, G_{\alpha_{2}}, \dots, G_{\alpha_{n}}\}$ such that $X - \bigcup_{i=1}^{n} g^{**} cl(G_{\alpha_{i}}) \in I$. (ie) $\bigcap_{i=1}^{n} [g^{**} cl(G_{\alpha_{i}})]^{c} \in I$. But $[g^{**} cl(G_{\alpha_{i}})]^{c} = X - g^{**} cl(G_{\alpha_{i}})$ which is equal to $g^{**} int(X - G_{\alpha_{i}}) = g^{**} int(A_{\alpha_{i}})$. $\therefore \bigcap_{i=1}^{n} g^{**} int(A_{\alpha_{i}}) \in I$.

(2) \Rightarrow (3): Let A' be a family of g^{**} -closed sets such that $\{g^{**} \operatorname{int}(A_{\alpha}) / \alpha \in \Omega\}$ has FIP modulo I.

Suppose $\bigcap_{\alpha \in \Omega} A_{\alpha} = \varphi$. Then by (2) there exists a finite sub family $\{A_{\alpha_1}, A_{\alpha_2}, \dots, A_{\alpha_n}\}$ such that $\bigcap_{i=1}^n g^{**} \operatorname{int}(A_{\alpha_i}) \in I$ which is a contradiction. $\therefore \bigcap_{\alpha \in \Omega} A_{\alpha} \neq \varphi$.

(3) \Rightarrow (1): Let $\{U_{\alpha} \mid \alpha \in \Omega\}$ be a g^{**} -open cover for X. To prove that there exists a finite sub family $\{U_{\alpha_i} \mid i=1,2,\ldots,n\}$ such that $X - \bigcup_{i=1}^n g^{**}cl(U_{\alpha_i}) \in I$. If not there is no finite sub family with this property.

Now $\{X-U_{\alpha} \mid \alpha \in \Omega\}$ is a family of g**-closed sets. For any finite sub family $U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n}$

 $X - \bigcup_{i=1}^{n} g **cl(U_{\alpha_i}) \notin I$. (ie) $\bigcap_{i=1}^{n} g **int(X - U_{\alpha_i}) \notin I$. By (3), $\bigcap_{\alpha \in \Omega} (X - U_{\alpha}) \neq \varphi$. $\therefore \bigcup_{\alpha \in \Omega} (U_{\alpha}) \neq X$ which is a contradiction. Therefore (X, τ) is g **-QFHC.

Theorem 4.12: For a topological space (X, τ) and an ideal I on X, the following statements are equivalent.

- (1) (X, τ) is G^{**} -QCHC modulo I.
- (2) For each family $A' = \{A_{\alpha} \mid \alpha \in \Omega\}$ of g^{**} -closed sets having empty intersection there exists a countable sub family $\{A_{\alpha_1}, A_{\alpha_2}, \dots \}$ such that $\bigcap_{i=1}^{\infty} g^{**} \operatorname{int}(A_{\alpha_i}) \in I$.
- (3) For each family $A' = \{A_{\alpha} \mid \alpha \in \Omega\}$ of g^{**} -closed sets such that $\{g^{**}int(A_{\alpha}) \mid \alpha \in \Omega\}$ with CIP modulo I one has $\bigcap_{A \in A'} A \neq \emptyset$.

Proof: Similar to the above proof.

REFERENCES

- [1] T.R.Hamlett and D.Jankovic, compactness with respect an ideal, Boll. U.M.I (7)4-B (1990), 849-861.
- [2] James R. Munkres, Topology, Ed. 2, PHI Learning Pvt. Ltd. New Delhi, 2010.
- [3] K.Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [4] N.Levine, Rend. Cire. Math. Palermo, 19 (1970), 89 96.
- [5] R.L.Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ. of Cal. At Santa Barbara, 1967.
- [6] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, g**-closed sets in topological spaces, IJM A, 3(5), (2012), 1-15.
- [7] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, Seperation axioms via g**-closed sets in topological spaces and in ideal topological spaces, IJCA, 2(4), (2012), 157-171.
- [8] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, g^{**} -compact space and g^{**} compact space modulo I, IJCA, 2(4),(2012),123-133.
- [9] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, strongly g**-regular and strongly g**-normal spaces, IJAST. (Accepted).
- [10] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani,g**-Lindel of modulo an Ideal, IJAST, (Submitted)
- [11] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, Generalization of Urysohn's Lemma and Tietze Extension Theorem via g**-closed sets, IJAST, (Submitted)
- [12] M.K.R.S. Veera Kumar, Mem. Fac. Sci. Kochi Univ. (Math.), 21 (2000), 1 19.

Source of support: Nil, Conflict of interest: None Declared