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ABSTRACT 
In this paper we have introduced τ - g** boundary, g**-Quasi-FH-closed, g**-FH-closed, g**-Quasi-CH-closed, g**-
CH-closed, g**-meager and few results on these new definitions have been established. 
 
Key Words: τ - g** boundary, g**-Quasi-FH-closed, g**-FH-closed, g**-Quasi-CH-closed, g**-CH-closed, g**-
meager. 
 
 
1. INTRODUCTION 
Levine [2] and M.K.R.S. Veerakumar [7] introduced the class of g-closed sets and g*-closed sets in the year 1970 and 
1991 respectively. T.R. Hamlett and D. Jankovic[1] have introduced the class of Quasi-H-closed and H-closed sets in 
the year 1990. R.L. Newcomb [5] have introduced Quasi-H-closed modulo I in the year 1967. We have introduced g**-
closed sets[4], separation axioms via g**-closed sets[5] and strongly g**-regular and strongly g**-normal spaces[6] 
and investigated many of their properties and in this paper we have introduced g**-Quasi-FH-closed and g**-Quasi-
CH-closed and discussed their characteristics. 
 
2. PRELIMINARIES 
Definition 2.1: A subset A of a topological space(X, τ) is called  
1) generalized closed (briefly g-closed)[2] if cl(A) ⊆ U whenever A ⊆ U  and U is open in (X, τ). 
2) generalized star closed (briefly g*-closed)[12] if cl(A) ⊆ U whenever A ⊆ U  and U is g- open in (X, τ).  
3) generalized star star closed (briefly g**-closed)[6] if cl(A) ⊆ U whenever A ⊆ U  and U is g*- open in (X, τ). 
 
Definition 2.2: [9] A topological space ),( τX is said to be g**-Lindelof if every g**-open cover has a countable sub 
cover. 
 
Definition 2.3: [7] The topological space (X, τ) is said to be g**-additive if arbitrary union of g**-closed sets is g**-
closed. Equivalently arbitrary intersection of g**-open sets is g**-open. 
 
Definition 2.4: [7] A topological space ),( τX  is said to be  tivemultiplicag −**  if arbitrary intersection of  

closedg −**  sets is closedg −** . Equivalently arbitrary union of  openg −**  sets is openg −** . 
 
Definition 2.5: [9] The topological space (X, τ) is said to be g**- finitely additive if finite union of g**-closed sets is 
g**-closed. 
 
Definition 2.6:[3] An ideal I  on a non empty set X  is a collection of subsets of X  which satisfies the following 
properties.(i) IA∈ , IB∈  ⇒  IBA ∈∪ (ii) IA∈ , AB ⊂  ⇒  IB∈ .A topological space ),( τX  with an 
ideal I  on X  is called an ideal topological space and is denoted by ),,( IX τ . 
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Definition 2.7: [8] An ideal topological space ),,( IX τ is said to be g**-compact modulo I if for every g**-open 

covering ∆∈αα }{U of X, there exists a finite subset 0∆ of ∆ such that .
0

IUX ∈∪−
∆∈ αα  

 
Definition 2.8: [10] An ideal topological space ),( τX is said to be g**-Lindelof modulo I if for every g**-open cover 

Ω∈αα }{U , there exists a countable subset 0Ω  such that .
0

IUX ∈∪−
Ω∈ αα  

 
Definition 2.9: [7] A topological space ),( τX  is said to be a g**- T2 space if for every pair of distinct points yx, in 
X there exists disjoint g**-open sets U and V in X such that Ux∈   and .Vy∈  
 
Definition 2.10: [8] A topological space ),( τX  is said to be g**-compact if every g**-open covering of X contains a 
finite sub collection that also covers X.  A subset A of X is said to be g**-compact if every g**-open covering of A 
contains a finite sub collection that also covers A 
 
Definition 2.11: [7] Let A be a subset of X. A point Xx∈  is said to be a −**g  limit point of A if every 

oodneighbourhg −**  of x  contains a point of A other than x . 
 
Definition 2.12: [7] Let A be a subset of a topological space ),( τX . )(** Aclg  is defined to be the intersection of 
all closedg −**  sets containing A.  
 
If ),( τX is g**-multiplicative then g**cl(A) is g**-closed. 
 
Definition 2.13: [9] A subset A of a space ),( τX is said to be g**-dense in X, if g**cl(A) = X. 
 
Definition 2.14: [7] Let ),( τX  be a topological space and A be a subset of X . A point Ax∈   is said to be **g  - 
interior point of A if there exists openg −**  set U such that AUx ⊆∈ . 
 
Definition 2.15: [7] Let A be a subset of a topological space ),( τX . )int(** Ag  is defined to be the union of all 

openg −**  sets contained in A.  
 
If ),( τX is g**-multiplicative then g**int(A) is g**-open. 
 
Definition 2.16: [11] A topological space ),( τX is said to be a g**-space if ),( τX is g**-finitely additive and g**-
multiplicative. 
 
Definition 2.17: [1] A topological space ),( τX is said to be Quasi-H-closed or QHC if every open cover of a space 
contains a finite sub collection whose closures cover the space X. 
 
Definition 2.18: [5] Let ),( τX be a topological space and I be an ideal on X. Then X is said to be Quasi-H-closed 

modulo I if for every open cover }/{ Ω∈= ααUU of X there exists a finite sub family },.......2,1/{ niU
i

−α of U 

such that .)(
1

IUclX
i

n

i
∈∪−

= α  

 
Definition 2.19: [1] A T2 space which is QHC is said to be H-closed.  
 
Definition 2.20: [5] A space ),,( IX τ  is called τ-boundary if }.{ϕτ =∩ I  
 
Example 2.21: [5] Let X be an infinite set, cAXA /{ ⊆=τ is finite}. {=FI finite subsets of X}. Then 

ϕτ =∩ FI . 
 
3. g**-Quasi – FH-closed spaces and g**-Quasi – CH-closed spaces 
Definition 3.1 Given an ideal topological space ),,( IX τ , I is called g**-codense in X if }{)(** ϕ=∩ IXOG   
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Example 3.2: Let X be an infinite set with cofinite topology and {=FI finite subsets of X}. Then 

}{)(** ϕ=∩ FIXOG  
 
Definition 3.3: A space ),( τX is said to be g**-Quasi-FH-closed (briefly g**-QFHC) if every g**-open cover of X 
contains a finite sub collection whose g**-closures cover X. 
 
Definition 3.4: A g**-T2 space which is g**-QFHC is said to be g**-FH-closed.  
 
Definition 3.5: A space ),( τX is said to be g**-Quasi-CH-closed (briefly g**-QCHC) if every g**-open cover of X 
contains a countable sub collection whose g**-closures cover X. 
 
Definition 3.6: A g**-T2 space which is g**-QCHC is said to be g**-CH-closed.  
 
Theorem 3.7: Every g**-compact space is g**-QFHC. 
 

Proof: Let }/{ Ω∈ααU be a g**-open cover for X. Then there exists ,........., 21 αα such that 
i

UX
n

i α1=
∪= and this 

implies .
1 i
UX

n

i α=
∪= Therefore X is g**-QFHC. 

 
Note: Any finite space is g**-compact and hence g**-QFHC. 
 
Theorem 3.8: Every g**-Lindelof space is g**-QCHC. 
 
Proof: similar to the above. 
 
Example 3.9: An infinite cofinite topological space ),( τX  is g**-compact and hence g**-QFHC. 
 
Example 3.10: In infinite indiscrete topological space ),( τX  , all subsets are g**-open and g**-closed. 

}/}{{ Xxx ∈ is a g**-open cover which has no finite sub cover such that g**-closures can cover X and hence 
),( τX is g**-T2 but not g**-QFHC  and hence not g**-FH. 

 
Example 3.11: A finite indiscrete topological space ),( τX is g**-T2 and g**-QFHC and hence it is g**-FH-closed. 
 
Example 3.12: An infinite, cofinite topological space is g**-QFHC but not g**-T2 and hence it is not g**-FH-closed. 
 
Remark 3.13: Any g**-QFHC space is g**-QCHC space and g**-FH-closed space is g**-CH-closed. Converse need 
not be true as seen in the following example. 
 
Example 3.14: A countably infinite indiscrete topological space is g**-QCHC and g**-CH-closed but not g**-QFHC 
and g**-FH-closed. 
 
Definition 3.15: A subset A of ),( τX is said to be nowhere g**-dense if g**int[g**cl(A)] = φ. 
 
Theorem 3.16: If A is g**-closed then A is nowhere g**-dense if and only if cA is g**-dense. 
 
Proof: Let Xx∈ and .)(** AAclg = .]int[**)](**int[** ϕ==∴ AgAclgg Therefore every g**-open set 

containing x should intersect cA . cA∴ is g**-dense in X. Let cA be g**-dense in X. .)(** XAclg c =∴ For 

Xx∈ , every g**-open set containing x  should intersect .cA  .)int(** ϕ=∴ Ag  Therefore A is nowhere g**-
dense. 
 
Theorem 3.17: Let ),( τX be a g**-space. Then {)*(* =nIg nowhere g**-dense subsets of X} is an ideal in X. 
 
Proof: Let )*(* nIgA∈ and AB ⊆ then .)](**int[**)](**int[** ϕ=⊆ AclggBclgg ).*(* nIgB∈∴
Let ).*(*, nIgBA ∈  
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Under the given hypothesis, ).(**)(**)(** BclgAclgBAclg ∪=∪  
 

=∪∴ )(**int[** BAclgg )](**)(**int[** BclgAclgg ∪  

                                                ϕ=∪= )](**int[**[)](**int[** BclggAclgg . 
 

).*(* nIgBA ∈∪∴ Therefore )*(* nIg is an ideal. 
 
Theorem 3.18: If an ideal topological space ),,( IX τ is g**-multiplicative, g**-compact modulo I and  

}{)(** ϕ=∩ IXOG then ),( τX is g**-QFHC. 
 
Proof: Let }/{ Ω∈ααU be a g**-open cover for X. Therefore there exists 

n
UUU ααα .,.........,

21
such that 

.
1

IUX
i

n

i
∈∪−

= α  

Case (1): If ,
1

ϕα =∪−
= i

UX
n

i
then )(**.

11 ii
UclgXUX

n

i

n

i αα ==
∪=∴∪=  Therefore ),( τX is g**-QFHC. 

Case (2): If ,
1

ϕα ≠∪−
= i

UX
n

i
then  .

1
IUUX

i
i

n

i
∈∪=∪−

≠= αααα  But )(** XOGU
i

∈∪
≠ ααα

(since X is g**-

multiplicative). }.{)(** ϕααα
=∩∈∪∴

≠
IXOGU

i
i

UX
n

i α1=
∪=∴ and this implies ).(**

1 i
UclgX

n

i α=
∪=  

 
Theorem 3.19: Let ),( τX  be a g**-multiplicative space. If ),,( IX τ is g**-Lindeloff modulo I and 

}){)(** ϕ=∩ IXOG then ),( τX is g**-QCHC. 
 
Proof: Similar to the above proof. 
 
Theorem 3.20: Let ),( τX be a g**-space. 

(1) Then ),( τX is g**-compact modulo g**( )nI if and only if ),( τX is g**-QFHC. 

(2) If ),( τX is g** T2 then ),( τX is g**-compact modulo g**( )nI if and only if ),( τX is g**-FH- closed. 
 
Proof: 
(1) Necessity: (1) Let  ),( τX be g**-compact modulo g**( )nI and Ω∈αα }{U  be a g**-open cover for X. Then there 

exists 
n

UUU ααα ,.........,
21

such that 
ii

UXIgUX
n

in

n

i αα 11
).*(*

==
∪−∴∈∪− is nowhere g**-dense in X and it is 

g**-closed. Therefore 
cn

i i
UX 



 ∪−

= α1
is g**-dense in X. Hence .)(**

1
XUclg

i

n

i
=∪

= α In a g**-space, 

).(**)(**
11 ii

UclgUclg
n

i

n

i αα ==
∪=∪ ).(**

1 i
UclgX

n

i α=
∪=∴ Therefore ),( τX  is g**-QFHC. 

 
Sufficiency: Let ),( τX be g**-QFHC. 
 
Since ),( τX is g**-space, g**( )nI is an ideal in X. Let }/{ Ω∈ααU be a g**-open cover. Then there exists 

nααα ..........., 21 such that 



∪=∪=
== ii

UclgUclgX
n

i

n

i αα 11
**)(** .

i
U

n

i α1=
∪∴ is g**-dense in X. 

cn

i i
U 



∪∴
= α1

is 

nowhere g**-dense in X by theorem 3.16 and so ).*(*
1 n

n

i
IgUX

i
∈∪−

= α  

(2) By (1), ),( τX is g**-compact modulo g** ( )nI if and only if ),( τX is g**-QFHC. By definition (3.4), ),( τX is 

g**-compact modulo g** ( )nI if and only if it is g** FH-closed. 
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Theorem 3.21: Let ),( τX be g**-multiplicative, g**-countably additive space. Then   

1) ),( τX  is g**-QCHC space if and only if ),( τX is g**-Lindeloff  modulo g**( )nI . 

2) If ),( τX is g**-T2 then ),( τX is g**-Lindeloff modulo g**- ( )nI if and only if ),( τX is g**-CH-closed. 

Proof: Since ),( τX  is g**-multiplicative and g**-countably additive, 



∪=∪
∞

=

∞

= ii
UclgUclg

ii αα 11
**)(**  

 
The rest of the proof is similar to the proof of theorem (3.20) 
 
Definition 3.24: A space ),( τX is said to be g**-meager or g**- first category if it is a countable union of nowhere 
g**-dense sets. 
 
Theorem 3.25: Let ),( τX be a g**-space and let {)*(* =mIg g**-meager subsets of  X}. Then )*(* mIg is an 
ideal in X. 

Proof: Let )*(* mIgA∈ and AB ⊆ . Then ii
GA

∞

=
∪=

1
where each iG   is nowhere g**-dense subsets. Now

).(
1

i
i

GBB ∩=
∞

=
  and ).(**)(**)(** ii GclgBclgGBclg ∩⊆∩  

 
Therefore   

),(**int[**)](**int[**)](**)(**int[**)](**int[** iii GclggBclggGclgBclggGBclgg ∩=∩⊆∩
 
Since X is a g**-space. Therefore iGB ∩  is nowhere g**-dense for all i  and so ).*(* mIgB∈ Obviously 

).*(*)*(*, mm IgBAIgBA ∈∪⇒∈  Therefore )*(* mIg is an ideal in X. 
 
Definition 3.26: A topological space ),( τX is said to be of g**-second category if it is not of g**-first category. 
 
Definition 3.27: A g**-space ),( τX is said to be a g**-Baire space if }.{)*(*)(** ϕ=∩ mIgXOG  

Theorem 3.28: Let ),( τX be a g**-baire space. Then 

(1) ),( τX is g**-compact modulo )*(* mIg  if and only if ),( τX is g**-QFHC. 

(2) In addition if ),( τX is g**-T2 then ),( τX is g**-compact modulo )*(* mIg  if and only if ),( τX is g**-FH-
closed. 

 
Proof: (1) Let ),( τX  be g**-Baire space and g**-compact modulo  )*(* mIg .Let  }{ αU  be a g**-open cover for 

X. Then there exists 
n

UUU ααα ,.........,
21

 such that ).*(*
1 m

n

i
IgUX

i
∈∪−

= α . 

Case (i): ϕα =∪−
= i

UX
n

i 1
 then )(**

1 i
UclgX

n

i α=
∪= and so it is g**-QFHC. 

Case (ii): ϕα ≠∪−
= i

UX
n

i 1
 then )(**

1
XOGUUX

i
i

i

n

i
∈∪=∪−

≠= αααα  (since ),( τX is a g**-space). 

.)*(*)(**
1

ϕα =∩∈∪−∴
= m

n

i
IgXOGUX

i
 ).(**

1 i
UclgX

n

i α=
∪=∴  (by case(i)). Therefore X is g**-QFHC. 

 
Conversely, let ),( τX  be g**-QFHC. By theorem (3.20), ),( τX is g**-compact modulo )*(* nIg .  

 
This implies that ),( τX is g**-compact modulo )*(* mIg , since ).*(*)*(* mn IgIg ⊆

 
(2)Follows from (1) and 

definition of g**-FH-closed space. 
 
Theorem 3.29: Let ),( τX be a g**-baire space which is g**-countably additive. Then 

(1) ),( τX is g**-Lindeloff modulo )*(* mIg  if and only if ),( τX isg**-QCHC. 
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(2) In addition if ),( τX is g**-T2 then ),( τX is g**-Lindeloff modulo  )*(* mIg  if and only if ),( τX is g**-

CH-closed. 
 
Proof: Similar to the above proof. 
 
4. g**-Quasi-H-closed modulo an ideal 
Definition 4.1: An ideal topological space ),,( IX τ is said to be g**-QFHC modulo an ideal if for every g**-open 

cover }/{ Ω∈ααU of X there exists a finite sub family },.....2,1/{ niU
i

=α such that .)(**
1

IUclgX
n

i
∈∪−

= α

Such a sub family is said to be proximate g**-sub cover modulo I . 
 
Definition 4.2: A subset A of ),( τX is said to be g**pre-open if )).int(***(* AggA ⊆  The collection of all g**-
preopen sets is denoted by G**PO(X).   
 
Definition 4.3: An ideal I in ),( τX is said to be completely g**-codense if .)(** ϕ=∩ XPOGI  
Note: (1) ).(**)(** XPOGXOG ⊆  
          (2) .)(**)(** ϕϕ =∩⇒=∩ XOGIXPOGI  
 
Therefore every completely g**-codense ideal is g**-codense. But the converse is not true as seen in the following 
example. 
 
Example 4.4: Consider R with cofinite topology. A subset is g**-closed if and only if it is finite. Let Ic be the ideal of 
all countable subsets. Then ϕ=∩ cIROG )(** and so cI is g**-codense. 

g**cl(Q) = R. g**int(g**cl(Q)) = g**int(R) = R. ).(** RPOGQ∈∴  ).(** RPOGIQ c ∩∈∴  
Therefore cI is not completely g**-codense in this space. 
 
Theorem 4.5: For a space ),,( τX the following statements are equivalent. 
(1) ),( τX is g**-QFHC. 
(2) ),( τX is g**-QFHC modulo φ. 
(3) ),( τX is g**-QFHC modulo IF 
If ),( τX is a g**-space then these are equivalent to  
(4) ),( τX is g**-QFHC modulo I for every g**-codense ideal I. 
 
Proof: )2()1( ⇔ is obvious. )3()2( ⇒ is obvious. 

)1()3( ⇒ : Let }{ αU be a g**-open cover for X. Then there exists 
n

UUU ααα .....,.........,
21

such that 

.)(**
1 F

n

i
IUclgX

i
∈∪−

= α Let }........,.........,{)(** 211 k

n

i
xxxUclgX

i
=∪−

= α Choose  
i

U β such that .
i

Uxi β∈

Let }....,.........,,.........{ 110 kn ββαα=∆ Then 0∆ is finite and ).(**
0

αα
UclgX

∆∈
∪=

 
 
Therefore X is g**-QFHC. 

)4()1( ⇒ is obvious. 

)1()4( ⇒ : Let I be g**-codense ideal. Let Ω∈αα }{U be a g**-open cover in X. Then there exists 

}.....2,1/{ niU
i

=α such that .)(**
1

IUclgX
i

n

i
∈∪−

= α  But ),(**)(**
1

XOGUclgX
i

n

i
∈∪−

= α since X is a 

g**-space. But .)(** ϕ=∩ IXOG ).(**
1 i

UclgX
n

i α=
∪=∴   ),( τX∴ is g**-QFHC. 

Theorem 4.6: For a topological space ),( τX the following statements are equivalent. 
(1) ),( τX is g**-QCHC.  
(2) ),( τX is g**-QCHC modulo {φ}. 

(3) ),( τX is g**-QCHC modulo }{ cI . 
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If ),( τX is a g**-multiplicative and g**-countably additive then these are equivalent to  
(4) ),( τX is g**-QCHC modulo I for every g**-codense ideal I. 

Proof: Similar to the above proof, since ),( τX is g**-countably additive implies )(**
1 i

Uclg
i α

∞

=
∪   is g**-closed. 

Remark 4.7: In theorem (4.6) the condition I is g**-codense is necessary as seen in the following example. 
 
Example 4.8: Consider R with indiscrete topology τ.. Let },.........,{ 21 nA ααα=  be a finite subset of R. then 

)( ARI −℘= is an ideal in R. Since all subsets are g**-open, .)(** ϕ≠∩ IXOG   
 
Therefore I is not g**-codense. Let }/{ Ω∈ααU be a g**-open cover for X. Choose 

i
Uα such that .

i
Uai α∈ Then 

.
1

IUR
i

n

i
∈∪−

= α But .)(**
11 ii
URUclgR

n

i

n

i αα ==
∪−⊆∪− .)(**

1
IUclgR

i

n

i
∈∪−∴

= α
 

 
Therefore R is g**-QFHC modulo I. }/}{{ Rxx ∈ is a g**-open cover which has no finite sub cover whose g**-
closures cover X. Therefore R is not g**-QFHC. 
 
Remark 4.9: In theorem (4.7) the condition I is g**-codense is necessary as seen in the following example. 
 
Example 4.10: In example(4.8), ),( τR is g**-QCHC modulo I but not g**-QCHC. 
The following theorem contains a number of characterizations of g**-QFHC modulo I spaces.  
 
Theorem 4.11: For a topological space ),( τX and an ideal I on X, the following statements are equivalent. 
(1) ),( τX is G**-QFHC modulo I. 

(2) For each family  }/{ Ω∈=′ ααAA of g**-closed sets having empty intersection there exists a finite sub family 

},.........,{
21 n

AAA ααα such that .)int(**
1

IAg
i

n

i
∈∩

= α  

(3) For each family }/{ Ω∈=′ ααAA of g**-closed sets such that }/)int(**{ Ω∈ααAg with FIP modulo I 

one has, .
A

ϕ≠∩
′∈
A

A
 

 
Proof: )2()1( ⇒ Let }/{ Ω∈=′ ααAA be a family of g**-closed sets such that .ϕαα

=∩
Ω∈

A  Then

)( αα
GX

Ω∈
∪= where αα AXG −= is g**-open. By (1), there exists }....,.........,{

21 n
GGG ααα such that 

.)(**
1

IGclgX
i

n

i
∈∪−

= α  (ie) .)](**[
1

IGclg c
n

i i
∈∩

= α But )(**)](**[
ii

GclgXGclg c
αα −= which is equal 

to ).int(**)int(**
ii

AgGXg αα =−  .)int(**
1

IAg
i

n

i
∈∩∴

= α  

:)3()2( ⇒ Let A′ be a family of g**-closed sets such that }/)int(**{ Ω∈ααAg has FIP modulo I.  
 
Suppose .ϕαα

=∩
Ω∈

A Then by (2) there exists a finite sub family }......,.........,{
21 n

AAA ααα such that 

IAg
i

n

i
∈∩

=
)int(**

1 α which is a contradiction. .ϕαα
≠∩∴

Ω∈
A  

 
:)1()3( ⇒ Let }/{ Ω∈ααU be a g**-open cover for X. To prove that there exists a finite sub family 

}.........2,1/{ niU
i

=α such that .)(**
1

IUclgX
i

n

i
∈∪−

= α If not there is no finite sub family with this property.  

Now }/{ Ω∈− ααUX is a family of g**-closed sets. For any finite sub family 
n

UUU ααα ....,.........,
21

,  

.)(**
1

IUclgX
i

n

i
∉∪−

= α   (ie) .)int(**
1

IUXg
i

n

i
∉−∩

= α  By (3), .)( ϕαα
≠−∩

Ω∈
UX  XU ≠∪∴

Ω∈
)( αα

which 

is a contradiction. Therefore ),( τX is g**-QFHC. 
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Theorem 4.12: For a topological space ),( τX and an ideal I on X, the following statements are equivalent. 
(1) ),( τX is G**-QCHC modulo I. 

(2) For each family  }/{ Ω∈=′ ααAA of g**-closed sets having empty intersection there exists a countable sub 

family ....},.........,{
21 αα AA such that .)int(**

1
IAg

ii
∈∩

∞

= α  

(3) For each family }/{ Ω∈=′ ααAA of g**-closed sets such that }/)int(**{ Ω∈ααAg with CIP modulo I 

one has .
A

ϕ≠∩
′∈
A

A
 

 
Proof: Similar to the above proof. 
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