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ABSTRACT 
In this paper, we shall develop a new approach to an implicit method for solving the first-order hyperbolic partial 
differential equation in three space dimensions. The suggested method gives highly accurate result.  The stability 
condition and the advantages of the considered method compared with the classical methods as Lax-Wendroff method 
are discussed. 
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1. INTRODUCTION 
Consider the first-order hyperbolic partial differential equation in three space dimensions 
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where a, b and c are  real constants, and u(x, y, z, t) satisfy the initial and boundary conditions: 
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The explicit finite difference method, which is most widely used, is the Lax-Wendroff method [1] is given by: 
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In this paper we define an implicit method for solving the first-order hyperbolic partial differential equation in three 
space dimensions  produces very high accuracy compared with the other classical method, i.e. the numerical solution 
produced by the considered method is almost identical to the exact solution. We use the restrictive Pade` approximation 
as done in [2],[3],[8]and[5] to approximate the exponential function. 
 
2. RESTRICTIVE PADE` APPROXIMATION FOR THE FIRST-ORDER HYPERBOLIC PARTIAL 

DIFFERENTIAL EQUATION IN THREE SPACE DIMENSIONS 
Consider first-order hyperbolic partial differential equation (1). The exact solution of grid representation of  
equations(1) is:  
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then the approximate solution of grid representation of equation (1) can take the form: 
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The restrictive Pade` approximation [1/1] can take the form: 
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Then we can approximate equation (4) as: 
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which can take the equivalent scalar form: 
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where , crrbrrarr === 321 ,, .  To determine the restrictive parameters  kji ,,ε  we must have the exact solution 
at the first level , this enables the value of u(x, y, z, t) at the grid point. 
 
3. THE STABILITY ANALYSIS 
A Von Neumann stability analysis must considered the finite difference equations (6). This is accomplished by 
substituting the Fourier components of ,,,,,

khIjhIihInn
kji

n
kji eeeUuasu γβα= nUIwhere ,1−= is the 

amplitude at time level n, and γβα ,, are the wave numbers in the zyx ,, directions respectively. If a phase angles 

hhh γψβφαθ === ,,  are defined, then kIjIiInn
kji eeeUu ψφθ=,, .   The amplification factor is: 
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Consequently the considered method is unconditionally stable. 
 
4. NUMERICAL RESULTS 
We present some numerical examples to compare the considered method (6) with Lax-Wendroff method (3), and we 
consider two cases.   We apply our method on the examples 1and 2 such that the exact solution is given at the first level 
to determine the restrictive parameters εi,j,k , and hence  we use it for another levels for calculation.  In general the exact 
solution at the first level is unknown, so we can use the Lax-Wendroff method by equation (3), to evaluate the solutions 
at the first time level by large number of very small time step length k to determine the restrictive parameters εi,j,k , then 
we can use large time step length k to evaluate the solution at another levels.  
 
Example1: 

0, ( , , ,0) exp( ), (0, , , ) exp( 3 ),

(1, , , ) exp(1 3 ), ( ,0, , ) exp( 3 ), ( ,1, , ) exp( 1 3 ),
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its exact solution is given by :     )3(exp),,,( tzyxtzyxu −++=  
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Example2: 
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its exact solution is given by:     )3(exp),,,( tzyxtzyxu +−−−= . 
 

t (x, y, z) Lax-Wendroff method The considered method 
  A. E. A. E. 

0.1 

(0.2,0.2,0.2) 
(0.4,0.4,0.4) 
(0.6,0.6,0.6) 
(0.8,0.8,0.8) 

1.8 × 10 -3 
4.3 × 10 -3 
7.7 × 10 -3 

2.1 × 10 -2 

2.3 × 10 -14 
2.2 × 10 -15 
3.5 × 10 -14 

1.4 × 10 -14 

0.2 

(0.2,0.2,0.2) 
(0.4,0.4,0.4) 
(0.6,0.6,0.6) 
(0.8,0.8,0.8) 

2.0 × 10 -3 
6.4 × 10 -3 
1.1 × 10 -2 

4.8 × 10 -2 

1.4 × 10 -14 
6.0 × 10 -14 
3.9 × 10 -14 

1.8 × 10 -14 

0.5 

(0.2,0.2,0.2) 
(0.4,0.4,0.4) 
(0.6,0.6,0.6) 
(0.8,0.8,0.8) 

9.3 × 10 -4 
5.8 × 10 -3 
5.7 × 10 -3 

1.3 × 10 -1 

4.6 × 10 -15 
3.2 × 10 -15 
3.7 × 10 -15 

4.4 × 10 -15 

1.0 

(0.2,0.2,0.2) 
(0.4,0.4,0.4) 
(0.6,0.6,0.6) 
(0.8,0.8,0.8) 

3.4 × 10 -3 
7.5 × 10-3 
1.1 × 10 -2 

6.8 × 10 -2 

3.3 × 10 -15 
1.1 × 10 -15 
3.1 × 10 -15 

1.1 × 10 -16 
 

Table (1) 
Comparison of the absolute errors (A.E.) between Lax-Wendroff and the considered method for h=0.2 and 

k=0.01, for example 1. 
 

t (x, y, z) Lax-Wendroff method The considered method 
  A. E. A. E. 

0.5 

(0.2,0.2,0.2) 
(0.4,0.4,0.4) 
(0.6,0.6,0.6) 
(0.8,0.8,0.8) 

2.2 × 10 -3 
3.1 × 10 -3 
2.3 × 10 -3 

3.1 × 10 -3 

3.5 × 10 -15 
0.0 

4.4 × 10 -16 

2.8 × 10 -15 

1.0 

(0.2,0.2,0.2) 
(0.4,0.4,0.4) 
(0.6,0.6,0.6) 
(0.8,0.8,0.8) 

9.9 × 10 -3 
1.4 × 10 -2 
1.1 × 10 -2 

2.4 × 10 -2 

4.4 × 10 -14 
4.2 × 10 -14 
1.7 × 10 -15 

1.4 × 10 -14 

2.5 

(0.2,0.2,0.2) 
(0.4,0.4,0.4) 
(0.6,0.6,0.6) 
(0.8,0.8,0.8) 

8.9 × 10 -1 
1.29 
1.02 

2.23 

5.6 × 10 -12 
2.0 × 10 -12 
1.7 × 10 -12 

3.1 × 10 -12 

5.0 

(0.2,0.2,0.2) 
(0.4,0.4,0.4) 
(0.6,0.6,0.6) 
(0.8,0.8,0.8) 

1625.33 
2337.03 
1854.79 

4049.49 

3.0 × 10 -9 
8.1 × 10 -10 
5.8 × 10 -10 

2.9 × 10 -9 
 

Table (2) 
Comparison of the absolute errors (A.E.) between  Lax-Wendroff and the  considered  method for h=0.2 and  k=0.05, 

for example 2, where u(.4,.4, .4, .4, 2.5)=544.5 and  u(.4,.4, .4, .4, 5)=984609 
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5. CONCLUSION 
1. The numerical results presented  tables (1), and (2) shows that the absolute errors obtained by the considered methods 
is almost of order 10-11 of that absolute errors obtained by Lax-Wendroff method.  
 
In the case of too large solution for example 2, it is clear from the given data  in table (2) that the absolute errors 
associated with Lax-Wendroff method is too large compared with that of the considered method. 
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