IMA Available online through www.ijma.info ISSN 2229-5046

CURVATURE TENSORS EQUIPPED
 WITH AN INTEGRATED CONTACT METRIC STRUCTURE MANIFOLD

SHALINI SINGH*
Department of Applied Mathematics, JSS Academy of Technical Education, Noida-201301, India

(Received on: 31-07-12; Revised \& Accepted on: 22-08-12)

Abstract

In the present paper, I have defined an integrated contact metric structure manifold [6] admitting semi-symmetric metric connexion [4] in M_{n}^{*} and the form of curvature tensor R of the manifold relative to this conexion has been derived. Several useful theorems and results have also been derived in this manifold.

Key words: C^{∞}-manifold, integrated contact structure, integrated contact metric structure, Riemannian connexion, Semi-symmetric metric connexion.

AMS Mathematics Subject Classification No: 53.

1. Introduction

Let M_{n} be a differentiable manifold of differentiability class C^{∞}. Let there exist in M_{n} a vector valued C^{∞} linear function Φ, a C^{∞} - vector field η and a C^{∞}-one form ξ such that

$$
\begin{equation*}
\Phi^{2}(X)=a^{2} X-c \xi(X) \eta \tag{1.1}
\end{equation*}
$$

$$
\begin{align*}
& (\bar{\eta})=0 \tag{1.2}\\
& G(\bar{X}, \bar{Y})=a^{2} G(X, Y)-c \xi(X) \xi(Y) \tag{1.3}
\end{align*}
$$

Where $\Phi(X)=\bar{X}, a$ is a non-zero complex number and c is an integer.

Let us agree to say that Φ gives to M_{n} a differentiable structure define by algebraic equation (1.1). We shall call (Φ, η, a, c, ξ) as an integrated contact structure.

Remark 1.1: The manifold M_{n} equipped with an integrated contact structure (Φ, η, a, c, ξ) will be called an integrated contact structure manifold.

Remark 1.2: The C^{∞}-manifold M_{n} satisfying (1.1), (1.2) and (1.3) is called an integrated contact metric structure manifold ($\Phi, \eta, a, c, G, \xi)$

Agreement 1.1: All the equations which follows will hold for arbitrary vector fields X, Y, Z......... etc.
It is easy to calculate in M_{n} that

$$
\begin{align*}
& \xi(\eta)=\frac{a^{2}}{c} \tag{1.4}\\
& \Phi(\bar{X})=0 \tag{1.5}
\end{align*}
$$

and

$$
\begin{equation*}
G(X, \eta) \xlongequal{\text { def }} \xi(X) \tag{1.6}
\end{equation*}
$$

Corresponding author: SHALINI SINGH*

Remark 1.3: The integrated contact metric structure manifold (Φ, η, a, c, G, ξ) gives an almost norden contact metric manifold [5], Lorentzian para-contact manifold [2] or an almost Para contact Riemannian manifold [1] according as $\left(a^{2}=-1, c=1\right),\left(a^{2}=1, c=-1\right)$ or $\left(a^{2}=1, c=1\right)$

Agreement 1.2: An integrated contact metric structure manifold will be denoted by M_{n}. In the sequel, arbitrary vector fields will be denoted by $X, Y, Z, \ldots \ldots$. etc.

If we define

$$
\begin{equation*}
' \Phi(X, Y)=G(\bar{X}, Y)=G(X, \bar{Y}) \tag{1.7}
\end{equation*}
$$

Where ' Φ is a tensor field of the type $(0,2)$ then it is easy to see that

$$
\begin{equation*}
' \Phi(X, Y)=' \Phi(Y, X) \tag{1.8}
\end{equation*}
$$

Which shows that ' Φ is symmetric in X and Y. Also we have

$$
\begin{equation*}
' \Phi(\bar{X}, \bar{Y})=a^{2} ' \Phi(X, Y) \tag{1.9}
\end{equation*}
$$

Definition 1.1: A C^{∞}-manifold M_{n} satisfying

$$
\begin{equation*}
D_{X} \eta=\Phi X \tag{1.10}
\end{equation*}
$$

will be denoted by M_{n}^{*} where D is the Riemannian connexion in M_{n} corresponding to the Riemannian metric G. It is easy to calculate in M_{n}^{*}, we have

$$
\begin{equation*}
\left(D_{X} \xi\right)(Y)=` \Phi(X, Y) \tag{1.11}
\end{equation*}
$$

2. Semi-symmetric metric connexion in C^{∞}-manifold M_{n}^{*} :

Definition 2.1: Let D be a Riemannian connexion in M_{n}^{*}. We consider a semi-symmetric metric connexion B in M_{n}^{*}

$$
\begin{equation*}
B_{X} Y \underline{\underline{\text { def }}} D_{X} Y+\xi(Y) X-G(X, Y) \eta \tag{2.1}
\end{equation*}
$$

The above equation is equivalent to

$$
\begin{equation*}
B_{X} Y=D_{X} Y+H(X, Y) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
H(X, Y) \underline{\underline{d 飞}} \xi(Y) X-G(X, Y) \eta \tag{2.3}
\end{equation*}
$$

Let S be the torsion tensor of the semi-symmetric metric connexion B then (2.1) and (2.2) imply that

$$
\begin{equation*}
S(X, Y)=\xi(Y) X-\xi(X) Y \tag{2.4}
\end{equation*}
$$

(2.4)b

$$
S(X, Y)=H(X, Y)-H(Y, X)
$$

We define

$$
\begin{array}{r}
' H(X, Y, Z) \xlongequal{d \notin} G(H(X, Y), Z) \\
' S(X, Y, Z) \xlongequal{\underline{d 飞}} G(S(X, Y), Z) \tag{2.5}
\end{array}
$$

Operating G on both the sides of (2.3) and using (2.5)a, we get

$$
\begin{equation*}
H(X, Y, Z)=\xi(Y) G(X, Z)-\xi(Z) G(X, Y) \tag{2.6}
\end{equation*}
$$

Operating G on both the sides of (2.4)a and using (2.5)b, we get

$$
\begin{equation*}
S(X, Y, Z)=\xi(Y) G(X, Z)-\xi(X) G(Y, Z) \tag{2.7}
\end{equation*}
$$

Operating G on both the sides of (2.4)b and using (2.5)a and (2.5)b, we get

$$
\begin{equation*}
' S(X, Y, Z)=` H(X, Y, Z)-` H(Y, X, Z) \tag{2.8}
\end{equation*}
$$

3. Curvature Tensor in M_{n}^{*} :

Let K be the curvature tensor corresponding to the Riemannian connexion D in M_{n}^{*} and R be the curvature tensor corresponding to the semi-symmetric metric connexion B in M_{n}^{*}.
From (2.1), we have

$$
\begin{equation*}
B_{Y} Z=D_{Y} Z+\xi(Z) Y-G(Y, Z) \eta \tag{3.1}
\end{equation*}
$$

Taking the covariant derivative of the above equation with respect to the connexion B along the vector field X, we get

$$
\begin{aligned}
B_{X} B_{Y} Z=B_{X}\left(D_{Y} Z\right) & +\xi(Z) B_{X} Y+\left\{\left(B_{X} \xi\right)(Z)+\xi\left(B_{X} Z\right)\right\} Y \\
& -G\left(B_{X} Y, Z\right) \eta-G\left(Y, B_{X} Z\right) \eta-\left(B_{X} G\right)(Y, Z) \eta-G(Y, Z)\left(B_{X} \eta\right)
\end{aligned}
$$

Using (2.1) and then (1.6) in the above equation, we get
(3.2)a

$$
\begin{aligned}
B_{X} B_{Y} Z=D_{X} D_{Y} Z & +\xi\left(D_{Y} Z\right) X-G\left(X, D_{Y} Z\right) \eta+\xi(Z) D_{X} Y \\
& +\xi(Z) \xi(Y) X-\xi(Z) G(X, Y) \eta+\left(D_{X} \xi\right)(Z) Y+\xi\left(D_{X} Z\right) Y \\
& -\xi(Y) G(X, Z) \eta+\xi(Z) \xi(X) Y-G(X, Z) \xi(\eta) Y-G\left(D_{X} Y, Z\right) \eta \\
& -G(X, Y) \xi(Z) \eta-G\left(Y, D_{X} Z\right) \eta-G(Y, X) \eta \xi(Z)-G(X, Z) \xi(Y) \eta \\
& -\left(B_{X} G\right)(Y, Z) \eta-G(Y, Z) \bar{X}-G(Y, Z) \xi(\eta) X+G(Y, Z) \xi(X) \eta
\end{aligned}
$$

Interchanging X and Y in the above equation, we get

$$
\begin{align*}
B_{Y} B_{X} Z= & D_{Y} D_{X} Z+\xi\left(D_{X} Z\right) Y-G\left(Y, D_{X} Z\right) \eta+\xi(Z) D_{Y} X \tag{3.2}\\
& +\xi(Z) \xi(X) Y-\xi(Z) G(Y, X) \eta+\left(D_{Y} \xi\right)(Z) X+\xi\left(D_{Y} Z\right) X \\
& -\xi(X) G(Y, Z) \eta+\xi(Z) \xi(Y) X-G(Y, Z) \xi(\eta) X-G\left(D_{Y} X, Z\right) \eta \\
& -G(Y, X) \xi(Z) \eta-G\left(X, D_{Y} Z\right) \eta-G(X, Y) \eta \xi(Z)-G(Y, Z) \xi(X) \eta \\
& -\left(B_{Y} G\right)(X, Z) \eta-G(X, Z) \bar{Y}-G(X, Z) \xi(\eta) Y+G(X, Z) \xi(Y) \eta
\end{align*}
$$

Replacing Y by $[X, Y]$ in (3.1) and using $[X, Y]=D_{X} Y-D_{Y} X$, we get
(3.2)c

$$
B_{[X, Y]} Z=D_{[X, Y]} Z+\xi(Z)\left(D_{X} Y\right)-\xi(Z)\left(D_{Y} X\right)-G\left(D_{X} Y, Z\right) \eta-G\left(D_{Y} X, Z\right) \eta
$$

Subtracting (3.2)b, (3.2)c from (3.2)a and using $K(X, Y, Z) \underline{\underline{d f}} e_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z$, we get

$$
\begin{aligned}
R(X, Y, Z)= & K(X, Y, Z)+\left(D_{X} \xi\right)(Z) Y-3 \xi(Y) G(X, Z) \eta-\left(D_{Y} \xi\right)(Z) X \\
& -G(Y, Z) \bar{X}+\left(B_{Y} G\right)(X, Z) \eta+G(X, Z) \bar{Y}
\end{aligned}
$$

where

$$
R(X, Y, Z) \xlongequal{d f} e B_{X} B_{Y} Z-B_{Y} B_{X} Z-B_{[X, Y]} Z
$$

Agreement 3.1: We consider that the fundamental 2-form $` \Phi$ is closed in M_{n}^{*} i.e.

$$
\begin{equation*}
\left(D_{X} ` \Phi\right)(Y, Z)+\left(D_{Y}{ }^{`} \Phi\right)(Z, X)+\left(D_{Z}{ }^{`} \Phi\right)(X, Y)=0 \tag{3.4}
\end{equation*}
$$

Theorem 3.1: In M_{n}^{*}, we have

$$
\begin{equation*}
\left(D_{Z}{ }^{`} \Phi\right)(X, Y)=G\left(\left(D_{Z} \Phi\right) X, Y\right)={ }^{\top}(X, Y, Z, \eta) \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\left(D_{X}{ }^{`} \Phi\right)(Y, \eta)=-G(\bar{X}, \bar{Y}) \tag{3.6}
\end{equation*}
$$

Proof: We know that

$$
\asymp(Y, Z)=\left(D_{Y} \xi\right)(Z)
$$

Taking the covariant derivative on both the sides of the above equation with respect to the vector field X, we have (3.7)a

$$
\left(D_{X}{ }^{`} \Phi\right)(Y, Z)=\left(D_{X} D_{Y} \xi\right)(Z)-{ }^{`} \Phi\left(D_{X} Y, Z\right)
$$

Interchanging X and Y in the above equation, we get

$$
\begin{equation*}
\left(D_{Y}^{`} \Phi\right)(X, Z)=\left(D_{Y} D_{X} \xi\right)(Z)-` \Phi\left(D_{Y} X, Z\right) \tag{3.7}
\end{equation*}
$$

Subtracting (3.7)b from (3.7)a and using $D_{X} Y-D_{Y} X=[X, Y]$, we have

$$
\left(D_{X} ` \Phi\right)(Y, Z)-\left(D_{Y} ` \Phi\right)(X, Z)=\left(D_{X} D_{Y} \xi\right)(Z)-\left(D_{Y} D_{X} \xi\right)(Z)-` \Phi([X, Y], Z)
$$

Using (1.11) in the above equation, we get

$$
\begin{aligned}
\left(D_{X}{ }^{`} \Phi\right)(Y, Z)-\left(D_{Y}{ }^{`} \Phi\right)(X, Z) & =\left(D_{X} D_{Y} \xi\right)(Z)-\left(D_{Y} D_{X} \xi\right)(Z)-\left(D_{[X, Y]} \xi\right)(Z) \\
& =G(Z, K(X, Y, \eta)) \\
& ={ }^{\prime} K(X, Y, \eta, Z) \\
& =-K(X, Y, Z, \eta) \\
& =-G(K(X, Y, Z), \eta) \\
& =-\xi(K(X, Y, Z))
\end{aligned}
$$

Using (3.4) in the above equation, we get (3.5).
We have

$$
\begin{gathered}
` \Phi(Y, \eta)=0 \\
\Rightarrow\left(D_{X} \backslash \Phi\right)(Y, \eta)=-\Phi\left(Y, D_{X} \eta\right)
\end{gathered}
$$

Using (1.10) in the above equation, we get

$$
\left(D_{X} ` \Phi\right)(Y, \eta)=-` \Phi(Y, \bar{X})
$$

Using (1.7) in the above equation, we get (3.6).
Theorem 3.2: In M_{n}^{*}, we have

$$
\begin{equation*}
\left(D_{Z} ` \Phi\right)(X, Y)=c[\xi(X) G(Y, Z)-\xi(Y) G(X, Z)] \tag{3.8}
\end{equation*}
$$

Proof: From (1.9), we have

$$
`(\bar{X}, \bar{Y})=a^{2} ` \Phi(X, Y)
$$

Taking the covariant derivative on both the sides of the above equation with respect to the vector field Z, we have

$$
\left(D_{Z} ` \Phi\right)(\bar{X}, \bar{Y})+` \Phi\left(\left(D_{Z} \Phi\right) X, \bar{Y}\right)+` \Phi\left(\bar{X},\left(D_{Z} \Phi\right) Y\right)=a^{2}\left(D_{Z}^{`} \Phi\right)(X, Y)
$$

Using (1.7) in the above equation, we get

$$
\left(D_{Z} ` \Phi\right)(\bar{X}, \bar{Y})+G\left(\overline{\bar{Y}},\left(D_{Z} \Phi\right)(X)\right)+G\left(\overline{\bar{X}},\left(D_{Z} \Phi\right)(Y)\right)=a^{2}\left(D_{Z} ` \Phi\right)(X, Y)
$$

Using (1.1) in the above equation, we get

$$
\left(D_{Z}{ }^{`} \Phi\right)(\bar{X}, \bar{Y})+a^{2}\left(D_{Z}{ }^{`} \Phi\right)(X, Y)+c \xi(Y) G(\bar{Z}, \bar{X})-c \xi(X) G(\bar{Z}, \bar{Y})=0
$$

Using (1.3) in the above equation, we get

$$
\left(D_{Z}{ }^{`} \Phi\right)(\bar{X}, \bar{Y})+a^{2}\left(D_{Z} ` \Phi\right)(X, Y)+a^{2} c \xi(Y) G(X, Z)-a^{2} c \xi(X) G(Y, Z)=0
$$

We define

$$
\begin{aligned}
& \mathrm{P}(X, Y, Z) \xlongequal{d 凤} a^{2}\left(D_{Z}{ }^{`} \Phi\right)(\bar{X}, \bar{Y}) \\
& Q(X, Y, Z) \xlongequal{\text { d凤 }} a^{2}\left(D_{Z}{ }^{`} \Phi\right)(X, Y)+a^{2} c \xi(Y) G(X, Z)-a^{2} c \xi(X) G(Y, Z)
\end{aligned}
$$

Then

$$
\mathrm{P}(X, Y, Z)+Q(X, Y, Z)=0
$$

Also in consequence of (3.6), we have

$$
\mathrm{P}(\bar{X}, \bar{Y}, Z)=Q(X, Y, Z), Q(\bar{X}, \bar{Y}, Z)=\mathrm{P}(X, Y, Z)
$$

All these equations are satisfied by $\mathrm{P}=\mathrm{Q}=0$
i.e

$$
a^{2}\left(D_{Z}{ }^{`} \Phi\right)(X, Y)=-a^{2} c \xi(Y) G(X, Z)+a^{2} c \xi(X) G(Y, Z)
$$

i.e.
$\left(D_{Z}{ }^{`} \Phi\right)(X, Y)=c[\xi(X) G(Y, Z)-\xi(Y) G(X, Z)]$
This proves the theorem.
Theorem 3.3: In M_{n}^{*}, we have

$$
\begin{equation*}
` K(X, Y, \bar{Z}, U)-\Im K(X, Y, Z, \bar{U})+\Im K(X, \bar{Y}, Z, U)+K(\bar{X}, Y, Z, U)+\left(D_{\eta}{ }^{`} K\right)(X, Y, Z, U)=0 \tag{3.9}
\end{equation*}
$$

Proof: From (3.5), we have
(3.10)a

$$
\left(D_{Y}{ }^{`} \Phi\right)(Z, U)=' K(Z, U, Y, \eta)
$$

Taking the covariant derivative on both the sides of the above equation with respect to the vector field X and using (1.10) and (3.5), we have

$$
\begin{aligned}
& \left(D_{X} D_{Y}^{\prime} \Phi\right)(Z, U)=\left(D_{X} ` K\right)(Z, U, Y, \eta)+` K\left(Z, U, D_{X} Y, \eta\right)+\Im K(Z, U, Y, \bar{X}) \\
& \quad+K\left(D_{X} Z, U, Y, \eta\right)+\left(Z, D_{X} U, Y, \eta\right)-\left(D_{X} Z, U, Y, \eta\right)-\left(Z, D_{X} U, Y, \eta\right)
\end{aligned}
$$

i.e.
(3.10)b

$$
\left(D_{X} D_{Y} ` \Phi\right)(Z, U)=\left(D_{X} ` K\right)(Z, U, Y, \eta)+` K\left(Z, U, D_{X} Y, \eta\right)+К K(Z, U, Y, \bar{X})
$$

Interchanging X and Y in the above equation, we get
(3.10)c

$$
\left(D_{Y} D_{X} ' \Phi\right)(Z, U)=\left(D_{Y} K\right)(Z, U, X, \eta)+\Im K\left(Z, U, D_{Y} X, \eta\right)+K(Z, U, X, \bar{Y})
$$

Replacing Y by $[X, Y]$ in (3.10)a, we have

$$
\begin{equation*}
\left(D_{[X, Y]}{ }^{`} \Phi\right)(Z, U)=`(Z, U,[X, Y], \eta) \tag{3.10}
\end{equation*}
$$

Subtracting (3.10)c and (3.10)d from (3.10)b, we have

$$
\left(D_{X} D_{Y} ` \Phi\right)(Z, U)-\left(D_{Y} D_{X} ` \Phi\right)(Z, U)-\left(D_{[X, Y]} \top \Phi\right)(Z, U)={ }^{`} K(X, Y, \bar{Z}, U)-{ }^{\prime} K(X, Y, Z, \bar{U})
$$

i.e.

$$
\begin{aligned}
& ` K(X, Y, \bar{Z}, U)-` K(X, Y, Z, \bar{U})=\left(D_{X}{ }^{`} K\right)(Z, U, Y, \eta)+' K\left(Z, U, D_{X} Y, \eta\right) \\
& \text { +'K }(Z, U, Y, \bar{X})-\left(D_{Y}{ }^{`} K\right)(Z, U, X, \eta)-冫 K\left(Z, U, D_{Y} X, \eta\right)-` K(Z, U, X, \bar{Y}) \\
& -K(Z, U,[X, Y], \eta) \top K(X, Y, \bar{Z}, U)-K(X, Y, Z, \bar{U})=\left(D_{X} К\right)(Z, U, Y, \eta) \\
& +K(Z, U, Y, \bar{X})-\left(D_{Y} K\right)(Z, U, X, \eta)-K(Z, U, X, \bar{Y})
\end{aligned}
$$

i.e.

$$
\begin{aligned}
` K(X, Y, \bar{Z}, U)- & \Im \\
& K(X, Y, Z, \bar{U})-` K(Z, U, Y, \bar{X})+\Im K(Z, U, X, \bar{Y}) \\
& =\left(D_{X} ` K\right)(Z, U, Y, \eta)-\left(D_{Y} \cdot K\right)(Z, U, X, \eta) \\
& =\left(D_{X} ` K\right)(Y, \eta, Z, U)-\left(D_{Y} \cdot K\right)(\eta, X, Z, U)
\end{aligned}
$$

Using Bianchi's second identity [3] in the above equation, we get (3.9).
Corollary 3.1: In M_{n}^{*}, we have
(3.11)a

$$
\begin{aligned}
& a^{2} ` K(X, Y, Z, U)+\bigvee K(X, Y, \bar{Z}, \bar{U})=-c \xi(U) \bigvee K(X, Y, Z, \eta) \\
& \quad-\top K(X, \bar{Y}, Z, \bar{U})-K(\bar{X}, Y, Z, \bar{U})-\left(D_{\eta} K\right)(X, Y, Z, \bar{U})
\end{aligned}
$$

(3.11)b \quad 'K $(\bar{X}, Y, \bar{Z}, U)-` K(\bar{X}, Y, Z, \bar{U})+` K(\bar{X}, \bar{Y}, Z, U)+a^{2} ` K(X, Y, Z, U)$

$$
-c \xi(X) \cdot K(\eta, Y, Z, U)+\left(D_{\eta} K\right)(X, \bar{Y}, Z, U)=0
$$

(3.11)c $\quad K(X, \bar{Y}, \bar{Z}, U)-K(X, \bar{Y}, Z, \bar{U})+a^{2} `(X, Y, Z, U)$

$$
-c \xi(Y) K(X, \eta, Z, U)+K(\bar{X}, \bar{Y}, Z, U)+\left(D_{\eta} K\right)(X, \bar{Y}, Z, U)=0
$$

Proof: Barring U on both the sides of (3.9) and using (1.1), we get (3.11)a.
Barring X on both the sides of (3.9) and using (1.1), we get (3.11)b.
Barring Y on both the sides of (3.9) and using (1.1), we get (3.11)c.
Theorem 3.4: In M_{n}^{*}, we have
(3.12)a

$$
\begin{aligned}
& \operatorname{Ric}(\bar{Y}, Z)+a^{2} \operatorname{Ric}(Y, Z)=c \xi(Y) \operatorname{Ric}(\eta, Z)-\left(D_{\eta} \operatorname{Ric}\right)(\bar{Y}, Z) \\
& \operatorname{Ric}(\bar{Y}, Z)+a^{2} \operatorname{Ric}(Y, Z)=c \xi(Z) \operatorname{Ric}(\eta, Y)-\left(D_{\eta} \operatorname{Ric}\right)(Y, \bar{Z})
\end{aligned}
$$

Proof: Equation (3.9) can be written as

$$
\begin{aligned}
& G(K(X, Y, \bar{Z}), U)-G(\overline{K(X, Y, Z)}, U)+G(K(X, \bar{Y}, Z), U) \\
& +G(K(\bar{X}, Y, Z), U)+G\left(\left(D_{\eta} K\right)(X, Y, Z), U\right)=0
\end{aligned}
$$

Which is equivalent to

$$
K(X, Y, \bar{Z})-\overline{K(X, Y, Z)}+K(X, \bar{Y}, Z)+K(\bar{X}, Y, Z)+\left(D_{\eta} K\right)(X, Y, Z)=0
$$

Contracting the above equation with respect to the vector field X, we get

$$
\begin{equation*}
\operatorname{Ric}(Y, \bar{Z})+\operatorname{Ric}(\bar{Y}, Z)+\left(D_{\eta} \operatorname{Ric}\right)(Y, Z)=0 \tag{3.13}
\end{equation*}
$$

Barring Y in the above equation and using (1.1), we get (3.12)a.
Barring Z in the above equation and using (1.1), we get (3.12)b.

Corollary 3.2: The scalar curvature of M_{n}^{*}-manifold is constant along the vector field η.
Proof: Equation (3.13) can be written as

$$
G(R \bar{Y}, Z)+G(R Y, \bar{Z})+G\left(\left(D_{\eta} R\right)(Y), Z\right)=0
$$

Where R is the Ricci tensor of the type $(1,1)$.
Using (1.7) in the above equation, we get

$$
G(R \bar{Y}, Z)+G(\overline{R Y}, Z)+G\left(\left(D_{\eta} R\right)(Y), Z\right)=0
$$

which is equivalent to

$$
R \bar{Y}+\overline{R Y}+\left(D_{\eta} R\right)(Y)=0
$$

Contracting the above equation with respect to the vector field X, we get

$$
\left(D_{\eta} r\right)=0 \Rightarrow \eta r=0
$$

This proves the theorem.

Theorem 3.5: In M_{n}^{*}, we have
(3.14)a

$$
\begin{array}{r}
` K(X, Y, \bar{Z}, U)-\Im K(X, Y, Z, \bar{U})=c[G(U, Y) ` \Phi(X, Z) \\
-G(Y, Z) ` \Phi(X, U)-G(U, X) ` \Phi(Y, Z)+G(X, Z) ` \Phi(Y, U)]
\end{array}
$$

(3.14)b

$$
\begin{aligned}
` K(X, Y, \bar{Z}, \bar{U})-a^{2} ` K(X, Y, Z, U)=c & {[`(Y, U) ` \Phi(X, Z)-` \Phi(Y, Z) ` \Phi(X, U)] } \\
& -a^{2}[G(Y, Z) G(X, U)-G(X, Z) G(Y, U)]
\end{aligned}
$$

Proof: We have
(3.15)a \quad 'K $(X, Y, \bar{Z}, U)-\bigvee K(X, Y, Z, \bar{U})+` K(X, \bar{Y}, Z, U)+K(\bar{X}, Y, Z, U)$

$$
=\left(D_{X} \backslash K\right)(Y, \eta, Z, U)-\left(D_{Y} ` K\right)(X, \eta, Z, U)
$$

From (3.5) and (3.8), we have

$$
\begin{equation*}
\text { 'K }(X, Y, Z, \eta)=c[\xi(X) G(Y, Z)-\xi(Y) G(Z, X)] \tag{3.15}
\end{equation*}
$$

The above equation can be written as

$$
\checkmark K(Y, \eta, Z, U)=c[\xi(Z) G(U, Y)-\xi(U) G(Y, Z)]
$$

Taking the covariant derivative of the above equation with respect to the vector field X, we have

$$
\left(D_{X} \Im K\right)(Y, \eta, Z, U)+\Im K(Y, \bar{X}, Z, U)=c\left[\left(D_{X} \xi\right)(Z) G(U, Y)-\left(D_{X} \xi\right)(U) G(Y, Z)\right]
$$

Using (1.11) in the above equation, we get
(3.16)a $\quad\left(D_{X} \backslash K\right)(Y, \eta, Z, U)=` K(\bar{X}, Y, Z, U)+c[G(U, Y) ` \Phi(X, Z)-G(Y, Z) ` \Phi(X, U)]$

Interchanging X and Y in the above equation, we get
(3.16)b $\quad\left(D_{Y} \backslash K\right)(X, \eta, Z, U)=-` K(X, \bar{Y}, Z, U)+c[G(U, X) ` \Phi(Y, Z)-G(X, Z) ` \Phi(Y, U)]$

Subtracting (3.16)b from (3.16)a, we have

$$
\begin{gather*}
\left(D_{X} \backslash K\right)(Y, \eta, Z, U)-\left(D_{Y} \backslash K\right)(X, \eta, Z, U)=` K(\bar{X}, Y, Z, U)+K(X, \bar{Y}, Z, U) \tag{3.17}\\
+c[G(U, Y) ` \Phi(X, Z)-G(Y, Z) ` \Phi(X, U) \\
-G(U, X) ` \Phi(Y, Z)+G(X, Z) ` \Phi(Y, U)]
\end{gather*}
$$

From (3.15)a and (3.17), we get (3.14)a.
Barring U on both the sides of (3.14)a and using (1.1) and (1.7), we get

$$
\begin{aligned}
& \checkmark K(X, Y, \bar{Z}, \bar{U})-a^{2} К(X, Y, Z, U)+c \xi(U) К(X, Y, Z, \eta) \\
& =c[` \Phi(Y, U) ` \Phi(X, Z)-` \Phi(Y, Z) ` \Phi(X, U) \\
& \left.-a^{2} G(X, U) G(Y, Z)+a^{2} G(X, Z) G(Y, U)\right]
\end{aligned}
$$

Using (3.15)b in the above equation, we get (3.14)b.

REFERENCES

[1] Adati T. and Matsumoto K., On almost paracontact Riemannian manifold, T.R.U. Maths., 13(2) (1977), 22-39.
[2] Matsumoto K., On Lorentzian Paracontact manifolds, Bull. Yamogata Univ. Nat. Sci., 12(1989), 151-156.
[3] Mishra R. S., Structure on a differentiable manifold and their application, Chandrma Prakashan, Allahabad, India. (1984).
[4] Sharfuddin A. and Hussain S. I., Semi-symmetric metric connections in almost contact manifolds. Tensor, N. S., 30, (1976), 133-139.
[5] Singh S. D. and Singh D., Tensor of the type (0,4) in an almost Norden contact metric manifold, Acta Cincia Indica, India, 18 M (1) (1997), 11-16.
[6] Singh Shalini, Certain affine connexions on an integrated contact metric structure manifold, Adv. Theor. Appl. Math., 4 (1-2) (2009), 11-19.

Source of support: Nil, Conflict of interest: None Declared

