International Journal of Mathematical Archive-3(12), 2012, 4848-4855 MA Available online through www.ijma.info ISSN 2229 - 5046

ON FUZZY SEMI-PRE-BOUNDARY

Dr. K. Bageerathi*

Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, India

(Received on: 27-11-12; Revised & Accepted on: 26-12-12)

ABSTRACT

In this paper we introduce the concept of fuzzy &-semi-pre-boundary by using the arbitrary complement function & and by using fuzzy &-semi-pre closure of a fuzzy topological space where &[0, 1] \rightarrow [0, 1] is a function. Let λ be a fuzzy subset of a fuzzy topological space X and let &-green a complement function. Then the fuzzy &-semi-pre-boundary of λ is defined as SPBd A = SPCl A A SPCl A SPCl A A SPCl A

MSC 2010: 54A40, 3E72.

Key words: Fuzzy &semi-pre-boundary, fuzzy &semi-pre closure, fuzzy z-semi-pre closed sets and fuzzy topology.

1. INTRODUCTION

Athar and Ahmad [2] defined the notion of fuzzy semi boundary in fuzzy topological spaces and studied[1] the properties of fuzzy semi boundary. The authors introduced the concept of fuzzy \mathscr{C} -closed sets, fuzzy \mathscr{C} -semi closed sets, fuzzy \mathscr{C} -pre closed sets and fuzzy \mathscr{C} -semi-pre-closed sets in fuzzy topological spaces, where \mathscr{C} [0, 1] \rightarrow [0, 1] is an arbitrary complement function.

In this paper, we introduce the concept of fuzzy semi-pre-boundary by using the arbitrary complement function & instead of the usual fuzzy complement function, and by using fuzzy &-semi-pre-closure instead of fuzzy semi-pre-closure.

Such a generalized fuzzy semi-pre-boundary is defined as $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$, called the fuzzy \mathscr{C} -semi-pre-boundary of λ , where $SPCl_{\mathscr{C}}\lambda$ is the intersection of all fuzzy \mathscr{C} -semi-pre- closed sets containing λ and $\mathscr{C}\lambda(x) = \mathscr{C}(\lambda(x))$, $0 \le x \le 1$.

For the basic concepts and notations, one can refer Chang [7]. The concepts that are needed in this paper are discussed in the second section. The third section is dealt with the concept of fuzzy \mathscr{C} - semi-pre-boundary.

2. PRELIMINARIES

Throughout this paper (X,τ) denotes a fuzzy topological space in the sense of Chang. Let \mathscr{C} : $[0, 1] \rightarrow [0, 1]$ be a complement function. If λ is a fuzzy subset of (X,τ) then the complement $\mathscr{C}\lambda$ of a fuzzy subset λ is defined by $\mathscr{C}\lambda(x) = \mathscr{C}(\lambda(x))$ for all $x \in X$. A complement function \mathscr{C} is said to satisfy

- (i) the boundary condition if $\mathcal{C}(0) = 1$ and $\mathcal{C}(1) = 0$,
- (ii) monotonic condition if $x \le y \Rightarrow \mathscr{C}(x) \ge \mathscr{C}(y)$, for all $x, y \in [0, 1]$,
- (iii) involutive condition if $\mathscr{C}(\mathscr{C}(x)) = x$, for all $x \in [0, 1]$.

The properties of fuzzy complement function \mathscr{C} and $\mathscr{C}\lambda$ are given in George Klir [8] and Bageerathi *et al* [4]. The following lemma will be useful in sequel.

Lemma 2.1[4]. Let \mathscr{C} : $[0, 1] \to [0, 1]$ be a complement function that satisfies the monotonic and involutive conditions. Then for any family $\{\lambda_{\alpha}: \alpha \in \Delta \}$ of fuzzy subsets of X, we have

- $(i) \ \mathscr{C}(sup\{\lambda_{\alpha}(x): \alpha \in \Delta\}) = \inf\{ \ \mathscr{C}(\lambda_{\alpha}(x)): \alpha \in \Delta\} = \inf\{ (\ \mathscr{C}\lambda_{\alpha}(x)): \alpha \in \Delta\} \ and$
- (ii) $\mathscr{C}(\inf\{\lambda_{\alpha}(x):\alpha\in\Delta\}) = \sup\{\mathscr{C}(\lambda_{\alpha}(x)):\alpha\in\Delta\} = \sup\{(\mathscr{C}\lambda_{\alpha}(x)):\alpha\in\Delta\} \text{ for } x\in X.$

Definition 2.2 [4]. A fuzzy subset λ of X is fuzzy \mathscr{C} -closed in (X,τ) if $\mathscr{C}\lambda$ is fuzzy open in (X,τ) . The fuzzy \mathscr{C} -closure of λ is defined as the intersection of all fuzzy \mathscr{C} -closed sets μ containing λ . The fuzzy \mathscr{C} -closure of λ is denoted by $Cl_{\mathscr{C}}\lambda$ that is equal to $\wedge\{\mu: \mu \geq \lambda, \mathscr{C}\mu \in \tau\}$.

Lemma 2.3[4]. If the complement function \mathscr{C} satisfies the monotonic and involutive conditions, then for any fuzzy subset λ of X, $\mathscr{C}(Int \lambda) = Cl_{\mathscr{C}}(\mathscr{C}\lambda)$ and $\mathscr{C}(Cl_{\mathscr{C}}\lambda) = Int(\mathscr{C}\lambda)$.

Lemma 2.4[4]. Let (X,τ) be a fuzzy topological space. Let \mathscr{C} be a complement function that satisfies the boundary, monotonic and involutive conditions. Then for any family $\{\lambda_{\alpha} : \alpha \in \Delta\}$ of fuzzy subsets of X, we have $\mathscr{C}(\vee \{\lambda_{\alpha} : \alpha \in \Delta\}) = \wedge \{\mathscr{C}\lambda_{\alpha} : \alpha \in \Delta\}$ and $\mathscr{C}(\wedge \{\lambda_{\alpha} : \alpha \in \Delta\}) = \vee \{\mathscr{C}\lambda_{\alpha} : \alpha \in \Delta\}$.

Definition 2.5 [Definition 2.15, [4]]. A fuzzy topological space (X, τ) is \mathscr{C} -product related to another fuzzy topological space (Y, σ) if for any fuzzy subset ν of X and ζ of Y, whenever $\mathscr{C}\lambda \ngeq \nu$ and $\mathscr{C}\mu \ngeq \zeta$ imply $\mathscr{C}\lambda \times 1 \vee 1 \times \mathscr{C}\mu \ge \nu \times \zeta$, where $\lambda \in \tau$ and $\mu \in \sigma$, there exist $\lambda_1 \in \tau$ and $\mu_1 \in \sigma$ such that $\mathscr{C}\lambda_1 \ge \nu$ or $\mathscr{C}\mu_1 \ge \zeta$ and $\mathscr{C}\lambda_1 \times 1 \vee 1 \times \mathscr{C}\mu_1 = \mathscr{C}\lambda \times 1 \vee 1 \times \mathscr{C}\mu$.

Lemma 2.6 [Theorem 2.19, [4]]. Let (X, τ) and (Y, σ) be \mathscr{C} -product related fuzzy topological spaces. Then for a fuzzy subset λ of X and a fuzzy subset μ of Y, $Cl_{\mathscr{C}}(\lambda \times \mu) = Cl_{\mathscr{C}}\lambda \times Cl_{\mathscr{C}}\mu$.

Definition 2.7 [Definition 3.1, [6]]. Let (X,τ) be a fuzzy topological space and \mathscr{C} be a complement function. Then λ is called fuzzy \mathscr{C} -semi-pre open if there exists a \mathscr{C} - pre open set μ such that $\mu \leq \lambda \leq Cl_{\mathscr{C}}\mu$.

Lemma 2.8[6]. Let (X, τ) be a fuzzy topological space and let \mathscr{C} be a complement function that satisfies the monotonic and involutive properties. Then a fuzzy set λ of a fuzzy topological space (X, τ) is

- (i) fuzzy \mathscr{C} -semi-pre open if and only if $\lambda \leq C l_{\mathscr{C}} Int C l_{\mathscr{C}}(\lambda)$.
- (ii) fuzzy \mathscr{C} semi-pre closed in X if $Int\ Cl_{\mathscr{C}}Int(\lambda) \le \lambda$.
- (iii) fuzzy &- semi-pre closed if and only if & is fuzzy &- semi-pre open.
- (iv) the arbitrary union of fuzzy & semi-pre open sets is fuzzy & semi-pre open.

Lemma 2.9 [3]. If λ_1 , λ_2 , λ_3 , λ_4 are the fuzzy subsets of X then

$$(\lambda_1 \wedge \lambda_2) \times (\lambda_3 \wedge \lambda_4) = (\lambda_1 \times \lambda_4) \wedge (\lambda_2 \times \lambda_3)$$
.

Lemma 2.10 [Lemma 5.1, [4]]. Suppose f is a function from X to Y. Then $f^{-1}(\mathcal{C}\mu) = \mathcal{C}(f^{-1}(\mu))$ for any fuzzy subset μ of Y.

Definition 2.11 [9]. If λ is a fuzzy subset of X and μ is a fuzzy subset of Y, then $\lambda \times \mu$ is a fuzzy subset of $X \times Y$, defined by $(\lambda \times \mu)$ $(x, y) = \min \{\lambda(x), \mu(y)\}$ for each $(x, y) \in X \times Y$.

Lemma 2.12 [Lemma 2.1, [3]]. Let f: $X \to Y$ be a function. If $\{\lambda_{\alpha}\}$ a family of fuzzy subsets of Y, then

(i)
$$f^{-1}(\vee \lambda_{\alpha}) = \vee f^{-1}(\lambda_{\alpha})$$
 and

(ii)
$$f^{-1}(\wedge \lambda_{\alpha}) = \wedge f^{-1}(\lambda_{\alpha}).$$

Lemma 2.13 [Lemma 2.2, [3]]. If λ is a fuzzy subset of X and μ is a fuzzy subset of Y, then $\mathscr{C}(\lambda \times \mu) = \mathscr{C}\lambda \times 1 \vee 1 \times \mathscr{C}\mu$.

3. FUZZY %-SEMI-PRE-BOUNDARY

In this section, the concept of fuzzy &- semi-pre-boundary is introduced and its properties are discussed.

Definition 3.1. Let λ be a fuzzy subset of a fuzzy topological space X and let \mathscr{C} be a complement function. Then the fuzzy \mathscr{C} -semi-pre-boundary of λ is defined as $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$.

Since the arbitrary intersection of fuzzy \mathscr{C} -semi-pre-closed sets is fuzzy \mathscr{C} -semi-pre closed, $SPBd_{\mathscr{C}}\lambda$ is fuzzy \mathscr{C} -semi-pre closed.

We identify $SPBd_{\mathscr{C}}\lambda$ with $SPBd(\lambda)$ when $\mathscr{C}(x) = 1-x$, the usual complement function.

Proposition 3.2. Let (X,τ) be a fuzzy topological space and \mathscr{C} be a complement function that satisfies the involutive condition. Then for any fuzzy subset λ of X, $SPBd_{\mathscr{C}}\lambda = SPBd_{\mathscr{C}}(\mathscr{C}\lambda)$.

Proof. By using Definition 3.1, $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$. Since \mathscr{C} satisfies the involutive condition $\mathscr{C}(\mathscr{C}\lambda) = \lambda$, that implies $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}(\mathscr{C}\lambda) \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$.

Again by using Definition 3.1, $SPBd_{\mathcal{C}}\lambda = SPBd_{\mathcal{C}}(\mathcal{C}\lambda)$.

The following example shows that, the word "involutive" can not be dropped from the hypothesis of Proposition 4.2.

Example 3.3. Let $X = \{a, b, c\}$ and $\tau = \{0, \{a._3, b._7\}, \{a._5, b._2, c._6\}, \{a._5, b._7, c._6\}, \{a._3, b._2\}, 1\}.$

Let $\mathscr{C}(x) = \frac{1-x}{1+x^2}$, $0 \le x \le 1$, be the complement function. We note that the complement function \mathscr{C} does not satisfy

the involutive condition. The family of all fuzzy \mathscr{C} -closed sets is $\mathscr{C}(\tau) = \{0, \{a_{.642}, b_{.201}, c_1\}, \{a_{.4}, b_{.769}, c_{.294}\}, \{a_{.4}, b_{.201}, c_{.294}\}, \{a_{.642}, b_{.769}, c_1\}, 1\}.$

Let $\lambda = \{a._5, b._8, c._4\}$. Then it can be calculated that $SPCl_{\mathscr{C}}\lambda = \{a._5, b._8, c._4\}$.

Now $\mathscr{C}\lambda = \{a._4, b._{122}, c._{57}\}$ and the value of $SPCl_\mathscr{C}\mathcal{C}\lambda = \{a._4, b._{122}, c._{517}\}$. Hence $SPBd_\mathscr{C}\lambda = SPCl_\mathscr{C}\lambda \land SPCl_\mathscr{C}(\mathscr{C}\lambda) = \{a._4, b._{122}, c._{517}\}$. Also $\mathscr{C}(\mathscr{C}\lambda) = \{a._{517}, b._{865}, c._{381}\}$, $SPCl_\mathscr{C}\mathscr{C}(\mathscr{C}\lambda) = \{a._{517}, b._{865}, c._{381}\}$. $SPBd_\mathscr{C}\mathcal{C}\lambda = SPCl_\mathscr{C}\mathcal{C}\lambda \land SPCl_\mathscr{C}\mathcal{C}(\mathscr{C}\lambda) = \{a._4, b._{122}, c._{381}\}$. This implies that $SPBd_\mathscr{C}\lambda \neq SPBd_\mathscr{C}\mathcal{C}\lambda$.

Proposition 3.4. Let (X,τ) be a fuzzy topological space and \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. If λ is fuzzy \mathscr{C} -semi-pre closed, then $SPBd_{\mathscr{C}}\lambda \leq \lambda$.

Proof. Let λ be fuzzy \mathscr{C} -semi-pre-closed. By using Definition 3.1, $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 5.6(ii) in [6], we have $SPCl_{\mathscr{C}}\lambda = \lambda$. Hence $SPBd_{\mathscr{C}}\lambda \leq SPCl_{\mathscr{C}}\lambda = \lambda$.

The following example shows that if the complement function & does not satisfy the monotonic and involutive conditions, then the conclusion of Proposition 3.4 is false.

Example 3.5. Let $X = \{a, b, c\}$ and $\tau = \{0, \{a._6, b._9\}, \{a._7, b._3\}, \{a._6, b._3\}, \{a._7, b._9\}, 1\}.$

Let $\mathscr{C}(x) = \frac{2x}{1+x}$, $0 \le x \le 1$, be a complement function. From this, we see that the complement function \mathscr{C} does not

satisfy the monotonic and involutive conditions. The family of all fuzzy \mathscr{C} -closed sets is given by $\mathscr{C}(\tau) = \{0, \{a_{.75}, b_{.947}\}, \{a_{.824}, b_{.947}\}, \{a_{.824}, b_{.947}\}, \{a_{.824}, b_{.947}\}, 1\}$. Let $\lambda = \{a_{.8}, b_{.3}\}$, it can be found that $Int \ \lambda = \{a_{.7}, b_{.3}\}$, $Cl_{\mathscr{C}}Int \ \lambda = \{a_{.824}, b_{.462}\}$ and $Int \ Cl_{\mathscr{C}}Int \ \lambda = \{a_{.7}, b_{.3}\}$. That implies $Int \ Cl_{\mathscr{C}}\lambda \le \lambda$. This shows that λ is fuzzy \mathscr{C} - pre closed. Further it can be calculated that $SPCl_{\mathscr{C}}\lambda = \{a_{.85}, b_{.632}\}$. Now $\mathscr{C}\lambda = \{a_{.889}, b_{.67}\}$ and $SPCl_{\mathscr{C}}\mathscr{C}\lambda = \{a_{.889}, b_{.67}\}$. Hence $SPBd_{\mathscr{C}}\lambda \le SPCl_{\mathscr{C}}(\mathscr{C}\lambda) = \{a_{.85}, b_{.632}\}$. This implies that $SPBd_{\mathscr{C}}\lambda \le \lambda$. This shows that the conclusion of Proposition 3.4 is false.

Proposition 3.6. Let (X,τ) be a fuzzy topological space and \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. If λ is fuzzy \mathscr{C} -semi-pre open then $SPBd_{\mathscr{C}}\lambda \leq \mathscr{C}\lambda$.

Proof. Let λ be fuzzy &semi-pre open. Since &satisfies the involutive condition, this implies that &(&\mathbb{E}\) is fuzzy &semi-pre open. By using Lemma 2.8, &\mathbb{L}\ is fuzzy &-semi-pre closed. Since &satisfies the monotonic and the involutive conditions, by using Proposition 3.4, $SPBd_{\mathscr{C}}(\mathscr{C}\lambda) \leq \mathscr{C}\lambda$. Also by using Proposition 3.2, we get $SPBd_{\mathscr{C}}(\lambda) \leq \mathscr{C}\lambda$. This completes the proof.

Example 3.7. Let $X = \{a, b, c\}$ and $\tau = \{0, \{a._3, b._7\}, \{a._5, b._2, c._6\}, \{a._5, b._7, c._6\}, \{a._3, b._2\}, 1\}.$

Let $\mathscr{C}(x) = \frac{1-x}{1+x^2}$, $0 \le x \le 1$, be the complement function. We note that the complement function \mathscr{C} does not satisfy

the involutive condition. The family of all fuzzy \mathscr{C} -closed sets is $\mathscr{C}(\tau) = \{0, \{a_{.642}, b_{.201}, c_1\}, \{a_{.4}, b_{.769}, c_{.294}\}, \{a_{.4}, b_{.201}, c_{.294}\}, \{a_{.642}, b_{.769}, c_1\}, 1\}.$

Let $\lambda = \{a._4, b._{122}, c._{57}\}$, the value of $SPCl_{\mathscr{C}}\lambda = \{a._4, b._{122}, c._{517}\}$. Now $\mathscr{C}\lambda = \{a._{517}, b._{865}, c._{381}\}$ and $SPCl_{\mathscr{C}}\lambda = \{a._{517}, b._{865}, c._{381}\}$ and $SPCl_{\mathscr{C}}\lambda = \{a._{517}, b._{865}, c._{381}\}$. This shows that $SPBd_{\mathscr{C}}\lambda \neq SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda) = \{a._4, b._{122}, c._{381}\}$. This shows that $SPBd_{\mathscr{C}}\lambda \not\leq SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda) = \{a._4, b._{122}, c._{381}\}$.

Therefore the conclusion of Proposition 3.6 is false.

Proposition 3.8. Let (X, τ) be a fuzzy topological space and \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. If $\lambda \leq \mu$ and μ is fuzzy \mathscr{C} -semi-pre closed then $SPBd_{\mathscr{C}}\lambda \leq \mu$.

Proof. Let $\lambda \leq \mu$ and μ be fuzzy \mathscr{C} -semi-pre closed. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 5.6(iv) in [6], we have $\lambda \leq \mu$ implies $SPCl_{\mathscr{C}}\lambda \leq SPCl_{\mathscr{C}}\mu$.

By using Definition 3.1, $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathbb{G}\lambda)$. Since $SPCl_{\mathscr{C}}\lambda \leq SPCl_{\mathscr{C}}\mu$, we have $SPBd_{\mathscr{C}}\lambda \leq SPCl_{\mathscr{C}}\mu$, we have $SPBd_{\mathscr{C}}\lambda \leq SPCl_{\mathscr{C}}\mu$. Again by using Proposition 5.6 (ii) in [6], we have $SPCl_{\mathscr{C}}\mu = \mu$.

This implies that $SPBd \mathfrak{g}\lambda \leq \mu$.

The following example shows that if the complement function &does not satisfy the monotonic and involutive conditions, then the conclusion of Proposition 3.8 is false.

Example 3.9. From Example 3.5, let $X = \{a, b\}$ and $\tau = \{0, \{a._6, b._9\}, \{a._7, b._3\}, \{a._6, b._3\}, \{a._7, b._9\}, 1\}$. Let $\lambda = \{a._7, b._{45}\}$ and $\mu = \{a._{76}, b._5\}$. Then it can be found that $Int \ \mu = \{a._7, b._3\}$, $Cl_{\mathscr{C}}Int \ \mu = \{a._{75}, b._{462}\}$ and $Int \ Cl_{\mathscr{C}}Int \ \mu = \{a._{75}, b._{3}\}$. That implies $Int \ Cl_{\mathscr{C}}Int \ \mu \le \mu$. This shows that μ is fuzzy \mathscr{C} -pre closed. It can be computed that $SPCl_{\mathscr{C}}\lambda = \{a._{8}, b._{47}\}$.

Now $\mathcal{C}_{\lambda} = \{a_{.824}, b_{.62}\}$ and $\mathit{SPCl}_{\mathscr{C}}\mathcal{C}_{\lambda} = \{a_{.824}, b_{.47}\}$. $\mathit{SPBd}_{\mathscr{C}_{\lambda}} = \mathit{SPCl}_{\mathscr{C}_{\lambda}} \land \mathit{SPCl}_{\mathscr{C}_{\lambda}}(\mathscr{C}_{\lambda}) = \{a_{.8}, b_{.47}\}$. This shows that $\mathit{SPBd}_{\mathscr{C}_{\lambda}} \not\preceq \mu$.

Therefore the conclusion of Proposition 3.8 is false.

Proposition 3.10. Let (X,τ) be a fuzzy topological space and \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. If $\lambda \leq \mu$ and μ is fuzzy \mathscr{C} -semi-pre open then $SPBd \mathscr{A} \leq \mathscr{C}\mu$.

Proof. Let $\lambda \leq \mu$ and μ is fuzzy \mathscr{C} -semi-pre open. Since \mathscr{C} satisfies the monotonic condition, by using Proposition 5.6(iv) in [6], we have $\mathscr{C}\mu \leq \mathscr{C}\lambda$ that implies $SPCl_{\mathscr{C}}\mathcal{C}\mu \leq SPCl_{\mathscr{C}}\mathcal{C}\lambda$. By using Definition 3.1, $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}\mathcal{C}\lambda$. Taking complement on both sides, we get $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) = \mathscr{C}(SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda))$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Lemma 2.1, we have $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) = \mathscr{C}(SPCl_{\mathscr{C}}\lambda) \vee \mathscr{C}(SPCl_{\mathscr{C}}(\mathscr{C}\lambda))$. Since $SPCl_{\mathscr{C}}\mathcal{C}\mu \leq SPCl_{\mathscr{C}}\mathcal{C}\lambda$, $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) \geq \mathscr{C}(SPCl_{\mathscr{C}}\mathcal{C}\mu) \vee \mathscr{C}(SPCl_{\mathscr{C}}\lambda)$, by using Proposition 5.5(ii) in [6], $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) \geq SPInt_{\mathscr{C}}\mu \vee SPInt_{\mathscr{C}}\lambda \geq pInt_{\mathscr{C}}\mu$. Since \mathscr{C} satisfies the monotonic conditions, $SPBd_{\mathscr{C}}\lambda \leq \mathscr{C}\mu$.

The following example shows that if the complement function & does not satisfy the monotonic and involutive conditions, then the conclusion of Proposition 4.10 is false.

Example 3.11. From Example 3.5, let $X = \{a, b\}$ and $\tau = \{0, \{a._6, b._9\}, \{a._7, b._3\}, \{a._6, b._3\}, \{a._7, b._9\}, 1\}$. Let $\lambda = \{a._6, b._3\}$ and $\mu = \{a._{65}, b._4\}$. Then it can be evaluated that $Cl_{\mathscr{C}}\lambda = \{a._{75}, b._{462}\}$, Int $Cl_{\mathscr{C}}\lambda = \{a._6, b._3\}$ and $Cl_{\mathscr{C}}Int\lambda = \{a._{75}, b._{462}\}$. Thus we see that $\lambda \leq Cl_{\mathscr{C}}(Int\lambda)$. By using Lemma 2.8, λ is fuzzy \mathscr{E} -semi-pre open. It can be computed that $SPCl_{\mathscr{C}}\lambda = \{a._{85}, b._{632}\}$. Now $\mathscr{E}\lambda = \{a._{75}, b._{462}\}$ and $SPCl_{\mathscr{E}}\lambda = \{a._{85}, b._{632}\}$. $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{E}\lambda) = \{a._{85}, b._{632}\}$. This shows that $SPBd_{\mathscr{C}}\lambda \nleq \mathscr{E}\mu$.

Proposition 3.12. Let (X,τ) be a fuzzy topological space. Let \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. Then for any fuzzy subset λ of X, we have $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) = SPInt_{\mathscr{C}}\lambda \vee SPInt_{\mathscr{C}}(\mathscr{C}\lambda)$.

Proof. By using Definition 3.1, $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$. Taking complement on both sdes, we get $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) = \mathscr{C}(SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda))$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Lemma 2.4(ii), $(SPBd_{\mathscr{C}}\lambda) = \mathscr{C}(SPCl_{\mathscr{C}}\lambda) \vee \mathscr{C}(SPCl_{\mathscr{C}}(\mathscr{C}\lambda))$. Also by using Proposition 5.6(ii) in [6], that implies $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) = SPInt_{\mathscr{C}}(\mathscr{C}\lambda) \vee SPInt_{\mathscr{C}}(\mathscr{C}\lambda)$. Since \mathscr{C} satisfies the involutive condition, $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) = SPInt_{\mathscr{C}}\lambda \vee SPInt_{\mathscr{C}}(\mathscr{C}\lambda)$.

The following example shows that if the monotonic and involutive conditions of the complement function \mathscr{C} are dropped, then the conclusion of Proposition 3.12 is false.

Example 3.13. Let $X = \{a, b\}$ and $\tau = \{0, \{a._3, b._8\}, \{a._2, b._5\}, \{a._7, b._1\}, \{a._3, b._5\}, \{a._3, b._1\}, \{a._2, b._1\}, \{a._7, b._8\}, \{a._7, b._5\}, 1\}$. Let $\mathscr{C}(x) = \sqrt{x}$, $0 \le x \le 1$ be the complement function. From this example, we see that \mathscr{C} does not satisfy the

monotonic and involutive conditions. The family of all fuzzy \mathscr{C} -closed sets is $\mathscr{C}(\tau) = \{0, \{a._{548}, b._{894}\}, \{a._{447}, b._{707}\}, \{a._{837}, b._{316}\}, \{._{548}, b._{707}\}, \{a._{548}, b._{316}\}, \{a._{447}, b._{316}\}, \{a._{837}, b._{894}\}, \{a._{837}, b._{707}\}, 1\}.$

Let $\lambda = \{a._6, b._3\}$. Then it can be evaluated that $SPInt_{\mathscr{C}}\lambda = \{a._3, b._1\}$, $\mathscr{C}\lambda = \{a._{775}, b._{548}\}$ and $SPInt_{\mathscr{C}}\mathcal{C}\lambda = \{a._{775}, b._{548}\}$. Thus we see that $SPInt_{\mathscr{C}}\lambda \vee SPInt_{\mathscr{C}}\mathcal{C}\lambda = \{a._{775}, b._{548}\}$. It can be computed that $SPCl_{\mathscr{C}}\lambda = \{a._6, b._8\}$. Now $\mathscr{C}\lambda = \{a._{775}, b._{548}\}$, $SPCl_{\mathscr{C}}\mathcal{C}\lambda = \{a._{837}, b._{707}\}$ and $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda) = \{a._6, b._{707}\}$. Also $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) = \{a._{775}, b._{840}\}$. Thus we see that $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) \neq SPInt_{\mathscr{C}}\lambda \vee SPInt_{\mathscr{C}}\lambda \vee SPInt_{\mathscr{C}}\lambda$. Therefore the conclusion of Proposition 3.12 is false.

Proposition 3.14. Let (X,τ) be a fuzzy topological space. Let \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. Then for any fuzzy subset λ of X, we have SPBd $_{\mathscr{C}}(\lambda) = SPCl_{\mathscr{C}}(\lambda) \wedge \mathscr{C}(SPInt_{\mathscr{C}}(\lambda))$.

Proof. By using Definition 3.1, we have $SPBd_{\mathscr{C}}(\lambda) = SPCl_{\mathscr{C}}(\lambda) \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 5.5(ii) in [6], we have $SPBd_{\mathscr{C}}(\lambda) = SPCl_{\mathscr{C}}(\lambda) \wedge \mathscr{C}(SPInt_{\mathscr{C}}(\lambda))$.

The next example shows that if the complement function \mathscr{C} does not satisfy the monotonic and involutive conditions, then the conclusion of Proposition 3.14 is false.

Example 3.15. From Example 3.5, let $X = \{a, b\}$ and $\tau = \{0, \{a_{.6}, b_{.9}\}, \{a_{.7}, b_{.3}\}, \{a_{.6}, b_{.3}\}, \{a_{.7}, b_{.9}\}, 1\}$. Let $\lambda = \{a_{.9}, b_{.5}\}$. Then it can be evaluated that $SPInt_{\mathscr{C}}\lambda = \{a_{.75}, b_{.462}\}$ and $\mathscr{C}(SPInt_{\mathscr{C}}\lambda) = \{a_{.857}, b_{.632}\}$ and it can be computed that $SPCl_{\mathscr{C}}\lambda = \{a_{.9}, b_{.5}\}$. Now $\mathscr{C}\lambda = \{a_{.947}, b_{.667}\}$, $SPCl_{\mathscr{C}}\mathcal{C}\lambda = \{a_{.947}, b_{.667}\}$ and $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda) = \{a_{.9}, b_{.5}\}$. Also $SPCl_{\mathscr{C}}\lambda \wedge \mathscr{C}(SPInt_{\mathscr{C}}\lambda) = \{a_{.857}, b_{.5}\}$. Thus we see that $SPBd_{\mathscr{C}}\lambda \neq SPCl_{\mathscr{C}}\lambda \wedge \mathscr{C}(SPInt_{\mathscr{C}}\lambda)$. Therefore the conclusion of Proposition 3.14 is false.

Proposition 3.16. Let (X,τ) be a fuzzy topological space. Let \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. Then for any subset λ of X, $SPBd_{\mathscr{C}}(SPInt_{\mathscr{C}}(\lambda)) \leq SPBd_{\mathscr{C}}(\lambda)$.

Proof. Since \mathscr{E} satisfies the monotonic and involutive conditions, by using Proposition 3.14, we have $SPBd_{\mathscr{C}}(SPInt_{\mathscr{C}}(\lambda)) = SPCl_{\mathscr{C}}(SPInt_{\mathscr{C}}(\lambda)) \wedge \mathscr{E}(SPInt_{\mathscr{C}}(\lambda))$. Since $SPInt_{\mathscr{C}}(\lambda)$ is fuzzy \mathscr{E} -semi-pre open, $SPBd_{\mathscr{C}}(SPInt_{\mathscr{C}}(\lambda)) = SPCl_{\mathscr{C}}(SPInt_{\mathscr{C}}(\lambda)) \wedge \mathscr{E}(SPInt_{\mathscr{C}}(\lambda))$. Since $SPInt_{\mathscr{C}}(\lambda) \leq \lambda$, by using Proposition 5.6(ii) in [6], $SPCl_{\mathscr{C}}(SPInt_{\mathscr{C}}(\lambda)) \leq SPCl_{\mathscr{C}}(\lambda) \wedge \mathscr{E}(SPInt_{\mathscr{C}}(\lambda))$. Since \mathscr{E} satisfies the monotonic and involutive conditions, by using Proposition 5.5 in [6], $SPBd_{\mathscr{C}}(SPInt_{\mathscr{C}}(\lambda)) \leq SPCl_{\mathscr{C}}(\lambda) \wedge SPCl_{\mathscr{C}}(\lambda) \wedge SPCl_{\mathscr{C}}(\mathcal{E}(\lambda))$. By using Definition 3.1, we have $SPBd_{\mathscr{C}}(SPInt_{\mathscr{C}}(\lambda)) \leq SPBd_{\mathscr{C}}(\lambda)$.

Proposition 3.17. Let (X,τ) be a fuzzy topological space. Let \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. Then $SPBd_{\mathscr{C}}(SPCl_{\mathscr{C}}(\lambda)) \leq SPBd_{\mathscr{C}}(\lambda)$.

Proof. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 3.14, $SPBd_{\mathscr{C}}(SPCl_{\mathscr{C}}(\lambda)) = SPCl_{\mathscr{C}}(SPCl_{\mathscr{C}}(\lambda)) \wedge \mathscr{C}(SPInt_{\mathscr{C}}(SPCl_{\mathscr{C}}(\lambda)))$. By using Proposition 5.6(iii) in [6], we have $SPCl_{\mathscr{C}}(SPCl_{\mathscr{C}}(\lambda)) = SPCl_{\mathscr{C}}(\lambda)$, that implies $SPBd_{\mathscr{C}}(SPCl_{\mathscr{C}}(\lambda)) = SPCl_{\mathscr{C}}(\lambda) \wedge \mathscr{C}(SPInt_{\mathscr{C}}(SPCl_{\mathscr{C}}(\lambda)))$. Since $\lambda \leq SPCl_{\mathscr{C}}(\lambda)$, that implies $SPInt_{\mathscr{C}}(\lambda) \leq SPInt_{\mathscr{C}}(\lambda)$. Therefore, $SPBd_{\mathscr{C}}(SPCl_{\mathscr{C}}(\lambda)) \leq SPCl_{\mathscr{C}}(\lambda) \wedge \mathscr{C}(SPInt_{\mathscr{C}}(\lambda))$. By using Proposition 5.5 (ii) in [6], and by using Definition 3.1, we get $SPBd_{\mathscr{C}}(SPCl_{\mathscr{C}}(\lambda)) \leq SPBd_{\mathscr{C}}(\lambda)$.

Theorem 3.18. Let (X,τ) be a fuzzy topological space. Let \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. Then $SPBd_{\mathscr{C}}(\lambda \vee \mu) \leq SPBd_{\mathscr{C}}\lambda \vee SPBd_{\mathscr{C}}\mu$.

Proof. By using Definition 3.1, $SPBd_{\mathscr{C}}(\lambda \vee \mu) = SPCl_{\mathscr{C}}(\lambda \vee \mu) \wedge SPCl_{\mathscr{C}}(\mathscr{C}(\lambda \vee \mu))$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 5.7(i) in [6], that implies $SPBd_{\mathscr{C}}(\lambda \vee \mu) = (SPCl_{\mathscr{C}}(\lambda) \vee SPCl_{\mathscr{C}}(\mu)) \wedge SPCl_{\mathscr{C}}(\mathscr{C}(\lambda \vee \mu))$. By using Lemma 2.4 and Proposition 5.7(ii) in [6], $SPBd_{\mathscr{C}}(\lambda \vee \mu) \leq (SPCl_{\mathscr{C}}(\lambda) \vee SPCl_{\mathscr{C}}(\mu)) \wedge (SPCl_{\mathscr{C}}(\mathscr{C}(\lambda)) \wedge SPCl_{\mathscr{C}}(\mathscr{C}(\lambda)) \wedge SPCl_{\mathscr{C}}(\mathscr{C}(\lambda)) \wedge SPCl_{\mathscr{C}}(\mathscr{C}(\lambda)) \wedge SPCl_{\mathscr{C}}(\mathscr{C}(\mu)) \wedge SPCl_{\mathscr{C}}(\mathscr{C}(\mu)) \wedge SPCl_{\mathscr{C}}(\mathscr{C}(\lambda)) \otimes SPBd_{\mathscr{C}}(\lambda \vee \mu) \leq SPBd_{\mathscr{C}}(\lambda \vee SPBd_{\mathscr{C}}(\mu))$. Again by using Definition 3.1, $SPBd_{\mathscr{C}}(\lambda \vee \mu) \leq SPBd_{\mathscr{C}}(\lambda) \vee SPBd_{\mathscr{C}}(\mu)$.

Theorem 3.19. Let (X,τ) be a fuzzy topological space. Suppose the complement function \mathscr{C} satisfies the monotonic and involutive conditions. Then for any two fuzzy subsets λ and μ of a fuzzy topological space X, we have $SPBd_{\mathscr{C}}(\lambda \wedge \mu) \leq (SPBd_{\mathscr{C}}(\lambda) \wedge SPCl_{\mathscr{C}}(\mu)) \vee (SPBd_{\mathscr{C}}(\mu) \wedge SPCl_{\mathscr{C}}(\lambda)).$

Proof. By using Definition 3.1, we have $SPBd_{\mathscr{C}}(\lambda \wedge \mu) = SPCl_{\mathscr{C}}(\lambda \wedge \mu) \wedge SPCl_{\mathscr{C}}(\mathscr{C}(\lambda \wedge \mu))$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 5.7(i), Proposition 5.7 (ii) in [6] and by using Lemma

2.4(iv), we get $SPBd_{\mathscr{C}}(\lambda \wedge \mu) \leq (SPCl_{\mathscr{C}}(\lambda) \wedge SPCl_{\mathscr{C}}(\mu)) \wedge (SPCl_{\mathscr{C}}(\mathscr{C}(\lambda) \vee SPCl_{\mathscr{C}}(\mathscr{C}(\mu)))$ is equal to $[SPCl_{\mathscr{C}}(\lambda) \wedge SPCl_{\mathscr{C}}(\mathscr{C}(\lambda))] \wedge (SPCl_{\mathscr{C}}(\mu)) \vee [SPCl_{\mathscr{C}}(\mu) \wedge SPCl_{\mathscr{C}}(\mathscr{C}(\mu))] \wedge SPCl_{\mathscr{C}}(\lambda)$. Again by using Definition 3.1, we get $SPBd_{\mathscr{C}}(\lambda \wedge \mu) \leq (SPBd_{\mathscr{C}}(\lambda) \wedge SPCl_{\mathscr{C}}(\mu)) \vee (SPBd_{\mathscr{C}}(\mu) \wedge SPCl_{\mathscr{C}}(\lambda))$.

Proposition 3.20. Let (X, τ) be a fuzzy topological space. Suppose the complement function \mathscr{C} satisfies the monotonic and involutive conditions. Then for any fuzzy subset λ of a fuzzy topological space X, we have

- (i) $SPBd_{\mathcal{C}}(SPBd_{\mathcal{C}}(\lambda)) \leq SPBd_{\mathcal{C}}(\lambda)$
- (ii) $SPBd \in SPBd \in SPBd \in \lambda \leq SPBd \in SPBd \in \lambda$.

Proof. By using Definition 3.1, $SPBd \mathcal{L} = SPCl \mathcal{L} \wedge SPCl \mathcal{L} (\mathcal{L})$.

We have $SPBd_{\mathscr{C}}SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}(SPBd_{\mathscr{C}}\lambda) \wedge SPCl_{\mathscr{C}}[\mathscr{C}(SPBd_{\mathscr{C}}\lambda)] \leq SPCl_{\mathscr{C}}(SPBd_{\mathscr{C}}\lambda)$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 5.6(ii) in [6], $SPCl_{\mathscr{C}}\lambda = \lambda$, where λ is fuzzy \mathscr{C} -pre closed.

Here $SPBd_{\mathscr{C}}\lambda$ is fuzzy \mathscr{C} -pre closed. So, $SPCl_{\mathscr{C}}(SPBd_{\mathscr{C}}\lambda) = SPBd_{\mathscr{C}}\lambda$. This implies that $SPBd_{\mathscr{C}}SPBd_{\mathscr{C}}\lambda \leq SPBd_{\mathscr{C}}\lambda$. This proves (i). (ii) Follows from (i).

Proposition 3.21. Let λ be a fuzzy \mathscr{C} -semi-pre closed subset of a fuzzy topological space X and μ be a fuzzy \mathscr{C} -semi-pre closed subset of a fuzzy topological space Y, then $\lambda \times \mu$ is a fuzzy \mathscr{C} -semi-pre closed set of the fuzzy product space $X \times Y$ where the complement function \mathscr{C} satisfies the monotonic and involutive conditions.

Proof. Let λ be a fuzzy $\mathscr C$ -semi-pre closed subset of a fuzzy topological space X. Then by applying Lemma 2.8, $\mathscr C\lambda$ is fuzzy $\mathscr C$ -semi-pre open set in X. Also if $\mathscr C\lambda$ is fuzzy $\mathscr C$ -semi-pre- open set in X, then $\mathscr C\lambda \times 1$ is fuzzy $\mathscr C$ -semi-pre- open in $X \times Y$. Similarly let μ be a fuzzy $\mathscr C$ -semi-pre closed subset of a fuzzy topological space X. Then by using Lemma 2.8, $\mathscr C\mu$ is fuzzy $\mathscr C$ -semi-pre open set in Y. Also if $\mathscr C\mu$ is fuzzy $\mathscr C$ -semi-pre open set in Y then $\mathscr C\mu \times 1$ is fuzzy $\mathscr C$ -semi-pre open in $X \times Y$. Since the arbitrary union of fuzzy $\mathscr C$ -semi-pre open sets is fuzzy $\mathscr C$ -semi-pre open. So, $\mathscr C\lambda \times 1 \vee 1 \times \mathscr C\mu$ is fuzzy $\mathscr C$ -semi-pre open in $X \times Y$. By using Lemma 2.13, $\mathscr C(\lambda \times \mu) = \mathscr C\lambda \times 1 \vee 1 \times \mathscr C\mu$, hence $\mathscr C(\lambda \times \mu)$ is fuzzy $\mathscr C$ -semi-pre open. By using Lemma 2.8, $\lambda \times \mu$ is fuzzy $\mathscr C$ -semi-pre closed of the fuzzy product space $X \times Y$.

Theorem 3.22. Let \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. If λ is a fuzzy subset of a fuzzy topological space X and μ is a fuzzy subset of a fuzzy topological space Y, then

- (i) $SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu \ge SPCl_{\mathscr{C}}(\lambda \times \mu)$
- (ii) $SPInt_{\mathscr{C}}\lambda \times SPInt_{\mathscr{C}}\mu \leq SPInt_{\mathscr{C}}(\lambda \times \mu)$.

Proof. By using Definition 2.11, $(SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu)$ $(x, y) = \min\{SPCl_{\mathscr{C}}\lambda(x), SPCl_{\mathscr{C}}\mu(y)\} \ge \min\{\lambda(x), \mu(y)\} = (\lambda \times \mu)$.

By using Proposition 5.6 in [6], $SPCl_{\mathscr{C}}(\lambda \times \mu) \leq SPCl_{\mathscr{C}}(SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu) = SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu$. By using Definition 2.11, $(SPInt_{\mathscr{C}}\lambda \times SPInt_{\mathscr{C}}\mu)$ (x, y) = min $\{SPInt_{\mathscr{C}}\lambda(x), SPInt_{\mathscr{C}}\mu(y)\} \leq \min\{\lambda(x), \mu(y)\} = (\lambda \times \mu)(x, y)$. This shows that $SPInt_{\mathscr{C}}\lambda \times SPInt_{\mathscr{C}}\mu \leq (\lambda \times \mu)$. By using Proposition 5.2 in [6], $SPInt_{\mathscr{C}}(SPInt_{\mathscr{C}}\lambda \times SPInt_{\mathscr{C}}\mu) \leq SPInt_{\mathscr{C}}(\lambda \times \mu)$, that implies $SPInt_{\mathscr{C}}\lambda \times SPInt_{\mathscr{C}}\mu \leq SPInt_{\mathscr{C}}(\lambda \times \mu)$.

Theorem 3.23. Let X and Y be \mathscr{C} -product related fuzzy topological spaces. Then for a fuzzy subset λ of X and a fuzzy subset μ of Y,

- (i) $SPCl_{\mathscr{C}}(\lambda \times \mu) = SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu$
- (ii) $SPInt_{\mathscr{C}}(\lambda \times \mu) = SPInt_{\mathscr{C}}\lambda \times SPInt_{\mathscr{C}}\mu$.

Proof. By using Theorem 3.22, it is sufficient to show that $SPCl_{\mathscr{C}}(\lambda \times \mu) \geq SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu$. By using Definition 5.4 in [6], we have $SPCl_{\mathscr{C}}(\lambda \times \mu) = \inf\{\mathscr{C}(\lambda_{\alpha} \times \mu_{\beta}): \mathscr{C}(\lambda_{\alpha} \times \mu_{\beta}) \geq \lambda \times \mu \text{ where } \lambda_{\alpha} \text{ and } \mu_{\beta} \text{ are fuzzy } \mathscr{C}\text{-semi-pre open}\}$. By using Lemma 2.11,

```
\begin{split} \text{we have } \textit{SPCl}_{\mathscr{C}}(\lambda \times \mu) &= \inf \; \{ \; \mathscr{C}\lambda_{\alpha} \times 1 \vee 1 \times \mathscr{C}\lambda_{\beta} \colon \; \mathscr{C}\lambda_{\alpha} \times 1 \vee 1 \times \mathscr{C}\mu_{\beta} \geq \lambda \times \mu \} \\ &= \inf \; \{ \; \mathscr{C}\lambda_{\alpha} \times 1 \vee 1 \times \mathscr{C}\mu_{\beta} \colon \; \mathscr{C}\lambda_{\alpha} \geq \lambda \; \text{or } \; \mathscr{C}\mu_{\beta} \geq \mu \} \\ &= \min \; (\inf \; \{ \; \mathscr{C}\lambda_{\alpha} \times 1 \vee 1 \times \mathscr{C}\mu_{\beta} \colon \mathscr{C}\lambda_{\alpha} \geq \lambda \}, \inf \{ \; \mathscr{C}\lambda_{\alpha} \times 1 \vee 1 \times \mathscr{C}\mu_{\beta} \colon \mathscr{C}\mu_{\beta} \geq \} ). \end{split}
```

Now inf {
$$\mathscr{C}\lambda_{\alpha} \times 1 \lor 1 \times \mathscr{C}\mu_{\beta}$$
: $\mathscr{C}\lambda_{\alpha} \ge \lambda$ } $\ge \inf$ { $\mathscr{C}\lambda_{\alpha} \times 1 : \mathscr{C}\lambda_{\alpha} \ge \lambda$ } $= \inf$ { $\mathscr{C}\lambda_{\alpha} : \mathscr{C}\lambda_{\alpha} \ge \lambda$ } $\times 1$

$$= (SPCl_{\mathcal{C}}\lambda) \times 1.$$

Also inf
$$\{ \mathscr{C}\lambda_{\alpha} \times 1 \vee 1 \times \mathscr{C}\mu_{\beta} \colon \mathscr{C}\mu_{\beta} \geq \mu \} \geq \inf \{ 1 \times \mathscr{C}\mu_{\beta} \colon \mathscr{C}\mu_{\beta} \geq \mu \}$$

= $1 \times \inf \{ \mathscr{C}\mu_{\beta} \colon \mathscr{C}\mu_{\beta} \geq \mu \}$
= $1 \times SPCl_{\varnothing}\mu$.

The above discussions imply that

$$SPCl_{\mathscr{C}}(\lambda \times \mu) \ge \min (SPCl_{\mathscr{C}}\lambda \times 1, 1 \times SPCl_{\mathscr{C}}\mu)$$

= $SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu$.

(ii) follows from (i) and using Proposition 5.5 in [6].

Theorem 3.24. Let X_i , $i = 1, 2 \dots n$, be a family of \mathscr{C} -product related fuzzy topological spaces. If λ_i is a fuzzy subset of X_i , and the complement function \mathscr{C} satisfies the monotonic and involutive conditions, then

$$SP$$
Bd $_{\mathscr{C}}(\prod_{i=1}^{n}\lambda_{i}^{})=[SP$ Bd $_{\mathscr{C}}\lambda_{1}\times SPCl_{\mathscr{C}}\lambda_{2}\times...\times SPCl_{\mathscr{C}}\lambda_{n}]\vee[SPCl_{\mathscr{C}}\lambda_{1}\times SP$ Bd $_{\mathscr{C}}\lambda_{2}\times...\times SPCl_{\mathscr{C}}\lambda_{n}]\vee...\vee[SPCl_{\mathscr{C}}\lambda_{1}\times SPCl_{\mathscr{C}}\lambda_{2}\times...\times SP$ Bd $_{\mathscr{C}}\lambda_{n}]$.

Proof. It suffices to prove this for n = 2. By using Proposition 3.14,

we have
$$SPBd_{\mathscr{C}}(\lambda_{1} \times \lambda_{2}) = SPCl_{\mathscr{C}}(\lambda_{1} \times \lambda_{2}) \wedge \mathscr{C}(SPInt_{\mathscr{C}}(\lambda_{1} \times \lambda_{2}))$$

$$= (SPCl_{\mathscr{C}}\lambda_{1} \times SPCl_{\mathscr{C}}\lambda_{2}) \wedge \mathscr{C}(SPInt_{\mathscr{C}}\lambda_{1} \times SPInt_{\mathscr{C}}\lambda_{2}) \quad \text{[by using Theorem 3.23]}$$

$$= (SPCl_{\mathscr{C}}\lambda_{1} \times SPCl_{\mathscr{C}}\lambda_{2}) \wedge \mathscr{C}[(SPInt_{\mathscr{C}}\lambda_{1} \wedge SPCl_{\mathscr{C}}\lambda_{1}) \times (SPInt_{\mathscr{C}}\lambda_{2} \wedge SPCl_{\mathscr{C}}\lambda_{2})]$$

$$= (SPCl_{\mathscr{C}}\lambda_{1} \times SPCl_{\mathscr{C}}\lambda_{2}) \wedge [\mathscr{C}(SPInt_{\mathscr{C}}\lambda_{1} \wedge SPCl_{\mathscr{C}}\lambda_{1}) \times 1 \vee 1 \times \mathscr{C}(SPInt_{\mathscr{C}}\lambda_{2} \wedge SPCl_{\mathscr{C}}\lambda_{1})].$$

[By Lemma 2.13]. Since Statisfies the monotonic and involutive conditions, by using Proposition 5.5(i), Proposition 5.5(i) in [6] and also by using Lemma 2.11,

$$\begin{split} \mathbf{\mathit{SP}} \mathrm{Bd}_{\mathscr{C}}(\lambda_{1} \times \lambda_{2}) &= (\mathbf{\mathit{SPC}} l_{\mathscr{C}} \lambda_{1} \times \mathbf{\mathit{SPC}} l_{\mathscr{C}} \lambda_{2}) \wedge [(\mathbf{\mathit{SPC}} l_{\mathscr{C}} \mathscr{C} \lambda_{1} \vee \mathbf{\mathit{SPI}} n t_{\mathscr{C}} \mathscr{C} \lambda_{1}) \times 1 \vee 1 \times (\mathbf{\mathit{SPC}} l_{\mathscr{C}} \mathscr{C} \lambda_{2} \vee \mathbf{\mathit{SPI}} n t_{\mathscr{C}} \mathscr{C} \lambda_{2})] \\ &= (\mathbf{\mathit{SPC}} l_{\mathscr{C}} \lambda_{1} \times \mathbf{\mathit{SPC}} l_{\mathscr{C}} \lambda_{2}) \wedge [\mathbf{\mathit{SPC}} l_{\mathscr{C}} \mathscr{C} \lambda_{1} \times 1 \vee 1 \times \mathbf{\mathit{SPC}} l_{\mathscr{C}} \mathscr{C} \lambda_{2}] \\ &= [(\mathbf{\mathit{SPC}} l_{\mathscr{C}} \lambda_{1} \times \mathbf{\mathit{SPC}} l_{\mathscr{C}} \lambda_{2}) \wedge (\mathbf{\mathit{SPC}} l_{\mathscr{C}} (\mathscr{C} \lambda_{1}) \times 1)] \vee [(\mathbf{\mathit{SPC}} l_{\mathscr{C}} \lambda_{1}) \times \mathbf{\mathit{SPC}} l_{\mathscr{C}} \lambda_{2}) \wedge (1 \times \mathbf{\mathit{SPC}} l_{\mathscr{C}} (\mathscr{C} \lambda_{2}))]. \end{split}$$

Again by using Lemma 2.9, we get

$$\begin{aligned} \textit{SPBd}_{\mathscr{C}}(\lambda_{1} \times \lambda_{2}) &= [(\textit{SPCl}_{\mathscr{C}}\lambda_{1} \land \textit{SPCl}_{\mathscr{C}}(\mathscr{C}\lambda_{1})) \times (1 \land \textit{SPCl}_{\mathscr{C}}\lambda_{2})] \lor [(\textit{SPCl}_{\mathscr{C}}\lambda_{2} \land \textit{SPCl}_{\mathscr{C}}(\mathscr{C}\lambda_{2})) \times (1 \land \textit{SPCl}_{\mathscr{C}}\lambda_{1})] \\ &= [(\textit{SPCl}_{\mathscr{C}}(\lambda_{1}) \land \textit{SPCl}_{\mathscr{C}}(\mathscr{C}\lambda_{1})) \times \textit{SPCl}_{\mathscr{C}}(\lambda_{2})] \lor [(\textit{SPCl}_{\mathscr{C}}(\lambda_{2}) \land \textit{SPCl}_{\mathscr{C}}(\mathscr{C}\lambda_{2})) \times \textit{SPCl}_{\mathscr{C}}(\lambda_{1})] \end{aligned}$$

$$SPBd_{\mathscr{C}}(\lambda_1 \times \lambda_2) = [SPBd_{\mathscr{C}}(\lambda_1) \times SPCl_{\mathscr{C}}(\lambda_2)] \vee [SPCl_{\mathscr{C}}(\lambda_1) \times SPBd_{\mathscr{C}}(\lambda_2)].$$

Theorem 3.25. Let $f: X \rightarrow Y$ be a fuzzy continuous function. Suppose the complement function $\mathscr C$ satisfies the monotonic and involutive conditions. Then

$$SPBd_{\mathscr{C}}(f^{-1}(\mu)) \leq f^{-1}(SPBd_{\mathscr{C}}(\mu))$$
, for any fuzzy subset μ in Y.

Proof. Let f be a fuzzy continuous function and μ be a fuzzy subset in Y. By using Definition 3.1, we have $SPBd_{\mathscr{C}}(f^{-1}(\mu)) = SPCl_{\mathscr{C}}(f^{-1}(\mu)) \wedge SPCl_{\mathscr{C}}(f^{-1}(\mu))$. By using Lemma 2.10, $SPBd_{\mathscr{C}}(f^{-1}(\mu)) = SPCl_{\mathscr{C}}(f^{-1}(\mu)) \wedge SPCl_{\mathscr{C}}(f^{-1}(\mathscr{C}\mu))$.

Since f is fuzzy continuous and $f^{-1}(\mu) \le f^{-1}(SPCl_{\mathscr{C}}(\mu))$, it follows that $SPCl_{\mathscr{C}}(f^{-1}(\mu)) \le f^{-1}(SPCl_{\mathscr{C}}(\mu))$. This together with the above imply that $SPBd_{\mathscr{C}}(f^{-1}(\mu)) \le f^{-1}(SPCl_{\mathscr{C}}(\mu)) \wedge f^{-1}(SPCl_{\mathscr{C}}(\mathscr{C}(\mu)))$. By using Lemma 2.12, $SPBd_{\mathscr{C}}(f^{-1}(\mu)) \le f^{-1}(SPCl_{\mathscr{C}}(\mu)) \wedge SPCl_{\mathscr{C}}(\mathscr{C}(\mu))$. That is $SPBd_{\mathscr{C}}(f^{-1}(\mu)) \le f^{-1}(SPBd_{\mathscr{C}}(\mu))$.

REFERENCES

- [1] M. Athar and B. Ahmad, Fuzzy boundary and Fuzzy semi boundary, *Advances in Fuzzy systems* (2008), Article ID 586893, 9 pages.
- [2] M. Athar and B. Ahmad, Fuzzy sets, fuzzy S-open and fuzzy S-closed mappings, *Advances in Fuzzy systems* (2009), Article ID 303042, 5 pages.

Dr. K. Bageerathi*/ On fuzzy semi-pre-boundary /IJMA- 3(12), Dec.-2012.

- [3] K.K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, *J. Math. Anal .Appl.* 82(1) (1981), 14-32.
- [4] K.Bageerathi, G. Sutha, P. Thangavelu, A generalization of fuzzy closed sets, *International Journal of fuzzy systems and rough systems*, 4(1) (2011), 1-5.
- [5] K. Bageerathi, P. Thangavelu, A generalization of fuzzy Boundary, *International Journal of Mathematical Archive* 1(3)(2010), 73-80.
- [6] K. Bageerathi, A generalization of fuzzy semi-pre open sets (submitted)
- [7] C.L. Chang, Fuzzy topological space, J.Math.Anal.Appl.24 (1968), 182-190.
- [8] George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, *Prentice Hall, Inc,* 2005.
- [9] K. Katsaras and D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J.Math.Anal.Appl. 8 (3) (1978), 459-470.

Source of support: Nil, Conflict of interest: None Declared