ON SOME FIXED POINT THEOREMS IN 2-UNIFORM SPACES

*V. Srinivasa kumar & **T. V. L. Narayana

*Assistant Professor, Department of Mathematics, JNTUH College of Engineering, JNTU, Hyderabad-500085, A.P., India

**D.No-4-5-14, SNP Agraharam, 2nd line, Bapatla-522101, Guntur (Dt), A.P. India

(Received on: 23-11-12; Revised & Accepted on: 24-12-12)

ABSTRACT

In this paper, some fixed point theorems in 2-uniform spaces are established and contraction type mappings in 2 – uniform spaces are introduced.

AMS subject Classification: 37C25, 47H10

Key words: Pseudo 2 – metric, Uniformity, 2 – uniform space, Contraction type mapping.

INTRODUCTION

In this paper we introduce contraction type mappings in 2 – uniform spaces and we present some fixed point theorems of operators in 2 – uniform spaces. These theorems generalize the results of many authors such as Lal and Singh, Das and Sharma etc.

In what follows X and \mathbb{R} stand for a non-empty set and the real line respectively and $X^3 = X \times X \times X$. If A and B are any two sets then by the symbol $A \leq B$ we mean that A is contained in B.

1. PRELIMINARIES

- **1.1 Definition:** A pseudo 2-metric for X is a mapping $\rho: X^3 \to \mathbb{R}$ such that for all a,b,c and d in X we have
- (i) $\rho(a,b,c) > 0$ and $\rho(a,b,c) = 0$ if at least two of a,b,c are equal.
- (ii) $\rho(a,b,c) = \rho(b,c,a) = \rho(c,a,b) = ...$
- (iii) $\rho(a,b,c) \le \rho(a,b,d) + \rho(a,d,c) + \rho(d,b,c)$

A set X together with a pseudo 2 – metric ρ is called a pseudo 2 – metric space (X, ρ) .

- **1.2 Definition:** If U is any subset of X^3 then $U^{-1} = \{(z, y, x)/(x, y, z) \in U\}$. We define the diagonal of X^3 to be the set $\Delta = \{(x, x, x)/x \in X\}$.
- **1.3 Definition:** A 2 uniformity for X is a non-void family \mathcal{U} of subsets of X^3 such that
- (i) each member of $\mathscr U$ contains Δ
- (ii) if $U \in \mathcal{U}$ then $V \circ V \circ V \leq U$ for some V in \mathcal{U}
- (iii) if U and V are two members of U then $U \cap V \in \mathcal{U}$
- (iv) if $U \in \mathcal{U}$ and $U \leq V \leq X^3$ then $V \in \mathcal{U}$

By a 2 – uniform space we mean a non-empty set X together with a 2 – uniformity $\mathscr U$ on X and we denote it by $(X,\mathscr U)$.

*V. Srinivasa kumar & **T. V. L. Narayana/ ON SOME FIXED POINT THEOREMS IN 2-UNIFORM SPACES/IJMA- 3(12), Dec.-2012.

- **1.4 Definition:** If (X, \mathcal{U}) is 2 uniform space then a subset \mathcal{B} of \mathcal{U} is called a basis for (X, \mathcal{U})
- (i) if each member of \mathcal{B} contains the diagonal Δ
- (ii) $U \in \mathcal{B}$ then U^{-1} contains a member of \mathcal{B}
- (iii) if $U \in \mathcal{B}$ then $V \circ V \circ V \leq U$ for some V in \mathcal{B}
- (iv) the intersection of two members of \mathcal{B} contains a member of \mathcal{B}
- **1.5 Remark:** By $V \circ V \circ V$ we mean that the composition by treating V as a relation in the order $V: X \to X \times X$, $V: X \times X \to X$ and $V: X \to X \times X$ respectively.
- **1.6 Definition:** A 2 uniform space (X, \mathcal{U}) is said to be sequentially complete if every cauchy sequence in X converges to a point in X.
- **1.7 Definition:** If (X, ρ) is a pseudo 2-metric space and if r is a positive real number then we define $V_{(\rho,r)} = \{(x,y,z) \in X^3 / \rho(x,y,z) < r\}$.

1.8 Notation:

- 1. We denote \mathcal{P} for the family of pseudo 2 metrics on X generating the uniformity.
- 2. \mathcal{V} denotes family of all sets of the form $\bigcap_{i=1}^{n} V_{(\rho_i, r_i)}$ where $\rho_i \in \mathcal{P}$ and r_i is a positive real number for i=1,2,3,...n (n is not fixed).
- 3. If $V \in \mathcal{V}$ then $V = \bigcap_{i=1}^n V_{(\rho_i, r_i)}$. If α is positive then $\alpha V = \bigcap_{i=1}^n V_{(\rho_i, \alpha r_i)}$.
- **1.9 Definition:** Let \mathcal{B} be a basis for the 2 uniform space (X, \mathcal{U}) and let f be a mapping from X into itsself.
- (a) f said to be a contraction with respect to \mathcal{B} if $(f(x), f(y), z) \in U$ whenever $(x, y, z) \in U \in \mathcal{B}$.
- (b) f said to be an expansion with respect to \mathcal{B} if $(x, y, z) \in U$ whenever $(f(x), f(y), z) \in U \in \mathcal{B}$.

2. SOME PRELIMINARY LEMMAS

- **2.1 Lemma:** If $V \in \mathcal{V}$ and α, β are positive then $\alpha(\beta V) = (\alpha \beta)V$.
- **2.2 Lemma:** If $V \in \mathcal{V}$ and α, β are positive then $\alpha V \leq \beta V$ whenever $\alpha \leq \beta$.
- **2.3 Lemma:** Let ρ be any pseudo 2 metric on X and α, β be any two positive real numbers. If $(x, y, z) \in \alpha V_{(\rho, r_1)} \circ \beta V_{(\rho, r_2)}$ then $\rho(x, y, z) < \alpha r_1 + \beta r_2$.
- **2.4 Lemma:** If $V \in \mathcal{V}$ and α, β are two positive real numbers then $\alpha V \circ \beta V \leq (\alpha \beta)V$.
- **2.5 Lemma:** Let $(x, y, z) \in X^3$. Then for every $V \in \mathcal{V}$ there exists a positive real number α such that $(x, y, z) \in \alpha V$
- **2.6 Lemma:** If $V \in \mathcal{V}$ then there exists a pseudo 2 metric ρ on X such that $V = V_{(\rho,1)}$.

3. SOME FIXED POINT THEOREMS OF OPERATORS

In this section, we assume that (X, \mathcal{U}) is a 2 – uniform space which is also sequentially complete Hausdorff space.

- **3.1 Theorem:** Let $\mathcal{A} = \{S_1, S_2, ..., S_p\}$ and $\mathcal{B} = \{T_1, T_2, ..., T_q\}$ be two sets of operators such that
- (a) each S_i and T_i map X into itself
- $(b) \ S_i S_j = S_j S_i \ \text{for} \ 1 \leq i, j \leq p \ \text{and} \ T_\alpha T_\beta = T_\beta T_\alpha \ \text{for} \ 1 \leq \alpha, \beta \leq q$

(c) for all $x,y\in X$, for every $a\in X$ and each $\rho\in\mathcal{P}$ and for any five members V_1,V_2,V_3,V_4,V_5 in \mathcal{V} , $(S(x),T(y),a)\in\alpha_1V_1\circ\alpha_2V_2\circ\alpha_3V_3\circ\alpha_4V_4\circ\alpha_5V_5$ where $S\in\mathcal{A}$ and $T\in\mathcal{B}$ and each α_i is a non negative real number independent of x,y,a,V_1,V_2,V_3,V_4 and V_5 such that

$$0 < \frac{\alpha_1 + \alpha_3 + \alpha_5}{1 - \alpha_2 - \alpha_3}, \frac{\alpha_2 + \alpha_4 + \alpha_5}{1 - \alpha_1 - \alpha_4} < 1, 1 - \alpha_2 - \alpha_3 \neq 0, 1 - \alpha_1 - \alpha_4 \neq 0.$$

 $\text{If } \big(x,S(x),a\big) \in V_1, \big(y,T(x),a\big) \in V_2, \big(x,T(y),a\big) \in V_3, \big(y,S(x),a\big) \in V_4, \big(x,y,a\big) \in V_5 \text{ then all } S_i (1 \leq i \leq p)$ and $T_i (1 \leq j \leq q)$ have a common unique fixed point.

Proof: Clearly $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 < 1$. Suppose that $k_1 = \frac{\alpha_1 + \alpha_3 + \alpha_5}{1 - \alpha_2 - \alpha_3}$ and $k_2 = \frac{\alpha_2 + \alpha_4 + \alpha_5}{1 - \alpha_1 - \alpha_4}$. Let $V \in \mathcal{V}$ and $\rho \in \mathcal{P}$ suppose that x, y, a are any three points of X. Put $\rho(x, S(x), a) = r_1$, $\rho(y, T(y), a) = r_2$, $\rho(x, T(y), a) = r_3$, $\rho = (y, S(x), a) = r_4$ and $\rho(x, y, a) = r_5$ and take $\varepsilon > 0$, then $(x, S(x), a) \in (r_1 + \varepsilon) V$, $(y, T(y), a) \in (r_2 + \varepsilon) V$, $(x, S(x), a) \in (r_3 + \varepsilon) V$, $(y, T(y), a) \in (r_4 + \varepsilon) V$, $(x, y, a) \in (r_5 + \varepsilon) V$.

Then we have

$$(S(x), T(y), a) \in \alpha_1(r_1 + \varepsilon) V \circ \alpha_2(r_2 + \varepsilon) V \circ \alpha_3(r_3 + \varepsilon) V \circ \alpha_3(r_3 + \varepsilon) V \circ \alpha_4(r_4 + \varepsilon) V \circ \alpha_5(r_5 + \varepsilon)$$

$$\Rightarrow \rho(S(x), T(y), a) \le \alpha_1(r_1 + \varepsilon) + \alpha_2(r_2 + \varepsilon) + \alpha_3(r_3 + \varepsilon) + \alpha_4(r_4 + \varepsilon) + \alpha_5(r_5 + \varepsilon)$$

$$= \alpha_1 r_1 + \alpha_2 r_2 + \alpha_3 r_3 + \alpha_4 r_4 + \alpha_5 r_5 + (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5)\varepsilon$$

Since $\varepsilon > 0$ is arbitrary, we have $\rho(S(x), T(y), a) \le \alpha_1 r_1 + \alpha_2 r_2 + \alpha_3 r_3 + \alpha_4 r_4 + \alpha_5 r_5$.

Fix $x_0 \notin X$. Construct a sequence $\{x_n\}$ in X such that $x_{2n+1} = S(x_{2n})$ and $x_{2n+2} = T(x_{2n+1})$ where $n = 0, 1, 2, 3, \ldots$

Clearly $\{x_n\}$ is a Cauchy sequence in X and hence there exists a point u in X such that $u=\lim_{n\to\infty}x_n$. Then

$$\begin{split} \rho(u,S(u),a) &\leq \rho(u,S(u),x_{2n}) + \rho(u,x_{2n},a) + \rho(x_{2n},S(u),a) \\ &= \rho(u,S(u),x_{2n}) + \rho(u,x_{2n},a) + \rho(T(x_{2n-1}),S(u),a) \\ &\leq \rho(u,S(u),x_{2n}) + \rho(u,x_{2n},a) + \alpha_1\rho(u,S(u),a) + \alpha_2\rho(x_{2n-1},T(x_{2n-1}),a) \\ &+ \alpha_3\rho(u,x_{2n-1},a) + \alpha_4\rho(x_{2n-1},S(u),a) + \alpha_5\rho(x_{2n},a) \end{split}$$

Letting
$$n \to \infty$$
, we get $(1 - \alpha_1 - \alpha_4) \rho(u, S(u), a) \le 0 \Rightarrow \rho(u, S(u), a) = 0 \Rightarrow u = S(u)$
 $\Rightarrow u \text{ is a fixed point of } S.$

Similarly u is a fixed point of T. Furthermoer u is unique common fixed point of S and T.

3.2 Theorem: Suppose that $S: X \to X$ and $T: X \to X$ are two operators such that (a) ST = TS (b) For all x, y, z_1, z_2 in X, for each $\rho \in \mathcal{P}$ and for any six members $V_1, V_2, V_3, V_4, V_5, V_6$ in \mathcal{V} , $\left(S(x), T(y), a\right) \in \alpha_1 V_1 \circ \alpha_2 V_2 \circ \alpha_3 V_3 \circ \alpha_4 V_4 \circ \alpha_5 V_5 \circ \alpha_6 V_6$.

$$\begin{split} &\text{If } \left(x,S^k(z_1),a\right) \in V_1, \left(y,T^k(z_2),a\right) \in V_2, \left(x,S^k(z_2),a\right) \in V_3, \left(y,S^k(z_2),a\right) \in V_4, \left(S^k(z_1),T^k(z_2),a\right) \in V_5 \\ &\text{and } \left(x,y,a\right) \in V_6 \text{ where } k \text{ is a positive integer and } \sum_{i=1}^6 \alpha_i > 1 \text{ then } S \text{ and } T \text{ have a unique common fixed point in } X. \end{split}$$

 st V. Srinivasa kumar & st T. V. L. Narayana/ ON SOME FIXED POINT THEOREMS IN 2-UNIFORM SPACES/IJMA- 3(12), Dec.-2012.

3.3 Theorem: Suppose that $S: X \to X$ and $T: X \to X$ are two operators such that (a) ST = TS (b) For all x, y, z_1, z_2 in X, for each $\rho \in \mathcal{P}$ and for any five members V_1, V_2, V_3, V_4, V_5 in \mathcal{V} , $\left(S(x), T(y), a\right) \in \alpha_1 V_1 \circ \alpha_2 V_2 \circ \alpha_3 V_3 \circ \alpha_4 V_4 \circ \alpha_5 V_5$.

$$\begin{split} &\text{If } \left(x,S^k(z_1),a\right) \in V_1, \left(y,T^k(z_2),a\right) \in V_2, \left(x,S^k(z_2),a\right) \in V_3, \left(y,S^k(z_2),a\right) \in V_4, \left(x,y,a\right) \in V_5 \quad \text{where } k \\ &\text{is a positive integer and } \sum_{i=1}^5 \alpha_i > 1 \text{ then } S \text{ and } T \text{ have a unique common fixed point in } X \;. \end{split}$$

3.4 Theorem: Suppose that $S: X \to X$ and $T: X \to X$ are two operators such that (a) ST = TS (b) For all x, y, z_1, z_2, z_3, z_4 in X, for each $\rho \in \mathcal{P}$ and for any four members V_1, V_2, V_3, V_4 in \mathcal{V} , $\left(S(x), T(y), a\right) \in \alpha_1 V_1 \circ \alpha_2 V_2 \circ \alpha_3 V_3 \circ \alpha_4 V_4$.

$$\begin{split} &\text{If } \left(x,S^k(z_1),a\right) \in V_1, \left(y,T^k(z_2),a\right) \in V_2, \left(S(z_1),S^k(z_3),a\right) \in V_3, \left(T(y),S^k(z_4),a\right) \in V_4 \quad \text{where } k \text{ is a positive integer and } \sum_{i=1}^4 \alpha_i > 1 \text{ then } S \text{ and } T \text{ have a unique common fixed point in } X \,. \end{split}$$

REFERENCES

- 1. Das, B.K., and Sharma A.K., A Fixed point theorem, Bull. Cal. Math. Soc., Vol. 72, p.p 263-266, 1980.
- 2. Kelley, J. L., General *Topology*, Springer Verlag, New York, 1955.
- **3.** Lal, S.N., and Singh, A.K., An analogue of Banach's contraction principal for 2-metric spaces, Bull. Austral. Math.Soc. Vol. 18, p. p 137-143, 1978.
- 4. Singh, U.N., and Singh, R.K., Generalized fixed point theorems in metric spaces, Jnanabha, Vol. 18, p. p 151-163.

Source of support: Nil, Conflict of interest: None Declared