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1. INTRODUCTION, DEFINITIONS AND NOTATIONS. 

 

Let f be an entire function defined in the open complex plane ℂ. The maximum term ( )fr,µ  of ∑
∞

=

=
0n

n
n zaf  on 

rz =  is defined by 

( ) ( )n
nn

rafr
0

max,
≥

=µ . 

 
To start our paper we just recall the following definitions: 
 
Definition 1. The order fρ  and lower order fλ  of an entire function f are defined as 
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Definition 2.  The hyper order fρ  hyper lower order fλ   of an entire function f are defined as follows 
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Definition 3. ([3])   Let  f  be an entire function of order zero. Then the quantities ff *,* λρ  and ff
*,* λρ   

are defined in the following way : 
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Definition 4.  The type fσ  of an entire function  f is defined as 
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In the paper we would like to establish some new results based on the comparative growth properties of maximum 
terms of composite entire functions. We do not explain the standard notations and definitions in the theory of entire 
functions as those are available in [5]. 
 
2. LEMMAS. 
In this section we present some lemmas which will be needed in the sequel. 

 
Lemma 1. ([1]) Let f and g be any two entire functions. Then for all sufficiently large values of r, 
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Lemma 2.  ([2]) Let f  be an entire function of finite lower order. If there exist entire functions ( )∞≤= nniia ;,...,2,1   
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3. THEOREMS. 
In this section we present the main results of the paper. 
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Proof.  Putting rR 2=  in the inequality 
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Again in view of the second part of Lemma 1 and for all sufficiently large values of r ,  
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Since ( )0>ε is arbitrary, 
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Again by the second part of Lemma 1 and the inequality ( ) ( )frMfr ,, ≤µ , we get for all sufficiently large values of 
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Also in view of the first part of Lemma 1 and for all sufficiently large values of r we obtain that 
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Now from (4) and (5) we get for all sufficiently large values of r , 
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As ( )0>ε  is arbitrary, 
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Thus the theorem follows from (3) and (6).  
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Again in view of the second part of Lemma 1 and for all sufficiently large values of r ,  
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Now in view of the first part of Lemma 1 and the inequality ( ) ( )frfrM ,22, µ≤ ,  we obtain for all sufficiently 

large values of r , 
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Again in view of the second part of Lemma 1 and for all sufficiently large values of r ,  

  [ ] ( )( ) [ ] ( )( )kfrMkfr gg
 ,explog,explog 33 ρρµ ≤  

                 [ ] ( )( )( )fkrMM g ,,explog 3 ρ≤  

                 ( )( ) ...
*
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ρερερ ++≤                (20) 

 
Now using Lemma 2 and from (19) and (20) we get for all sufficiently large values of r , 
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Since ( )0>ε is arbitrary, 
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
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Again by the second part of Lemma 1 and the inequality ( ) ( )frMfr ,, ≤µ , we get for all sufficiently large values of 
r, 

  [ ] ( ) [ ] ( )gkrMgkr  ,log,log 33 ≤µ  

           [ ] ( )( )kgrMM ,,log 3≤  

           ( ) ( )grMk ,logερ +≤ .                 (22) 
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Also in view of the first part of Lemma 1 and for all sufficiently large values of r we obtain that 

  [ ] ( )( ) [ ] ( )








≥ kfrMkfr

g

g
 ,

2
exp

2
1log,explog 33

ρ
ρµ  

            [ ] ( )
















≥ fkrMM

g

,,
4

exp
16
1log 3

ρ

 

            ( ) [ ] ( )
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Now from (22) and (23) we get for all sufficiently large values of r , 
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As ( )0>ε  is arbitrary, 
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Thus the theorem follows from (21) and (24).  
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