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ABSTRACT 

The present paper mathematically establishes that magnetorotatory thermohaline convection of the Veronis type in 
porous medium cannot manifest itself as oscillatory motions of growing amplitude  in an initially bottom heavy 
configuration if the thermohaline Rayleigh number 𝑅𝑅𝑆𝑆  , the Lewis number τ, the Prandtl number 𝑃𝑃𝑟𝑟 , the porosity 𝜖𝜖, 
satisfy the inequality 𝑅𝑅𝑆𝑆 ≤ 4𝜋𝜋2 � 1

𝐷𝐷𝑎𝑎
+ 𝜏𝜏

𝐸𝐸′ 𝑃𝑃𝑟𝑟𝜖𝜖
� ,  where 𝐷𝐷𝑎𝑎  the Darcy number and 𝐸𝐸′  are constants which depend upon 

porosity of the medium. It further establishes that this result is uniformly valid for the quite general nature of the 
bounding surfaces. A similar characterization theorem is also proved for magnetorotatory thermohaline   convection of 
the Stern type. 
 
Keywords: Thermohaline instability, Porous medium, Oscillatory motions. 
 
 
INTRODUCTION 
The thermohaline convection problem has been extensively studied in the recent past on account of its interesting 
complexities as a double diffusive phenomenon  as well as its direct relevance in many problems of practical interest in 
the fields of oceanography, astrophysics, limnology and chemical engineering etc. [1]. Two fundamental configurations 
have been studied in the context of thermohaline convection problems, one by Veronis [2], wherein the temperature 
gradient is destabilizing and the concentration gradient is stabilizing; and another by Stern [3], wherein the temperature 
gradient is stabilizing and the concentration gradient is destabilizing. The main results of Veronis and Stern for their 
respective configuration are that both allow the occurrence of a steady motion or an oscillatory motion of growing 
amplitude, provided the destabilizing temperature gradient or the concentration gradient is sufficiently large. In case of 
Veronis’ configuration, oscillatory motions of growing amplitude are preferred mode of onset of instability whereas in 
case of Stern’s configuration, stationary convection is the preferred mode of onset of instability and these results are 
independent of the initially gravitationally stable or unstable character of the two configurations. Thus thermohaline 
configurations of Veronis and Stern type can further be classified into the following two classes: 
 
(i) the first class, in which thermohaline instability manifests itself  when the total density field is initially bottom 

heavy, and 
(ii) the second class, in which thermohaline instability manifests itself when the total density field is initially top 

heavy. 
 
Banerjee et al [4] derived a characterization theorem for the nonexistence of oscillatory motions of growing amplitude 
in an initially bottom heavy configuration of Veronis type. The essence of Banrjee et al’s theorem lies in that it 
provides a classification of the neutral or unstable thermohaline convection configuration of the Veronis and Stern 
types into two classes, the bottom heavy class and the top heavy class, and then strikes a distinction between them by 
means of characterization theorems which disallow the existence of oscillatory motions in the former class. 
 
In recent years, many researchers have shown their keen interest in analyzing the onset of convection in a fluid layer 
subjected to a vertical temperature gradient in a porous medium [5,6,7,8,9]. The extension of these two important 
hydrodynamical theorems to the domains of convection in porous medium, due to its importance in the prediction of 
ground water movement in aquifers, in the energy extraction process from the geothermal reservoirs, in assessing the 
effectiveness of fibrous insulations, drying of foods or other natural minerals and in nuclear engineering, is very much 
sought after in the present context. This paper, which mathematically analyses the hydrodynamic thermohaline 
convection-configuration of the Veronis and the Stern types in porous medium wherein a uniform vertical magnetic 
field and a uniform rotation about he vertical is superimposed, may be regarded as a first step in this scheme of 
extended investigations. 
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The present paper mathematically establishes that magnetorotatory thermohaline convection of the Veronis type in 
porous medium cannot manifest itself as oscillatory motions of growing amplitude  in an initially bottom heavy 
configuration if the thermohaline Rayleigh number RS , the Lewis number τ, the Prandtl number Pr , the porosity 𝜖𝜖, 
satisfy the inequality RS ≤ 4π2 � 1

D𝑎𝑎
+ 𝜏𝜏

E′ Prϵ
� , where D𝑎𝑎  the Darcy number and E′  are constants which depend upon 

porosity of the medium. It further establishes that this result is uniformly valid for the quite general nature of the 
bounding surfaces. A similar characterization theorem is also proved for magnetorotatory thermohaline   convection of 
the Stern type. 
 
1. FORMULATION OF THE PROBLEM 
An infinite horizontal porous layer filled with a viscous fluid is statically confined between two horizontal boundaries z 
= 0 and z = d, maintained at constant temperatures T0 and T1 (< T0 ) and solute concentrations S0 and S1 (< S0) at the 
lower and upper boundaries respectively in the presence of rotation and a uniform vertical magnetic field acting parallel 
to the direction of gravity. It is further assumed that the saturating fluid and the porous layer are incompressible and 
that the porous medium is a constant porosity medium. The problem is to investigate the stability of this initial 
stationary state.  
 
Let the origin be taken on the lower boundary z = 0 with the positive direction of the z-axis along the vertically upward 
direction. Then the basic hydrodynamic equations that govern the problem are given by: 
 
  ∂u

∂x
+  ∂v

∂y
+  ∂w

∂z
= 0                      (1) 

 
 1

ϵ
∂u
∂t

+ 1
ϵ2 �u ∂u

∂x
+ v ∂u

∂y
+  w ∂u

∂z
� − μe

4πρ0
�H1

∂H1
∂x

+ H2
∂H1
∂y

+  H3
∂H1
∂z
�     

                                = − 𝜕𝜕
𝜕𝜕𝜕𝜕
� p

ρ0
+ μe |H|2

8πρ0  
− 1

2
 |Ω × r|2� +  2

𝜖𝜖
(𝑞𝑞 × Ω)𝜕𝜕 −  ν

k1
 u                (2) 

 
 1

ϵ
∂v
∂t

+ 1
ϵ2 �u ∂v

∂x
+ v ∂v

∂y
+  w ∂v

∂z
� − μe

4πρ0
�H1

∂H2
∂x

+ H2
∂H2
∂y

+  H3
∂H2
∂z
�     

                                 = − 𝜕𝜕
𝜕𝜕𝜕𝜕
� p

ρ0
+  μe |H|2

8πρ0  
− 1

2
 |Ω × r|2� + 2

𝜖𝜖
(𝑞𝑞 × Ω)𝜕𝜕 −  ν

k1
 v                             (3) 

 
 1

ϵ
∂w
∂t

+ 1
ϵ2 �u ∂w

∂x
+ v ∂w

∂y
+  w ∂w

∂z
� − μe

4πρ0
�H1

∂H3
∂x

+ H2
∂H3
∂y

+ H3
∂H3
∂z
�     

                                              = − 𝜕𝜕
𝜕𝜕𝜕𝜕
� p

ρ0
+  μe |H|2

8πρ0  
− 1

2
 |Ω × r|2� + 2

𝜖𝜖
(𝑞𝑞 × Ω)𝜕𝜕 −  ν

k1
 w −  ρ

ρ0
 g               (4) 

 
  E ∂T

∂t
+ u ∂T

∂x
+  v ∂T

∂y
+ w ∂T

∂z
=  κT ∇2T                                   (5) 

 
   E′ ∂S

∂t
+ u ∂S

∂x
+  v ∂S

∂y
+ w ∂S

∂z
=  κS ∇2S                                   (6) 

 
Equations of Magnetic Induction  
 
 ϵ ∂H1

∂t
+ u ∂H1

∂x
+  v ∂H1

∂y
+ w ∂H1

∂z
=  H1

∂u
∂x

+ H2
∂u
∂y

+  H3
∂u
∂z

 + ϵη∇2H1                                             (7) 
 
 ϵ ∂H2

∂t
+ u ∂H2

∂x
+  v ∂H2

∂y
+ w ∂H2

∂z
=  H1

∂v
∂x

+ H2
∂v
∂y

+ H3
∂v
∂z

 + ϵη∇2H2                                             (8) 
 
 ϵ ∂H3

∂t
+ u ∂H3

∂x
+  v ∂H3

∂y
+ w ∂H3

∂z
=  H1

∂w
∂x

+ H2
∂w
∂y

+  H3
∂w
∂z

 + ϵη∇2H3                                             (9) 
 
Equation of  Solenoidal character of the Magnetic Field  
 
   ∂H1

∂x
+ ∂H2

∂y
+ ∂H3

∂z
= 0                    (10)  

 
Equation of State  
 
 ρ =  ρ0[1 +  α (T0 − T) −  γ(S0 − S)],                                 (11) 
where u, v, w are the components of velocity in the x, y, z-directions respectively, H1, H2, H3 are components of 
magnetic field H in x, y, z-directions and  p

ρ0
+ μe |H|2

8πρ0  
− 1

2
 |Ω × r|2 is the modified magnetorotatory hydrodynamic  
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pressure. Further t, 𝜌𝜌, T, S, 𝜖𝜖, 𝑘𝑘1, μe , ν, κT , κS and  η, are, respectively, the time, the density, the temperature, the 
concentration, the porosity of the porous medium, the permeability of the porous medium, the magnetic permeability, 
the kinematic viscosity, the thermal diffusivity, the mass diffusivity and the resistivity; and α and γ are respectively the 
coefficients of volume expansion due to temperature and concentration variation . Here E =  ϵ + (1 − ϵ) ρs Cs

ρ0Cf
 is a 

constant and E′  is also a constant analogous to E but corresponding to concentration rather than heat, where ρs , Cs and 
ρ0, Cf  stand for density and heat capacity of the solid (porous matrix) material and fluid respectively. The suffix ‘0’ 
denotes the values of the various parameters at some suitably chosen reference temperature T0  and concentration S0. 
 
The basic state is assumed to be quiescent state and is given by 
 

   �

(u, v, w) ≡ (0, 0, 0)
p         ≡   p(z)
T        ≡  T(z)
S         ≡  S(z)

(H1, H2, H3) ≡ (0, 0, H)
ρ         ≡  ρ(z) ⎭

⎪
⎬

⎪
⎫

                                 (12) 

 
Thus the basic state solution on the basis of the basic state is given by 
 

�

(u, v, w) = (0, 0, 0)

          p
ρ0

+  μe |H|2

8πρ0  
− 1

2
 |Ω × r|2 =   P = P0 −  gρ0  (z + αβz2

2
− γδz2

2
)

T          =  T0 − βz
S          =  S0 − δz

(H1, H2, H3) = (0, 0, H)
                                                       ρ =  ρ0�1 +  α (T0 − T)–  γ(S0 − S)�

                                  = ρ0�1 +  α βz–  γδz� ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

                                            (13) 

 
where H is a constant and P0 represents the pressure at the lower boundary z = 0, and β = T0−T1

d
 and δ = S0−S1

d
 are 

respectively the maintained temperature and concentration gradients. 
 
The initial stationary state is now slightly perturbed so that the perturbed state is given by 
 

�        

(u, v, w)PS = (0 + u′ , 0 + v′ , 0 + w′)
(p)PS =  P + P′

        (T)PS =  T0 − βz + θ′ = T + θ′
         (S)PS =  S0 − δz + ϕ′ = S + ϕ′

(H1, H2, H3) = (0 + hx
′ , 0 + hy

′ , H + hz
′ ) 

                    (ρ)PS =  ρ0�1 +  α (T0 − T − θ′)–  γ(S0 − S − ϕ′)�⎭
⎪⎪
⎬

⎪⎪
⎫

                                                          (14)   

 
where u′, v′, w′, P′, θ′, ϕ′ denote, respectively, the perturbations in three components of velocity, pressure, temperature 
and concentration and are assumed to be small around the basic state. Then the linearized perturbation equations are 
given by 
   ∂u ′

∂x
+  ∂v′

∂y
+ ∂w ′

∂z
= 0,                   (15) 

 
  1

ϵ
∂u ′

∂t
− μe H

4πρ0
 ∂hx

′

∂z
= −  ∂P ′

∂x
+ 2

ϵ
Ωv′ − ν

k1
u′  ,                                (16)

  

  1
ϵ
∂v′

∂t
− μe H

4πρ0
 ∂hy

′

∂z
 =  − ∂P ′

∂y
− 2

ϵ
Ωu′ −  ν

k1
v′  ,                                (17) 

 
  1

ϵ
∂w ′

∂t
− μe H

4πρ0
 ∂hz

′

∂z
 = −  ∂P ′

∂z
+  gαθ′ − gγϕ′ −  ν

k1
 w′  ,                               (18) 

 

  E ∂θ′

∂t
− βw′  =  κT ∇2θ′   ,                                  (19) 

 
E′ ∂ϕ

′

∂t
− δw′ = κS ∇2ϕ′   ,                                  (20) 
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                      ϵ ∂hx

′

∂t
  = H ∂u ′

∂z
 +  ϵη∇2hx

′  ,                                   (21) 
 

            ϵ ∂hy
′

∂t
  =  H ∂v′

∂z
+ ϵη∇2hy

′  ,                      (22) 
 
            ϵ ∂hz

′

∂t
   =  H ∂w ′

∂z
+ ϵη∇2hz

′                                   (23) 
and 

 ∂hx
′

∂x
+  ∂hy

′

∂y
+ ∂hz

′

∂z
= 0 .                    (24) 

 
Now we analyze the perturbations  u′ , v′ , w′ , P′ , θ′ , ϕ′ , hx

′ , hy
′  and hz

′  into two-dimensional periodic waves. We 
assume, to all quantities describing the perturbation, a dependence on x, y, and t of the form 
 
         F′(x, y, z, t )  =  F′′ (z)exp[i(kx x + ky  y)  +  nt]                                                                                                  (25)
  

where kx  and ky are the wave numbers along the x- and y- directions, respectively, and  k = ��kx
2 + ky

2� is the resultant 

wave number. Following the normal mode analysis, equations (15) – (24), thus, becomes  
 
  ikxu′′ +  iky v′′ +  dw ′′

dz
 =  0 ,                   (26) 

 
  1

ϵ
nu′′ −  μe H

4πρ0
 dhx

′′

dz
  =  − i kxP′′ + 2

ϵ
Ωv′′ −  ν

k1
 u′′ ,                               (27) 

 

  1
ϵ

nv′′ −  μe H
4πρ0

 dhy
′′

dz
  =  − i ky P′′ − 2

ϵ
Ωu′′ −  ν

k1
 v′′  ,                               (28) 

 
  1

ϵ
nw′′ −  μe H

4πρ0
 dhz

′′

dz
  =  −  dP ′′

dz
 +  gαθ′′  −  gγϕ′′  −  ν

k1
 w′′  ,                                           (29) 

 
Enθ′′ − β w′′ =  κT �

d2

dz2  − k2�  θ′′                                  (30)  
 

  E′nϕ′′ − δ w′′  =  κS �
d2

dz2  − k2�  ϕ′′                                  (31) 
 

nϵhx
′′ =  H du ′′

dz
 +  ϵη � d2

dz2  − k2� hx
′′                    (32) 

 
nϵhy

′′ =  H dv′′

dz
 +  ϵη � d2

dz2  − k2� hy
′′                    (33) 

 
nϵhz

′′ =  H dw ′′

dz
 +  ϵη � d2

dz2  − k2�hz
′′ ,                  (34) 

 
and   ikxhx

′′ +  iky hy
′′ + dhz

′′

dz
 =  0 ,                   (35) 

 
where       ∂

∂t
 = n,  ∂

2

∂x2 +  ∂
2

∂y2 =  −k2       and     ∇2= d2

dz2  − k2 .                                              (36) 
 
Now multiplying equations (27) and (28) by ikx  and iky  respectively, adding the resulting equations and using 
equations (26) and (35), we obtain 
 
 −  �n

ϵ
+ ν

k1
�  dw ′′

dz
+ μe H

4πρ0
 d2hz

′′

dz2  =  k2P′′ + 2
ϵ
Ωζ′′ .                                (37) 

 
where ζ′′ = i(kxv′′ − ky u′′ ) is the z – component of vorticity. 
 
Now eliminating P″ between (29) and (37), we get 
 
 �n

ϵ
+ ν

k1
� � d2

dz2 − k2�w′′ =  μe H
4πρ0

 d
dz
� d2

dz2 − k2� hz
′′ − k2(gαθ′′ − gγϕ′′ ) − 2

ϵ
Ω dζ′′

dz
                                          (38) 
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In order to obtain an equation governing ζ′′ , multiplying equations (27) and (28) by iky  and ikx  respectively and 
subtracting the resulting equations, we obtain 
 
  �n

ϵ
+ ν

k1
�  ζ′′ =  μe H

4πρ0
 dξ′′

dz
 + 2

ϵ
Ω dw ′′

dz
                                  (39) 

 
where ξ′′ = i(kx hy

′′ − ky hx
′′ ) is the z – component of current density. 

 
Similarly, we obtain an equation governing ξ′′  we multiply equations (32) and (33) by iky  and ikx  respectively and 
subtract the resulting equations, we get 
 
 � d2

dz2  − k2 − n
η
� ξ′′ =  −  H

ϵ η
 dζ′′

dz
                                  (40) 

 
Also equations (30), (31) and (34) can be written as  
 
  � d2

dz2  − k2 − E n
κT 
� θ′′ = −  β  

κT 
w′′                                   (41)  

 
 � d2

dz2  − k2 − E′ n
κS  
�ϕ′′ = −  δ 

κS  
w′′                                     (42) 

 
and   � d2

dz2  − k2 − n
η
�hz

′′ =  −  H
ϵ η

 dw ′′

dz
                                      (43) 

 
Now using the following non-dimensional parameters  
 
a = kd, 𝜕𝜕∗ =  z

d
  , 𝜏𝜏∗ =  κS

κT
 ,  Pr∗ =  ν

κT
 , p2∗ =  ν

η
 , D𝑎𝑎 ∗ = k1

d2 , D∗ = d d
dz

 , σ∗ =  nd2

ν
 , R∗ =  gαβd4

κT ν
 , RS∗ =  gγδd4

κT ν
 , 

 Q∗ =  μe H2d2

4πρ0ν η
 , Ta∗ =  4Ω2d4

ν 2
 ,  w∗ =  βd2

κT
 w′′ , θ∗ =  θ′′ , ϕ∗ =  β

δ
 ϕ′′ , ζ∗ = βνd

2ΩκT
ζ′′ , ξ∗ = β ν  η

2ΩκT H
ξ′′  and   hz∗ = ηβd

HκT
hz
′′  . 

 
we can write equations (38) – (43)  in the following non-dimensional form(dropping the asterisks for simplicity)  
 
    �σ

ϵ
+ 1

D𝑎𝑎
� (D2 − a2)w =  −R a2θ + RSa2ϕ +  Q D(D2 − a2)hz −

1
ϵ

 Ta Dζ                                           (44) 
 
 (D2 − a2 − E σPr)θ =  − w  ,                      (45) 
 
 �D2 − a2 − E′ σ Pr

τ
�ϕ =  −  1

τ
 w ,                                  (46) 

 
 (D2 − a2 − σ p2)hz   =  −  1

ϵ
 Dw ,                                    (47) 

 
 �σ

ϵ
+ 1

D𝑎𝑎
� ζ = QDξ +  1

ϵ
 Dw ,                    (48) 

 
and (D2 − a2 − σ p2)ξ  =  −  1

ϵ
 Dζ .                                  (49) 

 
The equations (44) – (49) are to be solved by using the following boundary conditions: 
 
w = θ = ϕ = Dw = hz = ζ = Dξ = 0 at z = 0 and at z = 1,                                (50) 
                                 (when both the boundaries are rigid and perfectly conducting) 
 
w = θ = ϕ = D2w = hz = 𝐷𝐷ζ = Dξ = 0 at z = 0 and at z = 1.                                (51) 

                       (when both the boundaries are free and perfectly conducting) 
 

where z is the vertical co-ordinate such that 0 ≤ z ≤ 1, D is the differentiation w.r.t. z, a² is square of the wave number, 
p1 > 0 the Prandtl number, τ > 0 is the Lewis number, R > 0 is the Rayleigh number, RS  > 0 is the thermohaline 
Rayleigh number, σ =  σr  +  iσi  is the complex growth rate which is complex constant in general and as a 
consequence the dependent variables w(z) = wr(z) + iwi(z), θ(z) = θr(z) + iθi(z) and ϕ(z) = ϕr(z) + iϕi(z) are complex 
valued functions of the real variable z such that wr(z), wi(z), θr(z), θi(z), ϕr(z) and ϕi(z) are real valued functions of the 
real variable z.     
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2. MATHEMATICAL ANALYSIS 
 
Theorem1: If R > 0, RS >  0, Q > 0, τp2

π2E′ Pr
≤ 1, and  τD𝑎𝑎

E′ Prϵ
≤ 1, pr ≥ 0, pi ≠ 0 and RS  ≤ 4π2 � 1

D𝑎𝑎
+ τ

E′ ϵPr
� , then a 

necessary condition for the existence of nontrivial solution (w, θ, ϕ, hz  , σ) of Eqs. (44) – (49) with boundary 
conditions (50) or (51) is that RS <  𝑅𝑅 . 
 
Proof: Multiplying Eq. (44) by w* (the superscript * here denotes the complex conjugation) and integrating the 
resulting equation over vertical range of z, we obtain 
 
 � 1

D𝑎𝑎
+ σ

ϵ
� ∫ w∗1

0 (D2 − a2)w dz = − Ra2 ∫ w∗1
0 θ dz + RS a2 ∫ w∗1

0 ϕ dz +Q ∫ w∗1
0 D(D2 − a2)hzdz − Ta

ϵ ∫ w∗1
0 Dζ dz 

                                                                                                                                                              (52) 
 
Making use of equations (45) – (49) and the fact that w (0) = 0 = w (1), we can write  
 
−R a2 ∫ w∗1

0 θ dz =  Ra2 ∫ θ1
0 (D2 − a2 −  Eσ∗p1)θ∗dz                                               (53) 

 
RSa2 ∫ w∗1

0 ϕ dz =  −RSa2τ∫ ϕ1
0  (D2 − a2 −  E′ σ∗Pr

τ
)ϕ∗dz                                                           (54) 

 
Q∫ w∗1

0 D(D2 − a2) hz dz = Q𝜖𝜖 ∫ (D2  −  a2)hz
1

0 (D2  −  a2 − σ∗p2)hz
∗ dz                                                        (55) 

 
− Ta

𝜖𝜖 ∫ w∗1
0 Dζ dz = Ta �

1
D𝑎𝑎

+ σ∗

ϵ
� ∫ ζ∗1

0 ζ dz − TaQϵ ∫ ξ∗1
0 (D2  −  a2 − σp2)ξ dz                                                        (56) 

 
Combining equations (52) – (56), we get  
 
 � 1

D𝑎𝑎
+ σ

ϵ
� ∫ w∗1

0 (D2 − a2)w dz = Ra2 ∫ θ1
0 (D2 − a2 −  Eσ∗p1)θ∗dz 

     −RSa2τ ∫ ϕ1
0  �D2 − a2 −  E′ σ∗Pr

τ
�ϕ∗dz 

         +Q𝜖𝜖 ∫ (D2  −  a2)hz
1

0 (D2  −  a2 − σ∗p2)hz
∗ dz 

             +Ta  � 1
D𝑎𝑎

+ σ∗

ϵ
� ∫ ζ∗1

0 ζ dz − TaQϵ ∫ ξ∗1
0 (D2  −  a2 − σp2)ξ dz             (57) 

 
Integrating the various terms of Eq. (57), by parts, for an appropriate number of times and making use of either of the 
boundary conditions (50) or (51), it follows that  
 
( 1

D𝑎𝑎
 +  σ

ϵ
)∫ (|Dw|2 + a2|w|2) dz1

0 =  Ra2 ∫ (|Dθ|2 + a2|θ|2 +  EPrσ∗|θ|2) dz1
0     

    − RSa2 τ ∫ �|Dϕ|2 + a2|ϕ|2 +  E′ σ∗Pr
τ

|ϕ|2�dz1
0     

       −Qϵ �∫ |(D2 − a2) hz|21
0  dz + p2𝜎𝜎∗ ∫ (|Dhz|2 +  a2|hz|2) dz1

0 � 

          −Ta  � 1
D𝑎𝑎

+ σ∗

ϵ
� ∫ |ζ|21

0 dz − TaQϵ ∫ (|Dξ|2 + a2|ξ|2 + σp2|ξ|2)1
0  dz             (58) 

 
Equating the real and imaginary parts of both sides of equation (58) and cancelling σ i (≠0) throughout from the 
imaginary part, we get 
 
( 1

D𝑎𝑎
 +  σr

ϵ
)∫ (|Dw|2 +  a2|w|2) dz1

0 =  Ra2 ∫ (|Dθ|2 + a2|θ|2 +  EPrσr|θ|2) dz1
0     

    − RSa2 τ ∫ �|Dϕ|2 + a2|ϕ|2 +  E′ σr Pr
τ

|ϕ|2� dz1
0     

          −Qϵ �∫ |(D2 − a2) hz|21
0  dz + p2σr ∫ (|Dhz|2 +  a2|hz|2) dz1

0 � 

          −Ta  � 1
D𝑎𝑎

+ σr
ϵ
� ∫ |ζ|21

0 dz − TaQϵ ∫ (|Dξ|2 + a2|ξ|2 + σrp2|ξ|2)1
0  dz 

                        (59) 
and  
 
 1
ϵ ∫ (|Dw|2 + a2|w|2) dz1

0 = − R a2E Pr ∫ |θ|2 dz1
0  + RSa2 E′Pr ∫ |ϕ|2 dz1

0  

      +Qϵp2 ∫ (|Dhz|2 +  a2|hz|2) dz1
0 + Ta

𝜖𝜖 ∫ |ζ|21
0 dz − Ta Qϵp2 ∫ |ξ|21

0 dz                             (60) 
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We write equation (59) in the alternative form  
 
 � 1

D𝑎𝑎
+ σr

ϵ
� ∫ (|Dw|2 + a2|w|2)dz1

0 = Ra2 ∫ (|Dθ|2 + a2|θ|2) dz1
0 − RS a2τ ∫ (|Dϕ|2 + a2|ϕ|2)dz1

0  

                                − Qϵ ∫ |(D2 − a2) hz|21
0 dz − Ta

D𝑎𝑎
∫ |ζ|21

0 dz − TaQϵ ∫ (|Dξ|2 + a2|ξ|2)1
0  dz  

                                    +σr �Ra2 E Pr ∫ |θ|2 dz1
0 − RS a2 E′Pr ∫ |ϕ|2 dz1

0 − Qϵp2 ∫ (|Dhz|2 +  a2|hz|2) dz1
0

� 

                                       �− Ta
ϵ ∫ |ζ|21

0 dz − Ta Qϵp2 ∫ |ξ|21
0 dz�                                              (61) 

 
and derive the validity of the theorem from the resulting inequality obtained by replacing each one of the terms of this 
equation by  its appropriate estimate. 
 
We first note that since w, θ,  ϕ and hz satisfy w(0) = 0 = w(1), θ(0) = 0 = θ(1),  ϕ (0) = 0 = ϕ (1) and hz (0) = 0 = hz 
(1), we have by the Rayleigh- Ritz inequality [10]. 
 
   ∫ |Dw|21

0 dz   ≥    π2 ∫ |w|21
0 dz                                (62) 

 
   ∫ |Dθ|21

0 dz   ≥     π2 ∫ |θ|21
0 dz                                (63) 

 
   ∫ |Dϕ|21

0 dz  ≥     π2 ∫ |ϕ|21
0 dz                                (64) 

 
   ∫ |Dhz|21

0 dz  ≥     π2 ∫ |hz|21
0 dz                                (65) 

 
Utilizing inequality (62), we have 
 
 ∫ (|Dw|2 +  a2|w|2) dz1

0  ≥     (π2 + a2)∫ |w|21
0  dz.                                               (66) 

 
Since σr  ≥ 0, we have 
 

      σr
ϵ ∫ (|Dw|2 + a2|w|2) dz1

0 ≥  0                                  (67) 
 
Multiplying equation (45) by θ* throughout and integrating the various terms on the left hand side of the resulting 
equation, by parts, for an appropriate number of times by making use of the boundary conditions on θ, namely, θ(0) = 0 
= θ(1), we have from the real part of the final equation 
 
  ∫ (|Dθ|2 + a2|θ|2)dz1

0 + σr E Pr ∫ |θ|21
0 dz = Real part of ∫ w1

0 θ∗dz  

              ≤ �∫ w1
0  θ∗dz� 

               ≤ ∫ |wθ∗|1
0 dz      

               ≤ ∫ |w|1
0 |θ∗| dz  

               ≤ ∫ |w|1
0 |θ| dz   

                                                                                             ≤ �∫ |w|21
0  dz�

1/2
�∫ |θ|21

0  dz�
1/2

 , 
                      (Using Cauchy- Schwartz inequality) 
 
and combining this inequality with the inequality (63) and the fact that σr ≥  0, we get 
 

 (π2 + a2)∫ |θ|21
0 dz   ≤ �∫ |w|21

0  dz�
1/2

�∫ |θ|21
0  dz�

1/2
  

which implies that 

  �∫ |θ|21
0  dz�

1/2
≤ 1

(π2+a2)
 �∫ |w|21

0  dz�
1/2

,     

and thus ∫ (|Dθ|2 + a2|θ|2)dz1
0 ≤  1

(π2+a2)∫ |w|21
0 dz .                                                                      (68) 

 
Further, since hz (0) = 0 = hz (1), we have 
 
∫  |Dhz|2dz1

0 =  −∫ hz
∗D2hzdz ≤  �− ∫ hz

∗D2hzdz  1
0 �1

0 ≤  ∫ |hz
∗D2hz|dz  1

0   
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                     ≤ ∫ |hz
∗||D2hz|dz ≤  1

0 ∫ |hz||D2hz|dz  1
0 ≤  �∫ |hz|21

0  dz�
1/2

�∫ |D2hz|21
0  dz�

1/2
 

                                   (Using Schwartz inequality) 
 

           ≤ 1
π
�∫ |Dhz|21

0  dz�
1/2

�∫ |D2hz|21
0  dz�

1/2
, 

                                    (Using inequality (65)) 
 
so that we have 
   ∫ |D2hz|21

0  dz ≥  π2 ∫  |Dhz|2dz1
0   ,                                (69) 

and thus we can write 
Qϵ ∫ |(D2 − a2)hz|21

0 dz = Qϵ ∫ ( |D2 hz|21
0 +  2 a2|Dhz|2  +   a4|hz|2 ) dz  

 
             ≥ Qϵ �π2 ∫  |D hz|21

0 dz +   a2 ∫ |Dhz|21
0 dz +  a2 ∫ |Dhz|21

0 dz +   a4 ∫ |hz|21
0 dz � 

                            (Using inequality (69)) 
 
             ≥ Qϵ �(π2 + a2)∫  |D hz|21

0 dz + a2(π2 + a2)∫ |hz|21
0 dz � 

                             (Using inequality (65))  
 
             ≥    Qϵ (π2 + a2)∫ (|Dhz|2 + a2|hz|2) dz1

0  
 
             ≥    Qϵ π2 ∫ (|Dhz|2 +  a2|hz|2) dz1

0                      (70) 
 
Utilizing inequality (64), we have 
 
 ∫ (|Dϕ|2 + a2|ϕ|2) dz1

0 ≥ (π2 + a2)∫ |ϕ|2dz1
0 ≥ ∫ |ϕ|2dz1

0                                                 (71) 
 
From equation (60), we have 
 
 ∫ |ϕ|2dz1

0 ≥ 1
RS a2 E′ Pr

 �1
ϵ ∫ (|Dw|2 + a2|w|2)dz1

0 − Qϵp2 ∫ (|Dhz|2 + a2|hz|2)dz1
0 − Ta

ϵ ∫ |ζ|2dz1
0 � 

                        (72) 
Combining inequalities (71) and (72), we have 
 
 ∫ (|Dϕ|2 + a2|ϕ|2) dz1

0  ≥ 1
RS a2 E′ Pr

 �1
ϵ
� ∫ (|Dw|2 + a2|w|2)dz1

0 − Qϵp2 ∫ (|Dhz|2 + a2|hz|2)dz1
0  �− Ta

ϵ ∫ |ζ|2dz1
0 �        (73) 

 
Using inequalities (62) in inequality (73), we obtain 
 
 ∫ (|Dϕ|2 + a2|ϕ|2) dz1

0  ≥ �π2+ a2�
RS a2 E′ Prϵ

∫ |w|2dz1
0 − Qϵp2

RS a2 E′ Pr
∫ (|Dhz|2 + a2|hz|2)dz1

0   − Ta
RS a2 E′ Prϵ

∫ |ζ|2dz1
0              (74) 

 
From equation (60) and the fact that σr ≥ 0 , we have 
 
 σr �Ra2 E Pr ∫ |θ|2 dz1

0 − RSa2 E′Pr ∫ |ϕ|2 dz1
0 − Qϵp2 ∫ (|Dhz|2 +  a2|hz|2) dz1

0
� 

    �− Ta
ϵ ∫ |ζ|21

0 dz − TaQϵp2 ∫ |ξ|21
0 dz� ≤ 0                               (75) 

 
Now, if permissible, let RS ≥ R, then from equation (61) and inequalities (66), (68), (74) and (75), we get 
 
 �π

2+ a2�
D𝑎𝑎

∫ |w|2dz1
0 + 𝜏𝜏�π2+ a2�

E′ Prϵ
∫ |w|2dz1

0 − 𝜏𝜏Qϵp2
E′ Pr

∫ (|Dhz|2 + a2|hz|2) dz1
0 − Ta 𝜏𝜏

E′ Prϵ
∫ |ζ|21

0 dz 

                           − RS a2

(π2+ a2)∫ |w|2dz1
0 + Qϵπ2 ∫ (|Dhz|2 + a2|hz|2) dz1

0 + Ta
D𝑎𝑎
∫ |ζ|21

0 dz ≤ 0,                         (76) 
 

which implies that 
 

 ��π
2+ a2�

2

 a2
�� 1

D𝑎𝑎
+ τ

E′ p1ϵ
� − RS

�� ∫ |w|2dz1
0 + Qϵπ2�π2+ a2�

 a2 �1 − 𝜏𝜏p2
π2E′ Pr

�∫ (|Dhz|2 + a2|hz|2) dz1
0  

                                                    + Ta�π2+ a2�
 a2D𝑎𝑎

�1 − 𝜏𝜏D𝑎𝑎
E′ Prϵ

� ∫ |ζ|21
0 dz ≤ 0.                             (77) 
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Using the assumption,  𝜏𝜏D𝑎𝑎

E′ Prϵ
≤ 1 and 𝜏𝜏p2

π2E′ Pr
≤ 1, we have from inequality (77) that 

               RS > 4π2 � 1
D𝑎𝑎

+ 𝜏𝜏
E′ Prϵ

�,                                 (78) 
 

Since, minimum value of �π
2+ a2�

2

 a2  is 4π2 (for a2 = π2). Hence if  RS ≤ 4π2 � 1
D𝑎𝑎

+ 𝜏𝜏
E′ Pr ϵ

� , then we must have RS <  𝑅𝑅, 
and this completes the proof of the theorem. 
 
Theorem 1 can be stated in an equivalent form as ‘magnetorotatory thermohaline convection of the Veronis type in 
porous medium cannot manifest itself as oscillatory motions of growing amplitude in an initially bottom heavy 
configuration if RS , τ, Pr , ϵ , D𝑎𝑎  and E′  satisfy the inequality  
 

RS ≤ 4π2 � 1
D𝑎𝑎

+ 𝜏𝜏
E′ Prϵ

�. 
 
Further, this result is uniformly valid for any combination of rigid and free perfectly conducting boundaries. 
 
A similar theorem can be proved for magnetorotatory thermohaline convection of Stern [3] type in the porous medium 
as follows: 
 
Theorem 2: If R < 0, RS < 0 , Q > 0,  p2

π2EPr
≤ 1, ,  D𝑎𝑎

EPrϵ
≤ 1 and σr  ≥ 0, σi ≠ 0 and |R| ≤ 4π2τ � 1

D𝑎𝑎
+ 1

EPrϵ
� then we 

must have |R| <  |RS |. 
 
Proof: Replacing R and RS  by − |R| and −|RS | , respectively, in equations (44) and proceeding exactly as in Theorem 
1, we get the desired result. 
 
Theorem 2 can be stated in an equivalent form as ‘Magnetorotatory thermohaline convection of Stern type cannot 
manifest itself as oscillatory motions of growing amplitude in an initially bottom heavy configuration if |R|, τ, ϵ, Pr , Da  
and E satisfy the inequality           
 

|R| ≤ 4π2τ � 1
D𝑎𝑎

+ 1
EPrϵ

�. 
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