ASYMPTOTIC BEHAVIOR OF SOME MATHEMATICAL MODELS

Vu Van Khuong*
Department of Mathematical Analysis, University of Transport and Communications
Hanoi City, Vietnam
Department of Mathematics, Hung Yen University of Technology and Education Khoai Chau District, Hung Yen, Viet Nam

(Received on: 19-11-12; Revised \& Accepted on: 25-12-12)

Abstract

The objective of this paper is to investigate the asymptotic behavior of the solutions of an economic model $$
\left\{\begin{array}{l} x_{n+1}=x_{n}+\alpha x_{n}\left(a-c_{1}-2 b x_{n}-b y_{n}\right), \quad n=0,1,2, \ldots \tag{1}\\ y_{n+1}=\frac{1}{2 b}\left(a-c_{2}-b x_{n}\right) \end{array}\right.
$$

where $\alpha \in[0 ; 1], a, b, c_{1}, c_{2}$ are positive constants, and of a known population model
$x_{n+1}=\alpha+\beta \cdot x_{n-1} e^{-x_{n}}, n=0,1,2 \ldots$
where α is the immigration rate and β is the population growth rate.

Mathematics Subject Classification: 39A10.
Keywords: Difference equations, asymptotic behavior, Asymptotic approximation.

1 INTRODUCTION

Difference equations manifest themselves as mathematical models describing real life situation in probability theory, queuing problems, statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical network, quanta in radiation, genetics in biology, economics, psychology, sociology, etc,... Nonlinear difference equations of order greater than one are of paramount importance in applications where the ($\mathrm{n}+1$)st generation (or state) of the system depends on the previous n generations (or state). Such equations also appear naturally as discrete analogues and as numerical solutions of differential and delay differential equations which model various diverse phenomena in biology, ecology, physiology, physics, engineering and economics.

Stability criteria and periodic behavior are derived for difference equations by many authors. In this paper, we study the asymptotic behavior of all positive solutions of the following economic system:

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+\alpha x_{n}\left(a-c_{1}-2 b x_{n}-b y_{n}\right), n=0,1,2, \ldots \tag{1}\\
y_{n+1}=\frac{1}{2 b}\left(a-c_{2}-b x_{n}\right)
\end{array}\right.
$$

where $\alpha \in[0 ; 1], \mathrm{a} ; \mathrm{b} ; \mathrm{c}_{1} ; \mathrm{c}_{2}$ are positive constants, and of a known pop-ulation model

$$
\begin{equation*}
x_{n+1}=\alpha+\beta \cdot x_{n-1} e^{-x_{n}}, n=0,1,2 \ldots \tag{2}
\end{equation*}
$$

where α is the immigration rate and β is the population growth rate.
2. ASYMPTOTIC APPROXIMATION OF THE ECONOMIC SYSTEM (1)

In [5] H. El. Metwally investigated some qualitative behavior of the solutions of the following economic model

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+\alpha x_{n}\left(a-c_{1}-2 b x_{n}-b y_{n}\right), \quad n=0,1,2, \ldots \tag{1}\\
y_{n+1}=\frac{1}{2 b}\left(a-c_{2}-b x_{n}\right)
\end{array}\right.
$$

where $\alpha \in[0 ; 1], a, b, c_{1}, c_{2}$ are positive constants.
The author obtained some results about the boundedness, the periodicity and the global attractivity of the solutions of this higher order difference equa-tion. In this section, we study the asymptotic behavior of all positive solutions of the following system (1).
Set $\beta=$ a-c c_{1} and $a=\frac{a-c_{2}}{2 b}$, we can write the system (1) in the form
$\left\{\begin{array}{l}x_{n+1}=x_{n}+\alpha x_{n}\left(\beta-2 b x_{n}-b y_{n}\right), \quad n=0,1,2, \ldots \\ y_{n+1}=a-\frac{1}{2} x_{n}\end{array}\right.$
Finally, the system (1) can be written in only equation
$x_{n+1}=(1+\alpha \beta-\alpha a b) x_{n}-2 \alpha b x_{n}^{2}+\frac{\alpha b}{2} x_{n} x_{n-1}$.
The equilibrium point equation is
$\bar{x}=(1+\alpha \beta-\alpha a b) \bar{x}-\frac{7 \alpha b}{2} \bar{x}$
Thus, we get
$\overline{x_{1}}=0$ or $\overline{x_{2}}=\frac{2(\beta-a b)}{3 b}>0$.
We set $f\left(x_{n}, x_{n-1}\right)=(1+\alpha \beta-\alpha a b) x_{n}-2 \alpha a b x_{n}^{2}+\frac{\alpha b}{2} x_{n} \cdot x_{n-1}$
$\left.f_{x_{n}}^{\prime}\right|_{\overline{x_{2}}}=\frac{3-4 \alpha(\beta-a b)}{3}$
$f_{x_{n-1}}^{\prime} \left\lvert\, \overline{X_{2}}=\frac{\alpha(\beta-a b)}{3}\right.$
Note that the linearized equation of Eq (3) about the positive equilibrium point. We now investigate the asymptotical stability of Eq. (1) $\overline{x_{2}}=\frac{2(\beta-a b)}{3 b}$ is
$y_{n+1}=\frac{3-4 \alpha(\beta-a b)}{3} y_{n}+\frac{\alpha(\beta-a b)}{3} y_{n-1}$.
The characteristic polynomial associated with Eq (4) is
$p(t)=t^{2}+\frac{4 \alpha(\beta-a b)-3}{3} t-\frac{\alpha(\beta-a b)}{3}=0$.

Since, $p(0)=-\frac{\alpha(\beta-a b)}{3}<0, p(1)=\alpha(\beta-a b)>0$
$p^{\prime}(t)=2 t+\frac{4 \alpha(\beta-a b)-3}{3}>0$ for $t \in(0,1)$
It follows that for $0 \leq \alpha \leq \min \left(1 ; \frac{3}{4(\beta-a b)}\right)$, there is a unique positive root $t_{0} \in(0,1)$ such that $p\left(t_{0}\right)=0$ and $0<t_{0}^{2}<t_{0}<1$ such that $p\left(t_{0}^{2}\right)<p\left(t_{0}\right)=0$. It means that
$p\left(t_{0}\right)=t_{0}^{2}+\frac{4 \alpha(\beta-a b)-3}{3} t_{0}-\frac{\alpha(\beta-a b)}{3}=0$

This fact motivated us to believe that there are solutions of Equation (5) which have the following asymptotics
$x_{n}=\bar{x}+a_{1} t_{0}^{n}+0\left(t_{0}^{n}\right)$
where $a_{1} \in R$ and t_{0} is the above mentioned root of Eq (6) we solve the open problem, showing that such a solution exists, developing Berg's ideas in [1-4] which are based on the asymptotics. The asymptotics for solutions of difference equation have been investigated by L. Berg and S. Stevi'c, see, for example [7-9], [13,14] and the reference therein. The problem is solved by constructing appropriate sequences y_{n} and z_{n}
$y_{n} \leq x_{n} \leq z_{n}$
for suffiently large n. In [1-4] some methods can be found for the construction of these bounds, see, also [13, 14].
From (7) we expect that for $\mathrm{k} \geq 2$ such solutions have the first three members in their asymptotics in the following form

$$
\begin{equation*}
\varphi_{n}=\bar{x}+a_{1} t_{0}^{n}+b_{1} t_{0}^{2 n} \tag{9}
\end{equation*}
$$

This is proved by developing Berg's ideas in [1-4] which are based on asymptotics. We need the following result in the proof of main theorems. The proof of the following theorem can be found in [13].

Theorem 2.1. Let $\mathrm{f}: I^{k+2} \rightarrow I$ be a continuous and nondecreasing function in each argument on the interval $I \subset$ R, and let $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences with $y_{n} \leq z_{n}$ for $n \geq n_{0}$ and such that
$y_{n-k} \leq f\left(n, y_{n-k+1}, \ldots, y_{n+1}\right), f\left(n, z_{n-k+1}, \ldots, z_{n+1}\right) \leq z_{n-k}$ fo $\quad \boldsymbol{m}>n_{0}+k-1$
Then there is a solution of the following difference equation
$x_{n-k}=f\left(n, x_{n-k+1}, \ldots, x_{n+1}\right)$
with property (8) for $n \geq n_{0}$
Theorem 2.2. For $a ; b ; c_{1} ; c_{2}$ are positive constants and

$$
\alpha \in\left[0, \min \left(1, \frac{3}{4(\beta-a b)}\right)\right]
$$

there is a nonoscillatory solution
of Eq (3) converging to the positive equilibirium point $\bar{x}=\frac{2(\beta-a b)}{3 b} a s n \rightarrow \infty$

Proof: First, Eq (3) can be written in the form
$x_{n-1}=\frac{2}{a b} x_{n+1} \cdot x_{n}^{-1}+4 x_{n}+2 a-\frac{2 \beta}{b}-\frac{2}{\alpha b}$
$F\left(x_{n-1}, x_{n}, x_{n+1}\right)=\frac{2}{a b} x_{n+1} \cdot x_{n}^{-1}+4 x_{n}+2 a-\frac{2 \beta}{b}-\frac{2}{\alpha b}-x_{n-1}$
We expect the solutions of Eq (3) have the asymptotic appropriation (9).
$F=F\left(\varphi_{n-1}, \varphi_{n}, \varphi_{n+1}\right)=c\left(\bar{x}+a_{1} t^{n+1}+b_{1} t^{2 n+2}\right)\left(\bar{x}+a_{1} t^{n}+b_{1} t^{2 n}\right)^{-1}+4\left(\bar{x}+a_{1} t^{n}+b_{1} t^{2 n}\right)+d-\bar{x}-a_{1} t^{n+1}-b_{1} t^{2 n+2}$ with $c=\frac{2}{\alpha b}$ and $d=2 a-\frac{2 \beta}{b}-\frac{2}{\alpha b}$.

$$
\begin{gathered}
F=c\left(1+\frac{a_{1}}{\bar{x}} t^{n+1}+\frac{b_{1}}{\bar{x}} t^{2 n+2}\right)\left(1+\frac{a_{1}}{\bar{x}} t^{n}+\frac{b_{1}}{\bar{x}} t^{2 n}\right)^{-1}+4 \bar{x}+4 a_{1} t^{n}+4 b_{1} t^{2 n}+d-\bar{x}-a_{1} t^{n-1}-b_{1} t^{2 n-2} \\
F=\left(\frac{2}{\alpha b}+3 \frac{2(\beta-a b)}{3 b}+2 a-\frac{2 \beta}{b}-\frac{2}{a b}\right)+\left(\frac{c a_{1} t^{2}}{\bar{x}}+\frac{4 a_{1} \bar{x}-c a_{1}}{\bar{x}} t-a_{1}\right) t^{n-1} \\
+\left[\frac{c b_{1}}{\bar{x}} t^{4}-\frac{c a_{1}^{2}}{\bar{x}^{2}} t^{3}+\left(4 b_{1}+\frac{c a_{1}^{2}}{\bar{x}^{2}}-\frac{c b_{1}}{\bar{x}}\right) t^{2}-b_{1}\right] t^{2 n-2}+o\left(t^{2 n}\right)
\end{gathered}
$$

By easy calculation we have
$\frac{2}{a b}+\frac{2(\beta-a b)}{b}+2 a-\frac{2 \beta}{b}-\frac{2}{\alpha b}=0$
and we can write the function F in following form

$$
\begin{align*}
& F= {\left[t^{2}+\right.} \\
&\left.+\frac{\alpha \beta}{2}\left(\frac{8 \alpha(\beta-a b)-6}{3 \alpha b}\right) t-\frac{\alpha(\beta-a b)}{3}\right] \frac{a_{1} t^{n}}{\bar{x} t}+ \tag{13}\\
&+\left[c t^{4}+(4 \bar{x}-c) t^{2}-\bar{x}\right] \frac{b_{1} t^{2 n}}{\bar{x} t^{2}}+\left(c a_{1}^{2}-c a_{1}^{2} t\right) \frac{t^{2 n+2}}{\bar{x}^{2}}+o\left(t^{2 n}\right)
\end{align*}
$$

As mentioned earlier exists $\mathrm{t}_{0} \in(0 ; 1)$ such that $\mathrm{p}\left(\mathrm{t}_{0}\right)=0$ and $0<t_{0}^{2}<t_{0}<1, p\left(t_{0}^{2}\right)<0$ Posing $\mathrm{t}=\mathrm{t}_{0}$, we obtain

$$
\begin{aligned}
& F=\left[t_{0}^{4}+\frac{4 \bar{x}-c}{c} t_{0}^{2}-\frac{\bar{x}}{c}\right] \frac{c b_{1} t_{0}^{2 n}}{\bar{x} t_{0}^{2}}+\left(1-t_{0}\right) \frac{c a_{1}^{2} t_{o}^{2 n+2}}{\bar{x}^{2}}+o\left(t_{0}^{2 n}\right) \\
& F=p\left(t_{0}^{2}\right) \cdot \frac{c b_{1} t_{0}^{2 n}}{\bar{x} t_{0}^{2}}+\left(1-t_{0}\right) \frac{c a_{1}^{2} t_{o}^{2 n+2}}{\bar{x}^{2}}+o\left(t_{0}^{2 n}\right)
\end{aligned}
$$

Therefore, we have
$F=\left[p\left(t_{0}^{2}\right) \cdot \frac{c b_{1} t_{0}^{2 n}}{\bar{x} t_{0}^{2}}+\left(1-t_{0}\right) \frac{c a_{1}^{2} t_{0}^{2 n+2}}{\bar{x}^{2}}\right] t_{0}^{2 n}+o\left(t_{0}^{2 n}\right)$
$F=\left(B b_{1}+C\right) t_{0}^{2 n}+o\left(t_{0}^{2 n}\right)$

Setting $H_{t_{0}}(q)=B q+C=0 \rightarrow q_{0}=-\frac{C}{B}$
$H_{t_{0}}^{\prime}(q)=B=\frac{p\left(t_{0}^{2}\right) \cdot c}{\bar{x} t_{0}^{2}}<0$
We obtain that there are $\mathrm{q}_{1}<\mathrm{q}_{0}$ and $\mathrm{q}_{2}>\mathrm{q}_{0}$ such that $H_{t_{0}}\left(q_{1}\right)>0 ; H_{t_{0}}\left(q_{2}\right)<0 ; \mathrm{q}_{1}<\mathrm{q}_{0}<\mathrm{q}_{2}$.
We assume that $a_{1} \neq 0$, if $\widehat{\varphi_{n}}=\bar{x}+a_{1} t_{0}^{n}+q_{0} t_{0}^{2 n}$, we obtain

$$
F\left(\widehat{\varphi}_{n-1}, \widehat{\varphi}_{n}, \widehat{\varphi}_{n+1}\right) \sim\left[q_{0} B+C\right] t_{0}^{2 n}+o\left(t_{0}^{2 n}\right)
$$

With the notation

$$
y_{n}=\bar{x}+a_{1} t_{0}^{n}+q_{1} t_{0}^{2 n}, z_{n}=\bar{x}+a_{1} t_{0}^{n}+q_{2} t_{0}^{2 n}
$$

We get

$$
\begin{aligned}
& F\left(y_{n-1}, y_{n}, y_{n+1}\right) \sim\left[q_{1} B+C\right] t_{0}^{2 n} \\
& F\left(z_{n-2}, z_{n-1}, z_{n}\right) \sim\left[q_{2} B+C\right] t_{0}^{2 n}
\end{aligned}
$$

These relations show that inequalities (10) are satisfied for sufficiently large n, where $f=F+x_{n-1}$ and F is given by (12). Because the function $f\left(x_{n-1}, x_{n}, x_{n+1}\right)$ is continuous and nondecreasing on $[\bar{x},+\infty)^{3} \rightarrow[\bar{x},+\infty)$. We easily have $f(\bar{x}, \bar{x}, \bar{x})=\bar{x}$ We can apply the Theorem (2.1) with $I=[\bar{x}, \infty)$ and see that there is an $n_{0} \geq 0$ and a solution of equation (3) with the asymptotics $x_{n}=\widehat{\varphi_{n}}+o\left(t_{0}^{2 n}\right)$, for $n_{0} \geq 0$ where $b=q_{0}$ in $\widehat{\varphi_{n}}$. In particular, the solution converges monotonically to the positive equilibrium $\bar{x}=\frac{2(\beta-a b)}{3 b}$ for $n \geq n_{0}$ Hence, the solution $X_{n+n_{0}+2}$ is also such a solution when $\mathrm{n} \geq-2$.

Theorem 2.3. For a ; b ; $\mathrm{c}_{1} ; \mathrm{c}_{2}$ are positive constants and $\quad \alpha \in\left[0, \min \left(1, \frac{3}{4(\beta-a b)}\right)\right]$ there is a nonoscillatory
solution of system equation

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+\alpha x_{n}\left(a-c_{1}-2 b x_{n}-b y_{n}\right), \quad n=0,1,2, \ldots . \tag{1}\\
y_{n+1}=\frac{1}{2 b}\left(a-c_{2}-b x_{n}\right)
\end{array}\right.
$$

converging to the positive equilibrium point \bar{x}, \bar{y} where
$\bar{x}=\frac{2(\beta-a b)}{3 b}$
$\bar{y}=\frac{1}{2 b}\left(a-c_{2}-\frac{2(\beta-a b)}{b}\right)$
and $x_{n}=\widehat{\varphi}_{n}+o\left(t_{0}^{2 n}\right)$

$$
y_{n}=\frac{1}{2 b}\left[a-c_{2}-b\left(\widehat{\varphi}_{n}+o\left(t_{0}^{2 n}\right)\right)\right], n \geq-2
$$

3. ASYMPTOTIC APPROXIMATION OF POPULATION MODEL (2)

In [5,6] the authors studied the asymptotic behavior of some know population models. They established that every solution of the bounded below by positive constants. They also provided sufficient conditions for the global asymptotically stable of all solution of that higher order difference equations.

The study of a nonoscillatory solution of difference equation converging to the positive equilibrium point \bar{X} is extremely useful in the behavior of mathematical models of various biological systems and other application. This is due to the fact that difference equation are appropriate models for discribing situations where the variable is assumed to take only a discrete set of values and they arise frequently in the study of biological models, in the formation and analysis of discrete - time systems, the numerical intergation of differential equation by finite - difference schemes, the study of deterministic chaos, etc. For example El - Metwally [5] investigated the asymptotic behavior of the population model
$x_{n+1}=\alpha+\beta \cdot x_{n-1} e^{-x_{n}}, n=0,1,2, \ldots$
where α is the immigration rate and β is the population growth rate.
In final section, we study the nonoscillatory solution of the equation (14) converging to the positive equilibrium point.
The equilibrium point equation is $\bar{x}=\alpha+\beta \cdot \bar{x} \cdot e^{-\bar{x}}$

$$
\bar{x}-\beta \frac{\bar{x}}{e^{\bar{x}}}=\alpha
$$

We pose
$f\left(x_{n}, x_{n-1}\right)=\alpha+\beta \cdot x_{n-1} e^{-x_{n}}$
$f_{x_{n}}^{\prime} \mid \bar{x}=-\beta \cdot \bar{x} e^{-\bar{x}}=\alpha-\bar{x}$
$f_{x_{n-1}}^{\prime} \left\lvert\, \bar{x}=-\beta \cdot e^{-\bar{x}}=\frac{\bar{x}-\alpha}{\bar{x}}\right.$
Note that the linearized equation of Eq (14) about the positive equilibrium point

$$
\begin{equation*}
y_{n+1}=(\alpha-\bar{x}) y_{n}+\frac{\bar{x}-\alpha}{\bar{x}} y_{n-1}, n=0,1,2, \ldots \tag{15}
\end{equation*}
$$

The characteristic polynomial associated with Eq (15) is
$p(t)=\bar{x} t^{2}+\bar{x}(\bar{x}-\alpha) t+\alpha-\bar{x}=0$
Since, $p(0)=\alpha-\bar{x}<0, p(1)=\bar{x}+\bar{x}(\bar{x}-\alpha)+\alpha-\bar{x}=\bar{x}(\bar{x}-\alpha)+\alpha>0$

$$
p^{\prime}(t)=2 \bar{x} t+\bar{x}(\bar{x}-\alpha)>0 \text { for } t \in(0,1)
$$

There is a unique positive root $t_{0} \in(0,1)$ such that
$p\left(t_{0}\right)=0$ and $0<t_{0}^{2}<t_{0}<1$ such that $p\left(t_{0}^{2}\right)<p\left(t_{0}\right)=0$. It means that
$p\left(t_{0}\right)=\bar{x} t_{0}^{2}+\bar{x}(\bar{x}-\alpha) t_{0}+\alpha-\bar{x}=0$
This fact motivated us to believe that there are solutions of Equation (5) which have the following asymptotics
$x_{n}=\bar{x}+a_{1} t_{0}^{n}+o\left(t_{0}^{n}\right)$
from (16) we expect that for $\mathrm{k} \geq 2$ such solutions have the first three members in their asymptotics in the following form
$\varphi_{n}=\bar{x}+a_{1} t_{0}^{n}+b_{1} t_{0}^{2 n}$

Theorem 3.1: For α, β are positive constants there is a nonoscillatory solution of Equation (14) converging to the positive equilibrium point that satisfies
$\bar{x}\left(1-\frac{\beta}{e^{\bar{x}}}\right)=\alpha$ as $n \rightarrow \infty$
Proof: From Eq (14) we can write in the form
$F\left(x_{n-1}, x_{n}, x_{n+1}\right)=\frac{1}{\beta} \cdot e^{x_{n}}\left(x_{n+1}-\alpha\right)-x_{n-1}=g\left(x_{n}, x_{n+1}\right)-x_{n-1}$
$g_{X_{n+1}}^{\prime}=\frac{1}{\beta} e^{x_{n}}>0$
$g_{x_{n+1}}^{\prime}=\frac{1}{\beta} e^{x_{n}}\left(x_{n+1}-\alpha\right)>0$
We expect the solutions of Eq (14) have the asymptotic appropriation (16)'

$$
\begin{gather*}
F=F\left(\varphi_{n-1}, \varphi_{n}, \varphi_{n+1}\right)=\frac{1}{\beta} e^{\bar{x}+a t^{n}+b t^{2 n}}\left(\bar{x}+a t^{n+1}+b t^{2 n+2}-\alpha\right)-\left(\bar{x}+a t^{n-1}+b t^{2 n-2}\right) \\
=0 \text { for } t \in(0, \infty) \\
e^{\bar{x}+a t^{n}+b t^{2 n}}=\beta\left(\bar{x}+a t^{n-1}+b t^{2 n-2}\right)\left(\bar{x}+a t^{n+1}+b t^{2 n+2}-\alpha\right)^{-1} \\
\bar{x}+a t^{n}+b t^{2 n}=\ln \left[\beta\left(1+\frac{a t^{n-1}}{\bar{x}}+\frac{b t^{2 n-2}}{\bar{x}}\right)\left(1+\frac{a t^{n+1}}{\bar{x}-\alpha}+\frac{b t^{2 n+2}}{\bar{x}-\alpha}\right)^{-1}\right] \\
=\ln \frac{\beta \bar{x}}{\bar{x}-\alpha}\left(1+\frac{a t^{n-1}}{\bar{x}}+\frac{b t^{2 n-2}}{\bar{x}}\right) \cdot\left(1-\frac{a t^{n+1}}{\bar{x}-\alpha}-\frac{b t^{2 n+2}}{\bar{x}-\alpha}+\left(\frac{a t^{n+1}+b t^{2 n+2}}{\bar{x}-\alpha}\right)^{2}-\ldots\right] \\
\ln \bar{x}+\frac{a t^{n-1}+b t^{2 n-2}}{\bar{x}}-\frac{a^{2} t^{2 n-2}+2 a b t^{3 n-3}+\ldots}{2 \bar{x}^{2}}+\ldots \\
=\bar{x}+a t^{n}+b t^{2 n}+\ln \frac{\bar{x}-\alpha}{\beta}+\frac{a t^{n+1}+b t^{2 n+2}}{\bar{x}-\alpha}-\frac{a^{2} t^{2 n+2}}{2(\bar{x}-\alpha)}+\ldots . . \tag{19}
\end{gather*}
$$

From (19) we have
$\ln \bar{x}=\bar{x}+\ln \frac{\bar{x}-\alpha}{\beta}$ or $(\bar{x}-\alpha) e^{\bar{x}}=\beta \bar{x}$
This is trust and from (19) we obtain

$$
\begin{gathered}
\frac{a}{x} t^{n-1}=a t^{n}+\frac{a t^{n+1}}{\bar{x}-\alpha} \\
\left(\frac{a}{t \bar{x}}-a-\frac{a t}{\bar{x}-\alpha}\right) t^{n}=\frac{\left[\bar{x} t^{2}+t \bar{x}(\bar{x}-\alpha)+(\alpha-\bar{x})\right]}{t \bar{x}(\bar{x}-\alpha)} a t^{n}=\frac{p(t) a t^{n}}{t \bar{x}(\bar{x}-\alpha)}
\end{gathered}
$$

As mentioned earlier exists $t_{0} \in(0,1)$ such that $\mathrm{p}\left(\mathrm{t}_{0}\right)=0$ and $0<t_{0}^{2}<t_{0}<1, p\left(t_{0}^{2}\right)<0$. Posting $\mathrm{t}=\mathrm{t}_{0}$, we get

$$
\begin{aligned}
& \left(\frac{a}{t_{0} \bar{x}}-a-\frac{a t_{0}}{\bar{x}-\alpha}\right) t_{0}^{n}=\frac{p\left(t_{0}\right) a t_{0}^{n}}{t_{0} \bar{x}(\bar{x}-\alpha)}=0 \\
& \text { From (19) it follows } \frac{b}{x} t_{0}^{2 n-2}-\frac{a^{2}}{2 \bar{x}^{-2}} t_{0}^{2 n-2}=b t_{0}^{2 n}+\frac{b t_{0}^{2 n+2}}{\bar{x}-\alpha}-\frac{a^{2} t_{0}^{2 n+2}}{2(\bar{x}-\alpha)^{2}} \\
& F=\left\{\left(\frac{b}{\bar{x}}-\frac{a^{2}}{2 x^{-2}}\right) \frac{1}{t_{0}^{2}}-b-\left[\frac{b}{\bar{x}-\alpha}-\frac{a^{2}}{2(\bar{x}-\alpha)^{2}}\right] t_{0}^{2 n}\right] t_{0}^{2 n}+o\left(t_{0}^{2 n}\right) \\
& \\
& =\frac{2 b(\bar{x}-\alpha) \bar{x} p\left(t_{0}^{2}\right)-a^{2} t_{0}^{4}\left[\bar{x}^{2} t_{0}^{4}-(\bar{x}-\alpha)^{2}\right]}{2 x^{-2}(\bar{x}-\alpha)^{2} t_{0}^{2}} \cdot t_{0}^{2 n}+o\left(t_{o}^{2 n}\right)
\end{aligned}
$$

Setting $\mathrm{F}=(\mathrm{Bb}+\mathrm{C}) t_{0}^{2 n}+o\left(t_{0}^{2 n}\right)$
$H_{t_{0}}(q)=B q+C=0 \rightarrow q_{0}=-\frac{C}{B}$
$H_{t_{0}}^{\prime}(q)=B=\frac{2 b(\bar{x}-\alpha) \bar{x} p\left(t_{0}^{2}\right)}{2 \bar{x}^{-2}(\bar{x}-\alpha)^{2} t_{0}^{2}}<0$

We obtain that there are $\mathrm{q}_{1}<\mathrm{q}_{0}$ and $\mathrm{q}_{2}>\mathrm{q}_{0}$ such that $\mathrm{H}_{\mathrm{to}}\left(\mathrm{q}_{1}\right)>0, H_{t_{0}}\left(q_{2}\right)<0, q_{1}<q_{0}<q_{2}$. We assume that $a \neq 0$, if $\hat{\varphi}=\bar{x}+a t_{0}^{n}+q_{0} t_{0}^{2 n}$, we obtain
$F\left(\hat{\varphi}_{n-1}, \hat{\varphi}_{n}, \hat{\varphi}_{n+1}\right) \sim\left[q_{0} B+C\right] t_{0}^{2 n}+o\left(t_{0}^{2 n}\right)$
With the notation

$$
y_{n}=\bar{x}+a t_{0}^{n}+q_{1} t_{0}^{2 n}, z_{n}=\bar{x}+a t_{0}^{n}+q_{2} t_{0}^{2 n}
$$

We get
$F\left(y_{n-1}, y_{n}, y_{n+1}\right) \sim\left[q_{1} B+C\right] t_{0}^{2 n} ;$
$F\left(z_{n-1}, z_{n}, z_{n+1}\right) \sim\left[q_{2} B+C\right] t_{0}^{2 n}$
These relations show that inequalities (10) are satisfied for sufficiently large n , where $g=F+x_{n-1}$ and F is given by (18). Because the function $g\left(x_{n-1}, x_{n}, x_{n+1}\right)$ is continuous and nondecreasing on $[\bar{x},+\infty)^{3} \rightarrow[\bar{x},+\infty)$. We easily have $g(\bar{x}, \bar{x}, \bar{x})=\bar{x}$. We can apply the Theorem 2.1 with $\mathrm{I}=[\bar{x},+\infty)$ and see that there is an $n_{0} \geq 0$ and a solution of equation (14) with theasymptotics $x_{n}=\hat{\varphi}_{n}+o\left(t_{0}^{2 n}\right)$, for $n \geq 0$ where $b=q_{0}$ in $\hat{\varphi}_{n}$. In particular, the solution converges monotonically to the positive equilibrium point for $n_{0} \geq 0$. The proof is complete.

ACKNOWLEDGMENTS

We would like to extend our thanks to the referees for their suggestions which certainly improved the exposition of our paper. This work was supported by Vietnam's National Foundation for Science and Technology Development (NAFOSTED: 101.01.58.09).

REFERENCES

[1] L. Berg, Asymptotische Darstellungen und Entwicklungen, Dt. Verlag Wiss, Berlin, 1968.
[2] L. Berg, On the asymptotics of nonlinear difference equations, Zeitschrift for Analysis and Ihre Anwendungen 21 (2002), 1061-1074.
[3] L. Berg, Inclusion theorems for nonlinear difference equations with applications, J. Differ. Equations Appl. 10 (2004), 399-408.
[4] L. Berg, Corrections to "Inclusion theorems for nonlinear di erence equa-tions with applications", J. Differ. Equations Appl. 11 (2005), 181-182.
[5] H. El. Metwally, M. M. El-Afifi, On the behavior of some extention forms of some population models, Chaos, Solitions and Fractals 36 (2008), 104-114.
[6] H. El. Metwally, Global behavior of an economic model, Chaos, Solitions and Fractals 33 (2007), 994-1005.
[7] V. V. Khuong, On the positive nonoscillatory solution of the difference equation $X_{n+1}=\alpha+\left(\frac{x_{n-k}}{x_{n-m}}\right)^{p}$, Appl.
Math. J. Chinese Univ. 24 (2008), 45-48.
[8] V. V. Khuong, A note on the difference equation $X_{n+1}=\alpha+\left(\frac{X_{n-k}}{\sum_{i=0}^{k-1} C_{i} X_{n-i}}\right)^{k}$, Panamer. Math. J. 19 (2009), 67-77.
[9] V. V. Khuong, On the positive nonoscillatory solution of the difference equations $X_{n+1}=\frac{p}{x_{n}}+\left(\frac{x_{n-2}}{x_{n}}\right)^{\alpha}$, Comm. Appl. Anal. 12 (2009), 199-208.
[10] V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic, Dordrecht, 1993.
[11] M. R. S. Kulenovic, G. Ladas, L. F. Martins, I. W. Rodrignes, The dynamics of $x_{n+1}=\frac{\alpha+\beta x_{n}}{A+B x_{n}+C x_{n-1}}$: Facts and conjectures, Comput. Math. Appl. 45 (2003), 1087-1099.
[12] G. Ladas, Progress report on $x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A+B x_{n}+C x_{n-1}}$, J. Difference. Equa. Appl. 1 (1995), 211-215.
[13] S. Stevic and K. Berenhaut, A note on positive nonoscillatory solutions of the difference equation $X_{n+1}=\alpha+\frac{x_{n-k}^{p}}{x_{p}^{n}}$, J. Differ. Equations Appl. 12 (2006), 495-499.
[14] S. Stevic and K. Berenhaut, The difference equation $X_{n+1}=\alpha+\frac{x_{n-k}}{\sum^{k-1}}$ has solutions converging to zero,

$$
\sum_{i=0}^{K-1} c_{i} x_{n-1}
$$

J. Differ. Equations Appl. 326 (2007), 1466-1471.

Source of support: Vietnam's National Foundation for Science and Technology Development (NAFOSTED: 101.01.58.09)., Conflict of interest: None Declared

