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ABSTRACT 
The effect of mixed convection in a vertical channel with porous medium is analysed in the present study with heat source 
or sink using Brinkman model. The plate exchanges heat with external fluid. Both equal and of different reference 
temperature of the external fluid is considered. The governing equations are solved numerically by using Runge-Kutta 
fourth order shooting method and analytically by using pertubation method. The effect of various parameters involved in 
the problem are illustrated graphically. The analytical and numerical solutions agree very well for small values of 
pertubation parameter. In the absence of porous parameter and heat source or sink the result agree with that of Zanchini 
[1]. 
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1.  INTRODUCTION 
Forced and mixed convection in porous channels have been the focus of a variety of numerical studies and modeling 
efforts. Free and mixed convection on vertical surfaces under various thermal boundary conditions and external flow 
conditions remain problems of focus both experimentally and analytically. The literature on heat and mass transfer in 
porous media continues to expand, and several studies of a very fundamental nature capture the breadth of recent activity 
are published recently e.g. Nield and Bejan [2], Vafai [3], Bejan et al. [4], and Pop and Ingham [5], is motivated by 
numerous applications of this class of phenomena in the modern technologies. The large number of applications, such as, 
oil extraction, fluid flow in geothermal reservoirs, solid matrix heat exchangers, iron blast furnaces, energy efficient drying 
processes, ground water hydrology, solidification of casting etc. Lauriat and Prasad [6] investigated the free convection in a 
vertical porous layer and in a vertical enclosure filled with a porous medium. Hadim and Chen [7] carried out a numerical 
study of buoyancy-aided mixed convection in an isothermally heated vertical channel filled with a fluid saturated porous 
medium. 
 
Recently, Ali [8] analyzed the effect of lateral mass flux on the natural convection boundary layer induced by a heated 
vertical plate embedded in a saturated porous medium with an exponential decaying heat generation. Ishak et al. [9] 
presented the problem of mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified 
porous medium assuming that the external velocity and surface temperature with an exponential decaying heat generation. 
The study of heat generation in moving fluids is important in view of several physical problems such as those concerned 
with dissociating fluids. Possible heat generation effects may alter the temperature distribution and, therefore, the particle 
deposition rate. This may occur in such applications related to electronic chips and semi conductor wafers, nuclear reactor 
cores, fire and combustion modeling. In fact, the literature is replete with examples dealing with the heat transfer in laminar 
flow of viscous fluids.  
 
Effect of the heat generation or absorption and thermophoresis on a hydromagnetic flow with heat and mass transfer over a 
flat plate was investigated by Chamkha and Issa [10]. Also the effects of the conjugate conduction-natural convection heat 
transfer along a thin vertical plate with non-uniform heat generation have been studied by Mendez and Trevino [11]. 
Recently Molla et al. [12] have investigated the natural convection flow with heat generation/absorption along a uniform 
heated vertical wavy surface. The convection in enclosures has become increasingly important in engineering applications. 
In particular, as high power electronic packaging and component density continue to increase substantially with the fast 
growth of electronic technology, effective cooling of electronic equipment has become warranted.  
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The application of natural convection cooling for electronic equipment ranges from individual transistors to mainframe 
computers and from energy supplies to telephone switch boards. Recent technological implications have given rise to 
increased interest in combined free and forced convection flow in vertical channels in which the objective is to secure a 
quantitative understanding of a configuration having current engineering applications (Al-Hadharami et al., [13]). Parang 
and Keyhani [14] studied the fully developed buoyancy-assisted mixed convection in a vertical annulus by using Brinkman-
extended Darcy model. Their results indicated that the Brinkman term could be neglected for lower Darcy number. 
Muralidar [15] performed a numerical calculation for buoyancy-assisted mixed convection in a vertical annulus by using 
the Darcy model. The results show that the Nusselt number increases with the Rayleigh number and/or Peclet number. 
Umavathi et al. [16-19] studied mixed convection in a vertical and horizontal porous channel. 
 
In the past, the laminar forced convection heat transfer in the thermal entrance region of a rectangular channel has been 
analyzed either for the temperature boundary condition of the first kind, characterized by prescribed wall temperature 
(Wibulswas [20], Lyczkowski et al., [21] and Javeri, [22]) or for the boundary condition of the second kind, expressed by 
the prescribed wall heat flux (Hicken, [23] and Sparrow and Siegel, [24]). A more realistic condition in many applications, 
however, will be temperature boundary condition of third kind: the local wall heat flux is a linear function of the local wall 
temperature. Heat transfer in laminar region of a flat channel for the temperature boundary condition of third kind was 
explored by Javeri [25]. Javeri [26] investigated the influence of the temperature boundary condition of the third kind on 
the laminar heat transfer in the thermal entrance region of a rectangular channel. Later Zanchini [1] analyzed the effect of 
viscous dissipation on mixed convection in a vertical channel with boundary conditions of third kind. Kumari and Nath [27] 
analyzed the effect of localized cooling/heating and injection/suction on mixed convection flow on a thin vertical cylinder. 
Mahanti and Gaur [28] investigated the effects of the viscosity and thermal conductivity on steady free-convection flow of 
a viscous incompressible fluid along an isothermal vertical plate in the presence of heat sink. Umavathi and Prathap [29] 
found the exact solutions for the mixed convection flow of micro-polar fluid in a vertical channel with symmetric and 
asymmetric conditions in the presence of source or sink.  Prathap Kumar et al [30] studied mixed convection magneto 
hydrodynamic and viscous fluid in a vertical channel.  
 
Accordingly, the aim of the present paper is to explore the velocity and temperature fields in a vertical channel embedded 
with porous medium using boundary conditions of the third kind. Both equal and different reference temperatures of the 
external fluid as well as both equal and unequal Biot numbers are considered. In the absence of porous medium and heat 
source/sink the solutions obtained in this paper coincide with those of the Zanchini [1]. 
 
2.  PROBLEM FORMULATION 
Consider the steady and laminar flow of a Newtonian fluid in the fully developed region of a parallel-plate vertical channel 
filled with a porous material. The porous medium is isotropic and homogeneous. The X -axis lies on the axial plane of the 
channel, and its direction is opposite to the gravitational field. The Y -axis is orthogonal to the walls. The channel occupies 
the region of space / 2 / 2L Y L− ≤ ≤ . The thermal conductivity, the thermal diffusivity, the dynamic viscosity and the 
thermal expansion coefficient of the fluid are considered constant. As customary, the Boussineq approximation and the 
equation of state will be adopted. 
 

0 0[1 ( )]t T Tρ ρ β= − −                                                                                        (1) 
 
Moreover, it will be assumed that the only nonzero component of the velocity field U  is the X -component of theU . 
Thus, since .U∇ =0, one has so that U  depends only on Y .   

0U
X

∂
=

∂
                                                                                                                            (2) 

 
The momentum balance equation along X  and Y  yields (Vafai and Tien, [31]). 

2

0 2
0

1( ) 0t
P d U Ug T T
X kdY

νβ ν
ρ

∂
− − + − =

∂
                                                                                            (3) 

0P
Y

∂
=

∂
                                              (4) 

 
where 0P p gXρ= + . Since, on account of equation (4) P  depends only on X , and hence equation (3) can be rewritten as 

2

0 2
0

1

t t t

dP d U UT T
g dX g k gdY

ν ν
β ρ β β

− = − +                (5) 
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From equation (5), one obtains 

2

2
0

1

t

T d P
X g dXβ ρ

∂
=

∂
                                                                   (6) 

 
3

3
t t

T d U dU
Y g k g dYdY

ν ν
β β

∂
= − +

∂
                                                                                   (7) 

 
2 4 2

2 4 2
t t

T d U d U
g k gY dY dY

ν ν
β β

∂
= − +

∂
                                       (8) 

 
Both the walls of the channel will be assumed to have a negligible thickness and to exchange heat by convection with an 
external fluid. In particular, at / 2Y L= −  the external convection coefficient will be considered as uniform with the value 

1h  and the fluid in the region / 2Y L< −  will be assumed to have a uniform reference temperature 1T . At / 2Y L=  the 
external convection coefficient will be considered as uniform with the value 2h  and the fluid in the region / 2Y L>  will be 
supposed to have a uniform reference temperature 2 1T T≥ . Therefore, the boundary conditions on the temperature field can 
be expressed as 

1 1
/ 2

[ ( , / 2)]
Y L

TK h T T X L
Y =−

∂
− = − −

∂
                                                      (9) 

 

2 2
/ 2

[ ( , / 2) ]
Y L

TK h T X L T
Y =

∂
− = −

∂
                                                                               (10) 

 
On account of equation (7), equations (9) and (10) can be rewritten as 

3
1

13
/ 2

1 [ ( , / 2)]t

Y L

ghd U dU T T X L
k dY KdY

β
ν=−

− = − −                                                       (11) 

 
3

2
23

/ 2

1 [ ( , / 2) ]t

Y L

ghd U dU T X L T
k dY KdY

β
ν=

− = −                                                (12) 

 
It is easily verified that equations (11) and (12) imply that /T X∂ ∂  is zero both at / 2Y L= −  and at / 2Y L= . Since 
equation (6) ensures that /T X∂ ∂ does not depend on ,Y  one is led to the conclusion that /T X∂ ∂  is zero everywhere. 
Therefore, the temperature T depends only on Y , i.e. ( )T T Y= . Thus, on account of equation (6), there exists a constant 
A such as  
dP A
dX

=                                                                                                             (13) 

 
For the problem under investigation, the energy balance equation in the presence of viscous dissipation and heat source/sink 
can be written as (Aziz and Na, [32]) 

22 2
2

2 2
0

1

p t t t p

QT dU dP d U U U
C dY K g dX g k g K CY dY
ν ν ν ν

α β ρ β β α
 ∂  = − − + −  ∂    

                    (14)                                           

 
Equations (8) and (14) yield a differential equation forU , namely 

24 2 2
2

4 2 2
0

1 1t t t

p t t t

g g Qgd U d U d U d P d UU U
C dY k kK K g dX g k gdY dY dY
β β µ β ν ν

α ν ν β ρ β β
  = + + ± − +  

   
                                  (15)                       

 
The boundary conditions onU are  
 

( / 2) ( / 2) 0U L U L− = =                                                                                      (16) 
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Together with equations (11) and (12), which on account of equation (5), can be rewritten as 

3 2
11 1 1

0 13 2
/ 2

1 ( )t

Y L

ghh h U Ahd U dU d U T T
k dY K Kk K KdY dY

β
µ ν=−

− − − = − − −                                             (17) 

 
3 2

22 2 2
2 03 2

/ 2

1 ( )t

Y L

ghh h U Ahd U dU d U T T
k dY K Kk K KdY dY

β
µ ν=

− + + = − −                                               (18) 

 
Equations (15)-(18) determine the velocity distribution. They can be written in a dimensionless form by means of the 
following dimensionless parameters: 
 

0

Uu
U

= , 0T T
T

θ
−

=
∆

, Yy
D

= ,
3

2
tg TD

Gr
β

ν
∆

= , 0Re
U D

ν
= ,

2
0U

Br
K T
µ

=
∆

, Pr ν
α

= ,
Re
Grλ = , 2 1

T
T T

R
T
−

=
∆

, 1
1

h D
Bi

K
= ,

2
2

h D
Bi

K
= , 1 2

1 2 1 22 2
Bi Bi

S
Bi Bi Bi Bi

=
+ +

,
2QD

K
φ = , D

k
σ = .                                                                                                (19)

  
In equation (19), 2D L=  is the hydraulic diameter, while the reference velocity 0U and the reference temperature 0T are 
given by 

2

0 48
ADU

µ
= − ; 1 2

0 2 1
1 2

1 1 ( )
2

T T
T S T T

Bi Bi
 +

= + − − 
 

                                      (20) 

 
The reference temperature T∆ is given either by 
 

2 1T T T∆ = −   if  1 2T T<                                              (21) 
 

or by 
2

2
p

T
C D

ν
∆ =  if 1 2T T=                                                                     (22) 

 
Therefore, as in Barletta [33], the value of the dimensionless parameter TR can be either 0 or 1. More precisely, TR equals 1 
for asymmetric fluid temperatures, 1 2T T< , and equals 0  for symmetric fluid temperatures, 1 2T T= . The dimensionless 
mean velocity u  and the dimensionless bulk temperature bθ  are given 

1 / 4

1 / 4

2u udy
−

= ∫                                                                                    (23) 

 
1 / 4

1 / 4

2
b u dy

u
θ θ

−

= ∫
  

                             (24) 

 
On account of equation (13), for upward flow 0A < , so that 0U , Re and λ  are positive and for downward flow 0A > , 
while 0U , Re and λ are negative. By employing the dimensionless quantities defined in equation (19), equations (15)-(18) 
can be rewritten as 

( ) ( )
24 2

2 2 2 2
4 2 48d u d u d uBr u u

dydy dy
λ σ σ φ φ σ

  
 = + + −    

                                        (25) 

 
( 1/ 4) (1/ 4) 0u u− = =                            (26) 

 
2 2 3

2
2 3 1 / 4

1 1 1

1 448 1
2

T
y

R Sd u du d u u
Bi dy Bi Bidy dy

λσ σ
=−

 
+ − + = − + + 

 
                                     (27) 
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2 2 3

2
2 3 1 / 4

2 2 2

1 448 1
2

T
y

R Sd u du d u u
Bi dy Bi Bidy dy

λσ σ
=

 
− + − = − − + 

 
                                     (28) 

 
Similarly, equations (14) and (19) yield 

22 2
2 2 2

2 248d du d uBr u u
dydy dy

φθ σ σ
λ

    
 = − + + −       

                                      (29) 

 
while from equations (5) and (19) one obtains  

2
2

2

1 48 d u u
dy

θ σ
λ

 
= − + − 

 
                                                          (30) 

 
where the plus sign relate to heat absorption and minus sign relates to heat generation. 
 
A Nusselt number can be defined at each boundary, as follows: 

1
/ 2

1
[ ( / 2) ( / 2)] (1 )T T Y L

dTNu
R T L T L R T dY

=−

=
− − + − ∆

 

 

2
/ 2

1
[ ( / 2) ( / 2)] (1 )T T Y L

dTNu
R T L T L R T dY

=

=
− − + − ∆

                                                                                   (31) 

 
The Nusselt numbers 1Nu and 2Nu  can be employed to evaluate the heat fluxes at the walls. In fact, the heat flux per unit 
area is given by 

1 / 2
( / )

Y L
q K dT dY

=−
= −  at the left wall, and by 2 / 2

( / )
Y L

q K dT dY
=

= −  at the right wall. Let us first 

assume 1TR = . Then, from equation (31) one obtains 
 

1
1 [ ( / 2) ( / 2)]

KNu
q T L T L

D
= − − − ; 2

2 [ ( / 2) ( / 2)]
KNu

q T L T L
D

= − − −                    (32) 

  
The heat flux densities 1q  and 2q can also be expressed as 

1 1 1[ ( / 2) ]q h T L T= − − − ;  2 2 2[ ( / 2)]q h T T L= − −                                               (33) 
 
Equations (32) and (33) yield 

( ) 1 2
2 1

1 2

[ ( / 2) ( / 2)] 1
Nu NuKT L T L T T

D h h
  

− − = − + +     
                                                                                                (34) 

 
Let us now assume 0TR = . Equations (31) yields 

1
1

KNu
q T

D
= − ∆  and 2

2

KNu
q T

D
= − ∆                                                                    (35) 

 
where T∆  is the reference temperature difference defined by equation (22). By employing equation (19), equation (31) can 
be written as 

1
1 / 4

1
[ (1/ 4) ( 1/ 4) (1 )]T T y

dNu
R R dy

θ
θ θ

=−

=
− − + −

; 2
1 / 4

1
[ (1/ 4) ( 1/ 4) (1 )]T T y

dNu
R R dy

θ
θ θ

=

=
− − + −

                                  (36) 

 
3.  SOLUTIONS 
i). Separated effects of buoyancy forces and viscous dissipation 
         
In this section, the simpler cases of either negligible viscous dissipation or negligible buoyancy forces will be solved 
analytically. The case of negligible viscous dissipation can be obtained by setting 0Br = in the dimensionless energy  
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Equation (36). As a consequence; the dimensionless temperature field is independent of the dimensionless velocity field u . 
Moreover, equations (31)-(34) can be easily solved and yield 
                                ( ) ( ) ( ) ( ) 2

1 2 3 4 48u C Sinh y C Cosh y C Sinh y C Cosh yσ σ φ φ σ= + + + +                                        (37) 

for the case of heat absorption and 
 
                               ( ) ( ) ( ) ( ) 2

1 2 3 4 48u C Cosh y C Sinh y C Cos y C Sin yσ σ φ φ σ= + + + +                                               (38) 

for the case of heat generation respectively. 
 
With 1 2Bi Bi Bi= =  equations (37) and (38) can be rewritten as 

                              ( ) ( )1 2u C Sinh y C Cosh yσ σ= + ( ) 2
3 48C Sinh yφ σ+ +                                                                       (39) 

for the case of heat absorption and 
 
                               ( ) ( ) ( ) 2

1 2 4 48u C Cosh y C Sinh y C Sin yσ σ φ σ= + + +                                                                        (40) 

for the case of heat generation, respectively. 
 
In the limit Bi → +∞ , one obtains the special case in which the boundaries of the channel are kept at the temperatures 1T  
and 2T , respectively. In this limit, equation (19) yields 1S → , so that equations (37) and (38) reduces to 
 
                              ( ) ( ) ( ) 2

1 2 3 48u C Sinh y C Cosh y C Sinh yσ σ φ σ= + + +                                                   (41) 

for the case of heat absorption and 
 
                               ( ) ( ) ( ) 2

1 2 4 48u C Cosh y C Sinh y C Sin yσ σ φ σ= + + +                                                                        (42) 

for the case of heat generation, respectively. 
 
By substituting equations (37) and (38) in equations (23) and (24), one obtains 
 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2
44 1 4 1 4 4 48 1 4 4u C Sinh Cosh Tanh Tanhφ φ σ φ σ σ φ σ= − + −  

{ }2
1 2 3 4 5

6

2( )
b

b b b b b
b

φ σ
θ

λ
− − + + + +

=                                                                                                                          (43) 

for the case of heat absorption and 

( ) ( ) ( ) ( ) ( )( )2
1 34 4 4 4 4 8u C Sinh C Sinσ σ φ φ σ= + +  

( )( )( ) ( )( )2 2
1 2 3 4

5

2( ) 1
b

b b b b

b

φ σ σ φ σ φ
θ

λ

− + + + +
=                           (44) 

for the case of heat generation, respectively. 
 
Moreover, equations (30), (37) and (38) yield 
 

( ) ( ) ( )( )
2

3 4C Sinh y C Cosh y
φ σ

θ φ φ
λ

−
= − +                                                  (45) 

for the case of heat absorption and 
 

( ) ( ) ( )( )
2

3 4C Cos y C Sin y
φ σ

θ φ φ
λ

+
= +                                                            (46) 

for the case of heat generation, respectively. 
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In the absence of heat absorption/generation and porous parameter, equations (30), (36) and (37) reduces to  
 

1 22 ; 2T TSR y Nu Nu Rθ = = =                                                                             (47) 
which are the same solutions obtained by Zanchini [1]. 
 
Plots of u versus y evaluated through equation (37), are reported in figure 1 for 0, 1000λ λ= = , heat absorption co-
efficientφ  and 1 2 10Bi Bi= =  for different values of porous parameter. Let us now consider the case of negligible 
buoyancy forces with a relevant viscous dissipation, which corresponds to / Re 0Grλ = = . Since a purely forced 
convection occurs in this case, the solution for velocity becomes 

( )
( )2

48 1
4

Cosh y
u

Cosh
σ
σσ

 
= −  

 
                                     (48) 

 
Indeed, both for symmetric and for asymmetric fluid temperatures, equation (48) is the solution of equations (25)-(30) 
when 0λ = . Equations (9), (10) and (19) yield the boundary conditions onθ , i.e, 

1
11 / 4

41 ( 1/ 4)
2

T

y

SRd Bi
dy Bi
θ θ

=−

  
= + + −     

 

 

2
21 / 4

41 (1/ 4)
2

T

y

SRd Bi
dy Bi
θ θ

=

  
= + −     

                                                                 (49) 

 
On the account of equations (29), (48) and (49), the temperature can be expressed as 

( ) ( )5 6 1 2 3( ) ( ) 2C Sinh y C Cosh y f Cosh y f Cosh y fθ φ φ σ σ= + + + +                   (50) 
 
for the case of heat absorption and 
 

( ) ( )5 6 1 2 3( ) ( ) 2C Sin y C Cos y f Cosh y f Cosh y fθ φ φ σ σ= + + + +                   (51) 
 
for the case of heat generation, respectively. 
 
Equations (31), (50) and (51) yield respectively as            

( ) ( ) ( ) ( )

( ) ( )
5 6 1 2

1

5

4 4 2 2 4

2 4 1T T

C Cosh C Sinh f Sinh f Sinh
Nu

R C Sinh R

φ φ φ φ σ σ σ σ

φ λ

− − −
=

+ −

( ) ( ) ( ) ( )

( ) ( )
5 6 1 2

2

5

4 4 2 2 4

2 4 1T T

C Cosh C Sinh f Sinh f Sinh
Nu

R C Sinh R

φ φ φ φ σ σ σ σ

φ λ

+ + +
=

+ −
          (52) 

 
for the case of heat absorption and 
 

( ) ( ) ( ) ( )

( ) ( )
5 6 1 2

1

5

4 4 2 2 4

2 4 1T T

C Cos C Sin f Sinh f Sinh
Nu

R C Sin R

φ φ φ φ σ σ σ σ

φ λ

+ − −
=

+ −

( ) ( ) ( ) ( )

( ) ( )
5 6 1 2

2

5

4 4 2 2 4

2 4 1T T

C Cos C Sin f Sinh f Sinh
Nu

R C Sin R

φ φ φ φ σ σ σ σ

φ λ

− + +
=

+ −
              (53) 

 
for the case of heat generation, respectively. 
 
Plots of θ  versus y  for 1 21( )TR T T= < , evaluated through equation (50), and are reported in figures 2 and 3, for some 
values of Br . Figure 2 refers to 1 2 10Bi Bi= = , while figure 3 refers to 1 21, 10Bi Bi= =  for different porous parametersσ . 
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ii). Combined effects of buoyancy forces and viscous dissipation 
 
In this section, both buoyancy forces and viscous dissipation are considered as non-negligible. First, equations (31)-(36) are 
solved by a perturbation series method. Then, the dimensionless temperature field is determined by means of equation (36).  
Let us consider the dimensionless parameter 

Re Pr
p

gDBr
C

β
ε λ= =                                                                                  (54)  

which is independent of the reference temperature difference T∆ . The solutions of equation (31)-(36) can be expressed by 
the perturbation expansion 

( ) 2
0 1 2( ) ( ) ( ) . . .u y u y u y u yε ε= + + +                                         (55) 

 
To obtain the solutions of equations (25)-(28) with the form (55), one first substitutes equation (55) in equations (25)-(28) 
and collects terms having like power of ε . Then, one equates the coefficient of ε  to zero (Aziz and Na, [32]). Thus, one 
obtains a sequence of boundary value problems which can be solved in succession and can yield the unknown 
functions ( )nu y . 
 
The boundary value problem for 0n =  and 1n =  are 

( ) ( )
4 2

2 20 0
04 2 48

d u d u
u

dy dy
σ φ φ σ= −                                                         (56) 

 
0 0( 1/ 4) (1/ 4) 0u u− = =                                                                                           (57) 

 
2 32

20 0 0
02 3

1 1 11 / 4

1 448 1
2

T

y

d u du d u R S
u

Bi dy Bi Bidy dy
λσ σ

=−

 
+ − + = − + + 

 
                               (58) 

 
2 32

20 0 0
02 3

2 2 21 / 4

1 448 1
2

T

y

d u du d u R S
u

Bi dy Bi Bidy dy
λσ σ

=

 
− + − = − − + 

 
                               (59) 

 

( )
24 2

2 2 2 201 1
0 14 2

dud u d u
u u

dydy dy
σ σ φ φσ

 
= + + ± 

 
                                   (60) 

 
1 1( 1/ 4) (1/ 4) 0u u− = =                                                                                            (61) 

 
2 3 2

21 1 1
02 3

1 1 1 / 4

1 0
y

d u d u du
u

Bi Bi dydy dy
σ σ

=−

− + + =                                                  (62) 

 
2 3 2

21 1 1
12 3

2 2 1 / 4

1 0
y

d u d u du
u

Bi Bi dydy dy
σ σ

=

+ − − =                                              (63) 

 
where plus sign relates to heat absorption and minus sign relates to heat generation. 
 
The solutions of equations (56)-(63) are given by 

( ) ( ) ( ) ( ) 2
0 1 2 3 4 48u C Sinh y C Cosh y C Sinh y C Cosh yσ σ φ φ σ= + + + +                      (64) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( )

1 5 6 7 8 5 6 7

8 9 10 11 12

13 14 15 16 17

2 2 2

2

u C Sinh y C Cosh y C Sinh y C Cosh y l Cosh y l Cosh y l Sinh y

l Sinh y l Cosh y l Cosh y l Sinh y l Sinh y

l yCosh y l ySinh y l yCosh y l ySinh y l

σ σ φ φ σ φ σ

φ σ φ σ φ σ φ σ φ

σ σ φ φ

= + + + + + + +

+ + + − + + + − +

+ + + +

      (65) 
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for the case of heat absorption and 

0 1 2 3 4 2

48( ) ( ) ( ) ( )u C Cosh y C Sinh y C Cos y C Sin yσ σ φ φ
σ

= + + + +                          (66) 

( ) ( )1 7 8u C Cosh y C Sinh yσ σ= + ( ) ( )9 10C Cos y C Sin yφ φ+ + ( ) ( )1 2 2l Cos y l Cos yφ φ+ +                

         ( ) ( ) ( ) ( ) ( ) ( )3 4 5 6 72 2 ( )l Sinh y l Sin y l Cosh y l Sinh y Sin y l Cosh y Sin yσ φ σ σ φ σ φ+ + + + +  

         ( ) ( ) ( ) ( )8 9 10 11 12 13( ) ( )l Sinh y Cos y l ySinh y l yCosh y l ySin y l yCos y lσ φ σ σ φ φ+ + + + + +                                     (67) 

 
for the case of heat generation, respectively. 
 
The right-hand side of equations (64) and (66) coincides with that of equations (37) and (38) respectively and gives the 
dimensionless velocity for the case of 0Br = . 
 
The dimensionless temperature θ  can be written in the form 

( ) ( )( ) ( )
( )

22
27 26

3 7 4 8 2

( ) ( ) ( )
l l

C C Sinh y C C Cosh y
σφ σ

θ ε φ ε φ
λ λ φ σ

−−
= − + + + −

−
                      (68) 

 
for the case of heat absorption and 
 

( ) ( ) ( ) ( ) ( )( )( )2
3 9 4 10 14

1 C C Cos y C C Sin y lθ φ σ ε φ ε φ
λ

= + + + + +                      (69) 

 
for the case of heat generation, respectively. 
 
Using the equations (68) and (69) yields the following expressions of 1Nu and 2Nu  as 
 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

2
3 7 4 8 29

1 2
3 7 32 31

4 4

2 4 (1 )T T

C C Cosh C C Sinh l
Nu

R C C Sinh l l R

φ σ φ ε φ ε φ φ φ ε

φ σ ε φ λ

− + − + +
=

− + + − + −
 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

2
3 7 4 8 29

2
2 2

3 7 32 31

4 4

2 4 2 4 (1 )T T

C C Cosh C C Sinh l
Nu

R C Sinh C Sinh l l R

φ σ φ ε φ ε φ φ φ ε

φ σ φ ε φ σ φ λ

− + + + +
=

− + − + − + −
        (70)

       
for the case of heat absorption and  
 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )
2

3 9 4 10

1 2
4 10

4 4 1

2 4 1 (1 )T T

C C Sin C C Cos AN
Nu

R C C Sin AD R

φ σ φ ε φ ε φ ε

φ σ ε φ λ

− + + + + +
=

− + + + + −
             

 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )
2

3 9 4 10

2 2
4 10

4 4 1

2 4 1 (1 )T T

C C Sin C C Cos AN
Nu

R C C Sin AD R

φ σ φ ε φ ε φ ε

φ σ ε φ λ

− + + − + +
=

− + + + + −
                                                              (71) 

 
for the case of heat generation, respectively. 
 
Equations (23), (55) and (64), (65), (68) yield the expression of the mean dimensionless velocity for the case of heat 
absorption as  

( ) ( )( ) ( ) ( )

( ) ( ) ( )( )
4 6 8 4

2

4 ( 4) 4 ( 4) 4

48 1 4 4 1

u C C C Sinh C Cosh Tanh

Tanh ub

φ ε φ σ φ σ

σ σ σ ε

= + + −

+ − +
        (72) 
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Similarly equations (23), (55) and (66), (67), (69) yield the expression of the mean dimensionless velocity for the case of 
heat generation as  

( ) ( )2
1 7 3 94( ) ( 4) (48 ) 4( ) ( 4) 1u C C Sinh C C Sin ubε σ σ σ ε φ φ ε= + + + + +                        (73) 

 
4.  NUMERICAL SOLUTION  
The analytical solutions obtained in the preceding section include only two terms of the series, which is not applicable for 
large values of λ i.e., for large values of buoyancy force. In many practical problems the values of λ are usually large. 
Therefore a numerical scheme is used to solve non-linear boundary value problem using Runge-Kutta shooting method. 
The analytical solutions and numerical solutions are found and it is observed that this agreement is good enough to justify 
the validity of the numerical scheme for small values of the perturbation parameter. 

 
5.  RESULTS AND DISCUSSION 
The problem of mixed convection flow and heat transfer in a vertical channel filled with porous medium with boundary 
conditions of third kind is investigated. The analytical solutions are found using regular perturbation method with product 
of mixed convection parameter ( / Re)Grλ and Brinkman number ( )Br as the perturbation parameter. The analytical 
solutions are valid only for small values of the perturbation parameter. The restriction on the perturbation parameter ε to be 
small is relaxed by finding the solutions of governing equations numerically using Runge-Kutta shooting method. The flow 
is also analyzed depending on the thermal characteristics of the parameters such as heat source/sink. Results are depicted 
graphically in figures 1-8 for heat sink and in figure 9 for heat source. In the absence of viscous dissipation, for equal Biot 
number there is a flow reversal near the cold wall for large values of mixed convection parameter λ ( 1000)λ = as seen in 
figure 1. In the absence of both viscous dissipation and mixed convection parameter, there is no effect of heat sink on the 
velocity (figure 1). As the heat sink parameter increases velocity decreases which is also observed from figure 1.  
 
In the absence of mixed convection parameter λ and viscous dissipation, the temperature field is linear indicating that the 
heat transfer is purely by conduction as can be seen in figure 2. The temperature field increases with an increase in 
Brinkman number for all values of heat sink parameterφ . The temperature decreases substantially as heat sink 
parameter φ increases in the presence of viscous dissipation as observed in figure 2 for equal Biot number. Similar results 
are also observed for unequal Biot number and hence not depicted graphically. 
 
Figures 3a and 3b shows the variations of velocity and temperature fields for different values of perturbation parameter ε  
for downward ( 0)ε <  and upward ( 0)ε > flows. For upward flow velocity and temperature are increasing function of ε . 
The effect of ε on velocity field is stronger while that on the temperature field is weaker. For downward flow velocity field 
is a decreasing function of ε where as the temperature field is an increasing function of ε . It is also seen from figure 3a that 
flow reversal occurs at both the left ( 0)ε >  and ( 0)ε <  right walls. This is because the perturbation parameter ε implies 
the enhancement of viscous dissipation which results in higher values of temperature which intern enhances the buoyancy 
force. Therefore increase in buoyancy force increases the fluid flow for 0λ > and decreases the fluid flow for 0λ < .  
Figures 1-3 also prove the good agreement between numerical and analytical solutions for small perturbation 
parameter ε and the difference increases as ε increases. 
 
The effect of heat absorption coefficientφ  is to decrease the velocity field near the hot wall for upward flow ( 0λ > ) where 
as it increases the velocity field near the hot wall for downward flow ( 0λ < ) as seen in figure 4a. Similar effect is there on 
the temperature field as seen in figure 4b. 

 
The effect of porous parameter on the flow is shown in figure 5. As the porous parameter σ increases the velocity decreases 
for both upward and downward flow as seen in figure 5a. The effect of porous parameterσ is to reduce the temperature 
field but the effect is almost invariant as seen in figure 5b. 

 
The Nusselt number 1Nu is an increasing function of | |ε , while Nusselt number 2Nu is an decreasing function of | |ε for 
fixed parameters φ  and σ  which are the similar results obtained by Zanchini [1] and hence not shown graphically. The 
Nusselt number at the cold wall is an increasing function of heat absorption coefficient φ for upward and downward flow 
for any values of porous parameter σ as seen in figure 6a. The rate of heat transfer is more for smaller values of mixed 
convection parameter λ at the left wall. The Nusselt number is also an increasing function of heat absorption coefficient φ   
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at the hot wall as seen in figure 6b. However the magnitude of the Nusselt number at the hot wall is less for smaller values 
of mixed convection parameter λ . 

 
The effect of mixed convection parameter λ  for various values of | |ε is similar to the results obtained by Zanchini [1] and 
hence not presented. As the heat absorption coefficient φ increases, the average velocity decreases for upward flow where as 
increases for downward flow as seen in figure 7. 

 
The effect of perturbation parameter ε on the flow field for unequal Biot number for fixed values of heat absorption 
coefficient φ  and porous parameter σ is again the similar results obtained by Zanchini [1]. That is as ε  increases both 
velocity and temperature increases but the effect of ε on temperature is more operative at the cold wall. For symmetric wall 
heating conditions, the heat absorption coefficient φ  and porous parameter σ reduced the velocity and temperature fields 
for upward flow as seen in figures 8a and 8b respectively. Reversal effect is noticed on the flow field for downward flow 
(figures 8a and 8b) for equal Biot number. Similar results are obtained for the effects of φ , σ and ε  for unequal Biot 
numbers. 

 
The effect of heat generation coefficient φ on the flow field is qualitatively same as that in case of heat absorption however 
we discuss the results where there are deviations from heat absorption. The effect of heat generation coefficient φ is to 
increase the velocity and temperature field asφ  increases for upward flow at both the walls, where as velocity and 
temperature decreases at both the walls for downward flow as seen in figures 9a and 9b respectively. The flow reversal is 
observed at the left wall and at the right wall for upward flow which is the similar result obtained for heat absorption 
coefficientφ . 
 
6. CONCLUSIONS 
The effect of mixed convection parameter, porous parameter and heat source/sink on fully developed mixed convection in a 
vertical channel has been studied with boundary condition of third kind. Both the cases of asymmetric ( 1TR = ) and 
symmetric ( 0TR = ) wall conditions with equal and different Biot number have been considered. The effect of heat sink is 
to reduce the flow field and heat source promotes the flow field. The effect of porous parameter reduces the flow field for 
both heat source and sink. The numerical and analytical solutions agree very well for small values of perturbation 
parameter.  The results agree very well with that of Zanchini [1] in the absence of porous parameter and heat source/sink 
coefficient. 
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Fig. 1: Plots of u Vs. y in the case 1TR = , for some value of , 0Brλ = and 1 2 10Bi Bi= = . 
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Fig. 2: Plots of θ Vs. y in the case 1TR = , for some value of , 0Br λ = and 1 2 10Bi Bi= = . 
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Fig. 3(a): Plots of u vs. y in the case 1TR = , for some value of , 0λ ε = and 1 2 10Bi Bi= = . 
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Fig. 3(b): Plots of θ Vs. y in the case 1TR = , for some value of , 0λ ε = and 1 2 10Bi Bi= = . 
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Fig. 4(a): Plots of u Vs. y in the case 1TR = , for some value of , 0λ ε = and 1 2 10Bi Bi= = . 
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Fig. 4(b): Plots of θ Vs. y in the case 1TR = , for some value of , 0λ ε = and 1 2 10Bi Bi= = . 

-0.2 -0.1 0.0 0.1 0.2
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

σ  = 6

σ  = 10

σ  = 2

σ  = 6

λ =-500 , ε = -1
λ =500 , ε = 1
φ = 9

σ  = 2

σ  = 10

y

u 

 
Fig. 5(a): Plots of u Vs. y in the case 1TR = , for some value of , 0λ ε = and 1 2 10Bi Bi= = . 
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Fig. 5(b): Plots of θ Vs. y in the case 1TR = , for some value of , 0λ ε = and 1 2 10Bi Bi= = . 
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Fig. 6(a): Plots of 1Nu Vs. φ in the case 1TR = , for some value of λ and 1 2 10Bi Bi= = . 
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Fig. 6(b): Plots of 2Nu Vs. φ in the case 1TR = , for some value of λ and 1 2 10Bi Bi= = . 
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Fig. 7: Plots of u Vs. φ in the case 1TR = , for some value of λ and 1 2 10Bi Bi= = . 
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Fig. 8(a): Plots of u Vs. y in the case 0TR = , for some value of λ and 1 2 10Bi Bi= = . 
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Fig. 8(b): Plots of λθ Vs. y in the case 0TR = , for some value of λ and 1 2 10Bi Bi= = . 
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Fig. 9(a): Plots of u vs. y in the case of ,for some values of λ and 1 1 10Bi Bi= = . 
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Fig. 9(b): Plots of θ vs. y in the case of ,for some values of λ and 1 1 10Bi Bi= = . 
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Table1 (a). Velocity for different values of ε  and 1TR = , 1 2 10Bi Bi= = , | 500 |λ = , 4, 9M φ= =  

 
y  7ε = −  0ε =  7ε =  

Analytical Numerical Analytical Numerical Analytical Numerical 
-0.25  0.000000  0.000000  0.000000  0.000000  0.000000 0.000000 
-0.2  0.720528  0.750370 -0.049284  -0.049259  0.049315 0.122398 
-0.15  1.058924  1.110638  0.109423  0.109456  0.292143 0.426375 
-0.1  1.119512  1.185404  0.393593  0.393623  0.643000 0.824353 
-0.05  0.987947  1.061000  0.731178  0.731199  1.026612 1.239359 
0.0  0.737931  0.811743  1.055837  1.055845  1.373743 1.600883 
0.05  0.435744  0.504411  1.302470  1.302464  1.616993 1.840432 
0.1  0.144185  0.202267  1.402846  1.402828  1.686180 1.886589 
0.15 -0.073297  -0.030681  1.281102  1.281079  1.503280 1.659753 
0.2 -0.147882  -0.124898  0.848901  0.848882  0.977274 1.067185 
0.25  0.000000  0.000001  0.000000  0.000000  0.000000 0.000000 

 
Table1 (b). Temperature for different values of  ε  and 1TR = , 1 2 10Bi Bi= = , | 500 |λ = , 4, 9M φ= =  

 
y  7ε = −  0ε =  7ε =  

Anaytical Numerical Anaytical Numerical    Anaytical Numerical 
-0.25 -0.314290  -0.320101 -0.339598 -0.339597  -0.329839 -0.322000 
-0.2 -0.230811  -0.238342 -0.262923 -0.262923  -0.248243 -0.236372 
-0.15 -0.158931  -0.166802 -0.192175 -0.192175  -0.172401 -0.156851 
-0.1 -0.092767  -0.100498 -0.125760 -0.125760  -0.101223 -0.082803 
-0.05 -0.029885  -0.037335 -0.062179 -0.062179  -0.033838 -0.013409 
0.0  0.030884  0.023806  0.000000 -0.000000   0.030884 0.052626 
0.05  0.090520  0.083972  0.062179 0.062179   0.094474 0.117068 
0.1  0.150297  0.144529  0.125760 0.125760   0.158753 0.181878 
0.15  0.211950  0.207256  0.192175 0.192175   0.225419 0.248566 
0.2  0.277603  0.274201  0.262923 0.262923   0.295036 0.316782 
0.25  0.349356  0.347207  0.339598 0.339597   0.364905 0.381522 

 
 
NOMENCLATURE 
A  constant 

1Bi  Biot number, ( )1h D K   

2Bi  Biot number, ( )2h D K  

Br  Brinkman number, ( ) ( )2
0U K Tµ ∆   

PC  specific heat at constant pressure 
D           hydraulic diameter, 2 L  
g  acceleration due to gravity 

Gr  Grashof number, ( )3 2g TDβ ν∆  

1h , 2h  external heat transfer coefficients 
K  thermal conductivity 
k  permeability of porous media 
L  channel width 

1 2,Nu Nu   Nusselt numbers 
p  non-dimensional pressure gradient 
P  difference between the pressure and the  
              hydrostatic pressure, 0p gXρ+  
Pr  Prandtl number, ( )PC Kµ  

Re         Reynolds number, ( )0U D ν  

TR          temperature difference ratio 
Q  rate of internal heat 
              absorption/generation  
T  temperature 

1 2,T T  reference temperatures of the external  
              fluid  

0T  reference temperature 
u           dimensionless velocity in the X - 
              direction 
u  mean value of u   

0U  reference velocity 
U  velocity component in the X -direction  
x    dimensionless stream wise coordinate 
X  stream wise coordinate 

 y  dimensionless transverse coordinate  
Y  transverse coordinate 
 
GREEK SYMBOLS 
α  thermal diffusivity, 0/( )pK Cρ          
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β  thermal expansion coefficient  
ε  dimensionless parameter, Brλ  
φ  dimensionless parameter of the heat  

              absorption/generation, ( )2QD K  
T∆  reference temperature difference  

θ  dimensionless temperature, ( )0T T T− ∆   

bθ  dimensionless bulk temperature 

µ  viscosity  

ν  kinematics viscosity, 0µ ρ   
λ  dimensionless parameter, ReGr  
ρ   mass density,  

0ρ   value of the mass density when 0T T=  

σ  porous parameter D k    
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