ON THE OREDER AND TYPE OF ENTIRE FUNCTIONS REPRESENTED BY DIRICHLET SERIES

K. V. RAMANA¹ & I. H. NAGARAJA RAO^{2*}

¹HEAD OF GENERAL SECTION, GOVT. MODEL RESIDENTIAL POLYTECHNIC, PADERU, VISAKHAPATNAM DIST, INDIA

²DIRECTOR & Sr. PROF., G. V. P. COLLEGE FOR DEGREE AND P. G. COURSES, RUSHIKONDA, VISAKHAPATNAM-530045, INDIA

(Received on: 13-01-13; Revised & Accepted on: 09-02-13)

ABSTRACT

In this paper we consider entire functions represented by Dirichlet series. We obtained some relationships involving orders and types of two or more entire Dirichlet series [2].

2000 AMS Mathematics Subject Classification: 30D32.

Keywords and phrases: Entire functions, Dirichlet series, order and type.

1. INTRODUCTION:

Let 'f' be an entire function represented by the Dirichlet series

$$f(z) = \sum_{n=1}^{\infty} a_n e^{\lambda_n z},$$
(1.1)

Where $a_n \in C$ and λ_n 's satisfy the following conditions:

(i)
$$0 < \lambda_1 < \lambda_2 < \dots < \lambda_n \to \infty$$
 as $n \to \infty$.

(ii)
$$\limsup_{n\to\infty} \frac{\log n}{\lambda_n} = 0.$$

If ' ρ ' is the Ritt order [3] of 'f', then

$$\rho = \limsup_{n \to \infty} \frac{\lambda_n \log \lambda_n}{\log |a_n|^{-1}} \qquad (0 \le \rho \le \infty).$$
(1.2)

Further λ_n satisfy the conditions:

(iii)
$$\lambda_{n+1} \sim \lambda_n$$
 as $n \to \infty$ and

(iv)
$$\left\{\log\left|\frac{a_n}{a_{n+1}}\right|/\left(\lambda_{n+1}-\lambda_n\right)\right\}$$
, eventually, is non-decreasing sequence.

If λ' is the lower order of f', then

$$\lambda = \liminf_{n \to \infty} \frac{\lambda_n \log \lambda_n}{\log |a_n|^{-1}} \qquad (0 \le \lambda \le \infty).$$
(1.3)

Let 'f' be an entire function of finite, positive order ' ρ '.

Corresponding author: I. H. NAGARAJA RAO^{2*}, ²DIRECTOR & Sr. PROF., G. V. P. COLLEGE FOR DEGREE AND P. G. COURSES, RUSHIKONDA, VISAKHAPATNAM-530045, INDIA

If T' is the Ritt type of f' then

$$T = \limsup_{n \to \infty} \frac{\lambda_n}{\rho e} |a_n|^{\rho/\lambda_n} \tag{1.4}$$

If t' is lower type of f', then P. K. Kamthan[1] showed that

$$t = \liminf_{n \to \infty} \frac{\lambda_n}{\rho e} |a_n|^{\rho/\lambda_n} \tag{1.5}$$

In this paper we investigate certain relationships between two or more entire functions.

2. MAIN RESULTS

Theorem 1: Let $\{\mu_n\}$ and $\{\nu_n\}$ be real sequences such that conditions (i) and (ii) are satisfied with ' μ_n ' in the place of ' λ_n ' or ' ν_n ' in the place of ' λ_n ', for every n. f_1 and f_2 are entire functions represented by the Dirichlet series

$$f_1(z) = \sum_{n=1}^{\infty} b_n e^{\mu_n z}, \quad f_2(z) = \sum_{n=1}^{\infty} c_n e^{\nu_n z} \quad \forall z \in C,$$

of orders ρ_1, ρ_2 ; lower orders λ_1, λ_2 , types T_1, T_2 and lower types t_1, t_2 respectively, each being positive and finite.

Further condition (iv) is satisfied with b_n and c_n in the place of a_n . Then the function f defined by

$$f(z) = \sum_{n=1}^{\infty} a_n e^{\lambda_n z}, \quad \forall z \in C,$$

where $\{\lambda_n\}$ satisfies (i) and (ii),

(v)
$$\mu_n \sim \lambda_n \sim \nu_n \text{ as } n \to \infty \text{ and}$$

(vi) For some positive reals α_1, α_2 with $\alpha_1 + \alpha_2 = 1$,

$$\log \left|a_n\right|^{-1} \sim \left(\log \left|b_n\right|^{-1}\right)^{\alpha_1} \sim \left(\log \left|c_n\right|^{-1}\right)^{\alpha_2} \text{ as } n \to \infty,$$

is an entire function. Further if ρ' , λ' are the order and lower order of f and T', t' are the type and lower type of f' respectively, then

(a)
$$\lambda_1^{\alpha_1} \lambda_2^{\alpha_2} \le \lambda \le \rho \le \rho_1^{\alpha_1} \rho_2^{\alpha_2}$$
,

(b)
$$t_1^{\alpha_1} t_2^{\alpha_2} \le t$$
 and

(c)
$$T \leq T_1^{\alpha_1} T_2^{\alpha_2}$$
, provided $\rho = \rho_1^{\alpha_1} \rho_2^{\alpha_2}$.

Proof: In view of the hypothesis it follows that

$$\limsup_{n\to\infty} \frac{\log n}{\lambda_n} = \limsup_{n\to\infty} \frac{\log n}{\mu_n} = \limsup_{n\to\infty} \frac{\log n}{\nu_n} = 0.$$

Let k > 0. Since f_1 and f_2 are entire functions it follows that

$$\frac{\log |b_n|^{-1}}{\mu_n} > k$$
 and $\frac{\log |c_n|^{-1}}{v_n} > k$ eventually.

Hence, for sufficiently large 'n',

$$\left(\frac{\log\left|b_{n}\right|^{-1}}{\mu_{n}}\right)^{\alpha_{1}}\left(\frac{\log\left|c_{n}\right|^{-1}}{\nu_{n}}\right)^{\alpha_{2}} > k^{\alpha_{1}+\alpha_{2}} = k.$$

K. V. RAMANA¹ & I. H. NAGARAJA RAO^{2*}/ ON THE OREDER AND TYPE OF ENTIRE FUNCTIONS... /IJMA- 4(2), Feb.-2013.

By (v) and (vi) we get that

$$\frac{\log |a_n|^{-1}}{\lambda_n} > k \text{ eventually. Thus 'f' is an entire function.}$$

Let
$$0 < \epsilon < \min \left\{ \frac{1}{\rho_1}, \frac{1}{\rho_2} \right\};$$

By the definition of ρ_i (j = 1,2), we have

$$\left(\log\left|b_{n}\right|^{-1}\right)^{\alpha_{1}} > \left(\mu_{n}\log\mu_{n}\right)^{\alpha_{1}}\left(\rho_{1}^{-1} - \epsilon\right)^{\alpha_{1}}$$

and

$$\left(\log |c_n|^{-1}\right)^{\alpha_2} > \left(v_n \log v_n\right)^{\alpha_2} \left(\rho_2^{-1} - \epsilon\right)^{\alpha_2}$$
 eventually.

$$\text{Hence } \left(\log \left| b_n \right|^{-1} \right)^{\!\! \alpha_1} \left(\log \left| c_n \right|^{-1} \right)^{\!\! \alpha_2} > \left(\mu_n \log \mu_n \right)^{\!\! \alpha_1} \! \left(\nu_n \log \nu_n \right)^{\!\! \alpha_2} \! \left(\rho_1^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_1} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left(\rho_2^{ - 1} - \boldsymbol{\epsilon} \right)^{\!\! \alpha_2} \! \left($$

$$\Rightarrow \log |a_n|^{-1} > (\lambda_n \log \lambda_n) (\rho_1^{-1} - \epsilon)^{\alpha_1} (\rho_2^{-1} - \epsilon)^{\alpha_2}$$

$$\Rightarrow \limsup_{n \to \infty} \frac{\lambda_n \log \lambda_n}{\log |a_n|^{-1}} = \rho \le \frac{1}{\left(\rho_1^{-1} - \epsilon\right)^{\alpha_1} \left(\rho_2^{-1} - \epsilon\right)^{\alpha_2}};$$

Since $\in > 0$ is arbitrary, follows that

$$\rho \leq \frac{1}{\left(\rho_{1}^{-1}\right)^{\alpha_{1}}\left(\rho_{2}^{-2}\right)^{\alpha_{2}}} = \rho_{1}^{\alpha_{1}}\rho_{2}^{\alpha_{2}}.$$

It is trivial that $\lambda \leq \rho$.

Let $\in > 0$; by the definition of $\lambda_{j}(j = 1,2)$, we have

$$\left(\log\left|b_{n}\right|^{-1}\right)^{\alpha_{1}} > \left(\mu_{n}\log\mu_{n}\right)^{\alpha_{1}}\left(\lambda_{1}^{-1} + \epsilon\right)^{\alpha_{1}}$$

and

$$\left(\log |c_n|^{-1}\right)^{\alpha_2} > \left(v_n \log v_n\right)^{\alpha_2} \left(\lambda_2^{-1} + \epsilon\right)^{\alpha_2}$$
 eventually.

$$\Rightarrow \log |a_n|^{-1} > (\lambda_n \log \lambda_n)(\lambda_1^{-1} + \epsilon)^{\alpha_1}(\lambda_2^{-1} + \epsilon)^{\alpha_2}$$
 eventually.

$$\Rightarrow \lambda_1^{\alpha_1} \lambda_2^{\alpha_2} = \frac{1}{\left(\lambda_1^{-1}\right)^{\alpha_1} \left(\lambda_2^{-2}\right)^{\alpha_2}} \leq \liminf_{n \to \infty} \frac{\lambda_n \log \lambda_n}{\log |a_n|^{-1}} = \lambda.$$

Thus $\lambda_1^{\alpha_1} \lambda_2^{\alpha_2} \le \lambda \le \rho \le \rho_1^{\alpha_1} \rho_2^{\alpha_2}$. This proves (a).

Let
$$0 < \in < \min\{t_1, t_2\}$$
.

By the definition of t_i (j = 1,2), we have

$$\frac{\mu_n}{e\rho_1} |b_n|^{\rho_1/\mu_n} > t_1 - \epsilon \text{ and } \frac{\nu_n}{e\rho_2} |c_n|^{\rho_2/\nu_n} > t_2 - \epsilon \text{ eventually; these imply}$$

$$\left(\log\left|b_{n}\right|^{-1}\right)^{\alpha_{1}} < \left[\frac{\mu_{n}}{\rho_{1}}\log\left\{\frac{\mu_{n}}{e\rho_{1}\left(t_{1}-\epsilon\right)}\right\}\right]^{\alpha_{1}}$$

and

$$\left(\log\left|c_{n}\right|^{-1}\right)^{\alpha_{2}} < \left[\frac{v_{n}}{\rho_{2}}\log\left\{\frac{v_{n}}{e\rho_{2}\left(t_{2}-\epsilon\right)}\right\}\right]^{\alpha_{2}}$$
 eventually;

K. V. RAMANA¹ & I. H. NAGARAJA RAO^{2*}/ ON THE OREDER AND TYPE OF ENTIRE FUNCTIONS... /IJMA- 4(2), Feb.-2013.

$$\Rightarrow \log|a_n|^{-1} < \frac{\lambda_n}{\rho} \left[\log\left\{\frac{\lambda_n}{A}\right\}^{\alpha_1} \log\left\{\frac{\lambda_n}{B}\right\}^{\alpha_2} \right]$$

$$= \frac{\lambda_n}{\rho} \left[\left(1 - \frac{\log A}{\log \lambda_n}\right)^{\alpha_1} \left(1 - \frac{\log B}{\log \lambda_n}\right)^{\alpha_2} \right] \log \lambda_n$$

$$< \frac{\lambda_n}{\rho} \left[1 - \frac{\log(A^{\alpha_1}B^{\alpha_2})}{\log \lambda_n} + O((\log \lambda_n)^{-2}) \right] \log \lambda_n,$$

where $A = e\rho_1(t_1 - \epsilon)$, $B = e\rho_2(t_2 - \epsilon)$. $\Rightarrow \left| a_n \right|^{\rho/\lambda_n} > \lambda_n^{-\left[1 - \frac{\log(A^{\alpha_1}B^{\alpha_2})}{\log \lambda_n} + O((\log \lambda_n)^{-2}) \right]}.$ $\Rightarrow \frac{\lambda_n}{\rho e} \left| a_n \right|^{\rho/\lambda_n} \ge \frac{1}{\rho e} A^{\alpha_1} B^{\alpha_2} \left(e^M \right)^{\frac{1}{\log \lambda_n}}, \text{ where M is a constant.}$ $\Rightarrow t = \liminf_{n \to \infty} \frac{\lambda_n}{\rho e} \left| a_n \right|^{\rho/\lambda_n} \ge \frac{1}{\rho e} \left[\left(e\rho_1(t_1 - \epsilon) \right)^{\alpha_1} \left(e\rho_2(t_2 - \epsilon) \right)^{\alpha_2} \right] (1)$ $= \frac{\rho_1^{\alpha_1} \rho_2^{\alpha_2}}{\rho} \left[\left(t_1 - \epsilon \right)^{\alpha_1} (t_2 - \epsilon)^{\alpha_2} \right]$ $\ge (t_1 - \epsilon)^{\alpha_1} (t_2 - \epsilon)^{\alpha_2}$

$$\Rightarrow t \ge t_1^{\alpha_1} t_2^{\alpha_2}$$
 or $t \le t_1^{\alpha_1} t_2^{\alpha_2}$. This proves (b).

Let $\in > 0$ and $A_1 = e\rho_1(T_1 + \in)$, $B_1 = e\rho_2(T_2 + \in)$; as in (b) we get that $\frac{\lambda_n}{\rho e} |a_n|^{\rho/\lambda_n} < \frac{1}{\rho e} A_1^{\alpha_1} B_1^{\alpha_2} \left[\left(e^{M_1} \right)^{\frac{1}{\log \lambda_n}} \right] \text{ eventually, where } M_1 \text{ is a constant;}$

$$\Rightarrow T = \limsup_{n \to \infty} \frac{\lambda_n}{\rho e} |a_n|^{\rho/\lambda_n} \le \frac{1}{\rho e} A_1^{\alpha_1} B_1^{\alpha_2} (1)$$

$$= \frac{\rho_1^{\alpha_1} \rho_2^{\alpha_2}}{\rho} (T_1 + \epsilon)^{\alpha_1} (T_2 + \epsilon)^{\alpha_2}$$

$$= (T_1 + \epsilon)^{\alpha_1} (T_2 + \epsilon)^{\alpha_2}, \text{ provided } \rho = \rho_1^{\alpha_1} \rho_2^{\alpha_2}$$

 $\Rightarrow T \leq T_1^{\alpha_1} T_2^{\alpha_2}$. This proves (c).

Thus if $\rho = \rho_1^{\alpha_1} \rho_2^{\alpha_2}$, we have $t_1^{\alpha_1} t_2^{\alpha_2} \le t \le T \le T_1^{\alpha_1} T_2^{\alpha_2}$.

Remark: Theorems (1), (2) and (3) of P. K. Kamthan [1] can be deduced from our theorem by taking $\alpha_1 = \alpha_2 = \frac{1}{2}$.

REFERENCES

- [1]. KAMTHAN, P.K: On the order and type of entire Dirichlet series, Mathematics Student, XXXIII (1965), 89-94.
- [2]. RAMANA, K.V: A Study of Entire Dirichlet Series in One and Several Complex Variables, Ph.D. Thesis, Andhra University (2002).
- [3]. RITT, J.F: On certain points in the theory of Dirichlet series, Amer. Jour. Math., 50(1928), 73-86.

Source of support: Nil, Conflict of interest: None Declared