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ABSTRACT 

In this paper it is shown that a vector metric space bears a metric-like Topology. Cantor intersection like Theorem is 

given, by an application of which a useful fixed point Theorem is proved. The paper closes with study of �iri� operators in 

respect of their fixed points.  
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1.  INTRODUCTION: 

Let S�denote the collection of all real sequences ( ){ }1 2, ,..., ,...nα α α α= , then S is a real vector space in which zero vector 

� equals to ( )0,0,0,... . Let us partially order S by α β≤  (equivalently, β α≥ );  , Sα β ∈  if and only if n nα β≤  for 

all n where ( )1 2, ,..., ,...nα α α α=  and ( )1 2, ,..., ,...nβ β β β= . 

Define ( ) ( ) ( ) ( )( )1 1 2 2max , max , , max , ,...max , ...n nα β α β α β α β=  and similarly one defines ( )min ,α β . 

Clearly ( ) ( )max , ,min , Sα β α β ∈ .  

 

Let X be a non-empty set. Then V : X × X � S is said to be a vector metric if following conditions are met :  

 

(i) V (x, y) � � for all ,x y X∈  and V (x, y) = � if and only if x = y.  

(ii) V (x, y) = V (y, x) for all ,x y X∈  

(iii) V (x, z) � V (x, y) + V (y, z) for all x, y and� z X∈ .  

 

Thus a metric space is a vector metric space.  

 

Example 1.1: Let X be the collection of all real polynomials ( ) 0 1 ... r

rp t a a t a t= + + + of degree r � n, and let V : X × 

X � S be taken as  

 

   ( ) ( )0 0 1 1, , ,..., ,... ,r rV p q a b a b a b= − − −  

where ( ) 2

0 1 2 ... r

rq t b b t b t b t= + + + + , then (X, V ) is a vector metric space.  

 

The study of vector metric spaces had been initiated long back by T. K. Sreenivasan in 1947 [7]; In our knowledge 

added in the literature is a paper of Branciari as late as in 2000 [1], and recently in 2003 one finds that Lahiri and Das [4] 

have proved Banach Contraction Principle like Theorem in a vector-metric space. In all these works no metric- like 

Topological structure had ever been incorporated into the space, where so-called convergence had been taken care of  
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through author’s definition.  In this paper we have invited a metric like Topology in a vector metric space, and with its  

aid some useful fixed point Theorems have been established wherefrom all front-line known fixed point Theorem could be 

derived. 

 

2.  VECTOR-METRIC TOPOLOGY:  

Let (X, V) be a vector metric space. A member ( )1 2, ,..., ,...n Sα α α ∈  with 0nα >  for all n is said to be a positive 

member of S. A positive real member ε  is taken as a positive member ( ), , ,...ε ε ε  of S. Let 0x X∈  and r be a 

positive member of S. Then the set denoted by ( ) ( ){ }0 0: ,rB x x X V x x r= ∈ <  is called an open ball in X.  

Theorem 2.1:  The family B of all open balls in (X, V ) together with empty set forms a base for a Topology Vτ  on X.  

 

Proof: Take two members ( )1 1rB x  and ( )2 2rB x  in 
B and ( ) ( )0 1 1 2 2r rx B x B x∈ � . 

Suppose ( ) ( ) ( )( )0 1 1 0 1 2 0 1, , , , ,...V x x x x x xα α=  and we have ( )0 1 1,n nx x rα <  for all n, where 

( )( )1 2, ,..., ,... 1, 2i i i inr r r r i= =  are two positive members of S.  

If ( )( ) ( )( ){ }1 0 1 2 0 20 min , , ,n n n n nr x x r x xε α α< < − −  for n = 1, 2 . . . then ( )1 2, ... ...nε ε ε ε=  is a positive 

member of S such that ( ) ( ) ( )0 1 1 2 2r rB x B x B x∈ ⊂ � . The proof is now complete.  

 

Note: This Topology Vτ   is termed as a vector metric Topology on (X, �).  

 

Theorem 2.2:  The vector metric space (X, V) is a T2-space.  

 

Proof is a routine exercise and is left out.  

 

Definition 2.1: A subset B of a vector metric space (X, V) is called bounded if there is a positive member K in S such 

that ( )1 2,V b b K≤  for all 1 2,b b B∈ .  

 

Definition 2.2: Diameter of a bounded set B, denoted by Diam (B) is defined as, 

 

  ( ) ( ) ( )
1 2 1 2 1 2

1 1 2 2 1 2 1 2
, , ,

Diam sup , , sup , ... sup , ...n
b b B b b B b b B

B b b b b b bα α α
∈ ∈ ∈

� �
= � �
� �

 

 

where for each ( )
1 2

1 2
,

, sup ,i
b b B

i b bα
∈

< +∞  as B is bounded. 

 

Following Lahiri and Das [4] we have 

 

Definition 2.3 (a): A sequence { }kx  in (X, V) is said to be cauchy if ( )lim , , 1, 2,...k p k
k

V x x pθ+
→∞

= =  

(b) (X, V) is said to be complete if every cauchy sequence in (X, V) converges to a member of X i.e. there is a member 

u X∈  such that ( )lim ,k
k

V x u θ
→∞

= .  

 

Theorem 2.3: A necessary and sufficient condition that a vector metric space (X, V) to be complete is that every nested 

sequence of nonempty closed subsets { }nG  with diameters tending to zero has 

1

n

n

G
∞

=

�  as a singleton.   

To prove this theorem we need a lemma that we prove first.  

 

Lemma 2.1: If G is a nonempty subset of (X, V) then ( )Diam ,G Diam G G=  denoting the closure of G in vector 

metric topology Vτ  on X. 
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Proof: First of all, we note that if ε  is an arbitrary positive member of S and l S∈  with lθ ≤  satisfying ;l ε≤  

Then l θ= .  

we always have ( ) ( )Diam DiamG G≤                                      (1) 

 

Let ε  be an arbitrary positive member of S, If ,a b G∈ , we find ,u v G∈  such that 

                ( ),
2

V u a
ε

<  and ( ),
2

V v b
ε

< . 

          Now ( ) ( ) ( ) ( ), , , ,V a b V a u V u v V v b≤ + +  

                                  ( ),
2 2

V u v
ε ε

< + +  

                                  ( ),V u vε= +  

 

This gives ( ) ( ), DiamV a b Gε≤ +  and hence, 

 

   
( )

( ) ( )
,

sup , Diam
a b G

V a b Gε
∈

≤ +  

    or  ( ) ( )Diam DiamG Gε≤ +  

As ε  is arbitrary, it follows that 

     ( ) ( )Diam DiamG G≤                    (2) 

From (1) and (2) we have, 

          ( ) ( )GDiamGDiam = . 

 

Proof of Theorem 2.3: Take ;n na G∈  Then for 1, n p n p np a G G+ +≥ ∈ ⊂  and 

( ) ( ), Diamn n p nV a a G θ+ ≤ →  as n → ∞ ; Then {an} becomes cauchy in (X, V), and by completeness of (X, V) 

let lim n
n

a u X
→∞

= ∈ . Now n p na G+ ∈  and by closure property of nG  we have lim n p n
p

a u G+
→∞

= ∈ . Therefore, 

1

n

n

u G
∞

=

∈� . If v is a member of 

1

n

n

G
∞

=

�  we have , nu v G∈  and ( ) ( ), Diam nV u v G≤  that tends to � as n � �. 

Therefore, u = v. Hence 

1

n

n

G
∞

=

�  is a singleton.  

Conversely, let {xn} be a Cauchy sequence in (X, V); Put ( )1 2, , ...n n n nH x x x+ += ; Then { }nH  is a decreasing sequence 

of nonempty closed sets in (X, V) such that  

( ) ( )Diam Diamn nH H=  (by lemma 2.1) which tends to � as n � �. Then 

1

n

n

H
∞

=

�  is a singleton, say {u}.  

Now xn and nu H∈  for all n and ( ) ( ), Diamn nV x u H θ≤ →  as n��. Therefore lim n
n

x u X
→∞

= ∈ . Proof is 

now complete.  

 

3.  Theorem 3.1: Let (X, V) be a complete vector metric space and T : X � X be an operator such that 

 

   ( ) ( )( ) ( )( ) ( )( ) ( ), , , ,V T x T y V x T x V y T y V x yα β γ≤ + +  

 

with 0 , ,α β γ≤  and 1α β γ+ + <  and for all ,x y X∈ . Then T has a unique fixed point in X. 

 

Proof: If  0x  is an arbitrary point in X and ( ) ( )( )0

0 0 01, 2,...,n

nx T x n T x x= = = , we have 
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( ) ( ) ( )( )

( ) ( ) ( )

2 1 1 0

1 2 0 1 0 1

, ,

, , ,

V x x V T x T x

V x x V x x V x xα β γ

=

≤ + +
 

 

           or, ( ) ( )2 1 0 1, ,
1

V x x V x x
β γ

α

+
≤

−
 

 

         and  ( ) ( ) ( )( )3 2 2 1, ,V x x V T x T x=  

 

         ( ) ( ) ( )2 3 1 2 1 2, , ,V x x V x x V x xα β γ≤ + +  

 

             or, ( ) ( )3 2 1 2, ,
1

V x x V x x
β γ

α

+
≤

−
 

                       ( )
2

0 1,
1

V x x
β γ

α

+� �
≤ � �

−� �
 

By induction, 

                           ( ) ( )1 0 1, ,
1

n

n nV x x V x x
β γ

α
+

+� �
≤ � �

−� �
 

 

    or, ( )( ) ( )( )0 0, ,n

n nV x T x V x T xδ=                  (1) 

 

where 1
1

β γ
δ

α

+
= <

−
 and therefore lim 0n

n
δ

→∞
= . 

If hk is a positive member of S such that lim k
k

h θ
→∞

= , and 1k kh h+ ≤  for all k. 

Put ( )( ){ }: ,k kG x X V x T x h= ∈ ≤  where ( ), ...k k kh h h S= ∈  

From (1) it follows that for large , kk G φ≠ . Suppose kG φ≠  for all k. It is an easy  

exercise to see that each kG  is closed and further, each Gk is bounded and if , kx y G∈  we have  

 

  ( ) ( )( ) ( ) ( )( ) ( )( ), , , ,V x y V x T x V T x T y V T y y≤ + +  

 

   ( )( ) ( )( ) ( )2 , , ,kh V x T x V y T y V x yα β γ≤ + + +  

 

   
2

1
kh

α β

γ

+ +
≤

−
 

 

This gives ( )
2

Diam
1

kG
α β

γ

+ +
≤

−
. hk and right hand side tends to � as k → ∞ .  

By routine exercise we show that ( ) , 1, 2,...k kT G G k⊂ = . Thus { }kG  is a decreasing chain of non-empty closed 

sets in (X, V) with ( )Diam kG θ→  as k → ∞ .  

By Theorem 2.3, 

1

k

k

G
∞

=

�  is a singleton, { }say u=  for some u X∈ . So ( )T u u= ; Uniqueness of u is now clear. 

 

Corollary: Theorem 3.1 gives Theorem 1 of Lahiri and Das [4] and well-known Kannan fixed point Theorem [3].  

We now invite a �iri� operator T over a vector metric space (X, V).  
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:T X X→  is said to be a �iri� operator if 

 

   ( ) ( )( ) ( ) ( ), , , , 1, 2...n n nV T x T y q x y x y nδ≤ =  

and ,x y X∈  where :q X X R
+× →  and : X X Rδ +× →   ( R

+
= set of non-negative reals) satisfy 

( ), 1q x y <  with  ( )
,

sup , 1
x y X

q x y
∈

=  and ( ),x yδ  is a member ( ) ( ) ( ){ }, , , ,... , ....x y x y x yδ δ δ  in S for 

( ),x y X X∈ × . 

Theorem 3.2: Let T be a �iri� operator over a complete vector metric space satisfying 

 

  
( ) ( )( ) ( )( ) ( )( ) ( )

( )( ) ( )( ){ }

, , , ,

max , , ,

V T x T y V x T x V y T y V x y

V x T y V y T x

α β

γ

� �≤ + +	 


+
 

 

for all ,x y X∈  where ,α β  and 0γ ≥  are such that { }max , 1α β γ+ < , then T has a unique fixed point in X. 

 

Proof: Take any 0x X∈  and any natural numbers m, n; Then by a routine calculation, 

 

( ) ( )( )
{ }

( ) ( )( ) ( ) ( )( )

{ }
( )( ) ( )( ) ( )( )

1 1

0 0 0 0 0 0

1 1

0 0 0 0 0 0

2max ,
, , ,

1

2max ,
, , ,

1

m n m m n n

m n

V T x T x V T x T x V T x T x

q x T x q x T x x T x

α β γ

β γ

α β γ
δ

β γ

− −

− −

+
� �≤ +	 
− −

+
� �≤ + ×	 
− −

 

 

and right hand side tends to � as ,m n → ∞ . That makes ( ){ }0

n
T x  cauchy in (X, V) and if ( )0lim n

n
T x u

→∞
=  for 

some u X∈ , we write 

 

  

( ) ( )( ) ( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( )( ){ }

1

0 0 0

1 1

0 0 0

, , ,

, max , , , .

n n n

n n n

V T x T u V T x T x V u T u

V T x u V T x T u V u T x

α

β γ

−

− −

� �≤ +	 


+ +
  

 

As n → ∞ , we derive ( )( ) ( ) ( )( ), ,V u T u V u T uα γ≤ +  and hence ( )u T u= ; Further if, ( )v T v= for some 

v X∈ , we have,  

 

  ( ) ( ) ( )( ) ( ) ( ), , , ,n n n
V u v V T u T v q u v u vδ θ= ≤ →  as n → ∞ . 

 

So u v= . The proof is complete.  

 

Corollary:  Theorem 3.2 gives Theorem 1 of Saha and Baisnab (See [6]) as a special case.�
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