VECTOR METRIC SPACES AND SOME FIXED POINT THEOREMS

Mukti Gangopadhyay ${ }^{1}$, ${ }^{*}$ Mantu Saha ${ }^{2}$ and A.P. Baisnab ${ }^{3}$
${ }^{1}$ Calcutta Girls' B.T. College 6/1 Swinhoe Street Kolkata-700019
E-mail: muktigangopadhyay@yahoo.com
${ }^{2}$ Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India, E-mail: mantusaha@yahoo.com
${ }^{3}$ Techno India EM 4/1, Sector -5, Salt Lake Kolkata-700091

(Received on: 25-01-11; Accepted on: 23-02-11)

ABSTRACT

In this paper it is shown that a vector metric space bears a metric-like Topology. Cantor intersection like Theorem is given, by an application of which a useful fixed point Theorem is proved. The paper closes with study of Ćirić operators in respect of their fixed points.

2000 Mathematics subject classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
Keywords: Vector metric Topology, Cantor Intersection like Theorem, Ćirić operator.

1. INTRODUCTION:

Let S denote the collection of all real sequences $\left\{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots\right)\right\}$, then S is a real vector space in which zero vector θ equals to $(0,0,0, \ldots)$. Let us partially order S by $\alpha \leq \beta$ (equivalently, $\beta \geq \alpha) ; \alpha, \beta \in S$ if and only if $\alpha_{n} \leq \beta_{n}$ for all n where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots\right)$ and $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}, \ldots\right)$.
Define $\max (\alpha, \beta)=\left(\max \left(\alpha_{1}, \beta_{1}\right), \max \left(\alpha_{2}, \beta_{2}\right), \ldots \max \left(\alpha_{n}, \beta_{n}\right) \ldots\right)$ and similarly one defines $\min (\alpha, \beta)$. Clearly $\max (\alpha, \beta), \min (\alpha, \beta) \in S$.

Let X be a non-empty set. Then $V: X \times X \rightarrow S$ is said to be a vector metric if following conditions are met :
(i) $\quad V(x, y) \geq \theta$ for all $x, y \in X$ and $V(x, y)=\theta$ if and only if $x=y$.
(ii) $\quad V(x, y)=V(y, x)$ for all $x, y \in X$
(iii) $\quad V(x, z) \leq V(x, y)+V(y, z)$ for all x, y and $z \in X$.

Thus a metric space is a vector metric space.
Example 1.1: Let X be the collection of all real polynomials $p(t)=a_{0}+a_{1} t+\ldots+a_{r} t^{r}$ of degree $r \leq n$, and let $V: X \times$ $X \rightarrow S$ be taken as

$$
V(p, q)=\left(\left|a_{0}-b_{0}\right|,\left|a_{1}-b_{1}\right|, \ldots,\left|a_{r}-b_{r}\right|, \ldots\right),
$$

where $q(t)=b_{0}+b_{1} t+b_{2} t^{2}+\ldots+b_{r} t^{r}$, then (X, V) is a vector metric space.
The study of vector metric spaces had been initiated long back by T. K. Sreenivasan in 1947 [7]; In our knowledge added in the literature is a paper of Branciari as late as in 2000 [1], and recently in 2003 one finds that Lahiri and Das [4] have proved Banach Contraction Principle like Theorem in a vector-metric space. In all these works no metric- like Topological structure had ever been incorporated into the space, where so-called convergence had been taken care of

Mukti Gangopadhyay ${ }^{1}$ et al. / Vector metric spaces and some fixed point theorems /IJMA- 2(4), Apr.-2011, Page: 419-423

through author's definition. In this paper we have invited a metric like Topology in a vector metric space, and with its aid some useful fixed point Theorems have been established wherefrom all front-line known fixed point Theorem could be derived.

2. VECTOR-METRIC TOPOLOGY:

Let (X, V) be a vector metric space. A member $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots\right) \in S$ with $\alpha_{n}>0$ for all n is said to be a positive member of S. A positive real member \mathcal{E} is taken as a positive member $(\varepsilon, \varepsilon, \varepsilon, \ldots)$ of S. Let $x_{0} \in X$ and r be a positive member of S. Then the set denoted by $B_{r}\left(x_{0}\right)=\left\{x \in X: V\left(x, x_{0}\right)<r\right\}$ is called an open ball in X.
Theorem 2.1: The family B of all open balls in (X, V) together with empty set forms a base for a Topology τ_{V} on X.
Proof: Take two members $B_{r 1}\left(x_{1}\right)$ and $B_{r 2}\left(x_{2}\right)$ in $B \quad$ and $\quad x_{0} \in B_{r 1}\left(x_{1}\right) \cap B_{r 2}\left(x_{2}\right)$. Suppose $V\left(x_{0}, x_{1}\right)=\left(\alpha_{1}\left(x_{0}, x_{1}\right), \alpha_{2}\left(x_{0}, x_{1}\right), \ldots\right) \quad$ and \quad we have $\alpha_{n}\left(x_{0}, x_{1}\right)<r_{1 n}$ for all n, where $r_{i}=\left(r_{i 1}, r_{i 2}, \ldots, r_{i n}, \ldots\right)(i=1,2)$ are two positive members of S.
If $0<\varepsilon_{n}<\min \left\{\left(r_{1 n}-\alpha_{n}\left(x_{0}, x_{1}\right)\right),\left(r_{2 n}-\alpha_{n}\left(x_{0}, x_{2}\right)\right)\right\}$ for $n=1,2 \ldots$ then $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2} \ldots \varepsilon_{n} \ldots\right)$ is a positive member of S such that $B_{\epsilon}\left(x_{0}\right) \subset B_{r 1}\left(x_{1}\right) \bigcap B_{r 2}\left(x_{2}\right)$. The proof is now complete

Note: This Topology τ_{V} is termed as a vector metric Topology on (X, τ).
Theorem 2.2: The vector metric space (X, V) is a T_{2}-space.
Proof is a routine exercise and is left out.
Definition 2.1: A subset B of a vector metric space (X, V) is called bounded if there is a positive member K in S such that $V\left(b_{1}, b_{2}\right) \leq K$ for all $b_{1}, b_{2} \in B$.

Definition 2.2: Diameter of a bounded set B, denoted by Diam (B) is defined as,

$$
\operatorname{Diam} B=\left(\sup _{b_{1}, b_{2} \in B} \alpha_{1}\left(b_{1}, b_{2}\right), \sup _{b_{1}, b_{2} \in B} \alpha_{2}\left(b_{1}, b_{2}\right) \ldots \sup _{b_{1}, b_{2} \in B} \alpha_{n}\left(b_{1}, b_{2}\right) \ldots\right)
$$

where for each $i, \sup _{b_{1}, b_{2} \in B} \alpha_{i}\left(b_{1}, b_{2}\right)<+\infty$ as B is bounded.
Following Lahiri and Das [4] we have
Definition 2.3 (a): A sequence $\left\{x_{k}\right\}$ in (X, V) is said to be cauchy if $\lim _{k \rightarrow \infty} V\left(x_{k+p}, x_{k}\right)=\theta, p=1,2, \ldots$
(b) (X, V) is said to be complete if every cauchy sequence in (X, V) converges to a member of X i.e. there is a member $u \in X$ such that $\lim _{k \rightarrow \infty} V\left(x_{k}, u\right)=\theta$.

Theorem 2.3: A necessary and sufficient condition that a vector metric space (X, V) to be complete is that every nested sequence of nonempty closed subsets $\left\{G_{n}\right\}$ with diameters tending to zero has $\bigcap_{n=1}^{\infty} G_{n}$ as a singleton.
To prove this theorem we need a lemma that we prove first.
Lemma 2.1: If G is a nonempty subset of (X, V) then $\operatorname{Diam} G=\operatorname{Diam}(\bar{G}), \bar{G}$ denoting the closure of G in vector metric topology τ_{V} on X.

Mukti Gangopadhyay ${ }^{1}$ et al. / Vector metric spaces and some fixed point theorems /IJMA-2(4), Apr.-2011, Page: 419-423

Proof: First of all, we note that if \mathcal{E} is an arbitrary positive member of S and $l \in S$ with $\theta \leq l$ satisfying $l \leq \varepsilon$; Then $l=\theta$.
we always have $\operatorname{Diam}(G) \leq \operatorname{Diam}(\bar{G})$
Let \mathcal{E} be an arbitrary positive member of S, If $a, b \in \bar{G}$, we find $u, v \in G$ such that

$$
\text { Now } \begin{aligned}
V(u, a) & <\frac{\varepsilon}{2} \text { and } V(v, b)<\frac{\varepsilon}{2} \\
V(a, b) & \leq V(a, u)+V(u, v)+V(v, b) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}+V(u, v) \\
& =\varepsilon+V(u, v)
\end{aligned}
$$

This gives $V(a, b) \leq \varepsilon+\operatorname{Diam}(G)$ and hence,

$$
\begin{aligned}
& \sup _{(a, b) \in \bar{G}} V(a, b) \leq \varepsilon+\operatorname{Diam}(G) \\
& \text { or } \operatorname{Diam}(\bar{G}) \leq \varepsilon+\operatorname{Diam}(G)
\end{aligned}
$$

As \mathcal{E} is arbitrary, it follows that

$$
\begin{equation*}
\operatorname{Diam}(\bar{G}) \leq \operatorname{Diam}(G) \tag{2}
\end{equation*}
$$

From (1) and (2) we have,

$$
\operatorname{Diam}(G)=\operatorname{Diam}(\bar{G})
$$

Proof of Theorem 2.3: Take $a_{n} \in G_{n}$; Then for $p \geq 1, a_{n+p} \in G_{n+p} \subset G_{n} \quad$ and $V\left(a_{n}, a_{n+p}\right) \leq \operatorname{Diam}\left(G_{n}\right) \rightarrow \theta$ as $n \rightarrow \infty$; Then $\left\{a_{n}\right\}$ becomes cauchy in (X, V), and by completeness of (X, V) let $\lim _{n \rightarrow \infty} a_{n}=u \in X$. Now $a_{n+p} \in G_{n}$ and by closure property of G_{n} we have $\lim _{p \rightarrow \infty} a_{n+p}=u \in G_{n}$. Therefore, $u \in \bigcap_{n=1}^{\infty} G_{n}$. If v is a member of $\bigcap_{n=1}^{\infty} G_{n}$ we have $u, v \in G_{n}$ and $V(u, v) \leq \operatorname{Diam}\left(G_{n}\right)$ that tends to θ as $n \rightarrow \infty$. Therefore, $u=v$. Hence $\bigcap_{n=1}^{\infty} G_{n}$ is a singleton.
Conversely, let $\left\{x_{n}\right\}$ be a Cauchy sequence in (X, V); Put $H_{n}=\left(x_{n}, x_{n+1}, x_{n+2} \ldots\right)$; Then $\left\{\bar{H}_{n}\right\}$ is a decreasing sequence of nonempty closed sets in (X, V) such that
$\operatorname{Diam}\left(\bar{H}_{n}\right)=\operatorname{Diam}\left(H_{n}\right)$ (by lemma 2.1) which tends to θ as $n \rightarrow \infty$. Then $\bigcap_{n=1}^{\infty} \bar{H}_{n}$ is a singleton, say $\{u\}$. Now x_{n} and $u \in \bar{H}_{n}$ for all n and $V\left(x_{n}, u\right) \leq \operatorname{Diam}\left(H_{n}\right) \rightarrow \theta$ as $n \rightarrow \infty$. Therefore $\lim _{n \rightarrow \infty} x_{n}=u \in X$. Proof is now complete.
3. Theorem 3.1: Let (X, V) be a complete vector metric space and $T: X \rightarrow X$ be an operator such that

$$
V(T(x), T(y)) \leq \alpha V(x, T(x))+\beta V(y, T(y))+\gamma V(x, y)
$$

with $0 \leq \alpha, \beta, \gamma$ and $\alpha+\beta+\gamma<1$ and for all $x, y \in X$. Then T has a unique fixed point in X.

Proof: If x_{0} is an arbitrary point in X and $x_{n}=T^{n}\left(x_{0}\right) n=1,2, \ldots,\left(T^{0}\left(x_{0}\right)=x_{0}\right)$, we have

$$
\begin{aligned}
V\left(x_{2}, x_{1}\right) & =V\left(T\left(x_{1}\right), T\left(x_{0}\right)\right) \\
& \leq \alpha V\left(x_{1}, x_{2}\right)+\beta V\left(x_{0}, x_{1}\right)+\gamma V\left(x_{0}, x_{1}\right) \\
\text { or, } V\left(x_{2}, x_{1}\right) & \leq \frac{\beta+\gamma}{1-\alpha} V\left(x_{0}, x_{1}\right) \\
\text { and } V\left(x_{3}, x_{2}\right) & =V\left(T\left(x_{2}\right), T\left(x_{1}\right)\right) \\
& \leq \alpha V\left(x_{2}, x_{3}\right)+\beta V\left(x_{1}, x_{2}\right)+\gamma V\left(x_{1}, x_{2}\right) \\
\text { or, } V\left(x_{3}, x_{2}\right) & \leq \frac{\beta+\gamma}{1-\alpha} V\left(x_{1}, x_{2}\right) \\
& \leq\left(\frac{\beta+\gamma}{1-\alpha}\right)^{2} V\left(x_{0}, x_{1}\right)
\end{aligned}
$$

By induction,

$$
\begin{align*}
& \qquad\left(x_{n}, x_{n+1}\right) \leq\left(\frac{\beta+\gamma}{1-\alpha}\right)^{n} V\left(x_{0}, x_{1}\right) \\
& \text { or, } V\left(x_{n}, T\left(x_{n}\right)\right)=\delta^{n} V\left(x_{0}, T\left(x_{0}\right)\right) \tag{1}
\end{align*}
$$

where $\delta=\frac{\beta+\gamma}{1-\alpha}<1$ and therefore $\lim _{n \rightarrow \infty} \delta_{n}=0$.
If h_{k} is a positive member of S such that $\lim _{k \rightarrow \infty} h_{k}=\theta$, and $h_{k+1} \leq h_{k}$ for all k.
Put $G_{k}=\left\{x \in X: V(x, T(x)) \leq h_{k}\right\}$ where $h_{k}=\left(h_{k}, h_{k} \ldots\right) \in S$
From (1) it follows that for large $k, G_{k} \neq \phi$. Suppose $G_{k} \neq \phi$ for all k. It is an easy exercise to see that each G_{k} is closed and further, each G_{k} is bounded and if $x, y \in G_{k}$ we have

$$
\begin{aligned}
V(x, y) & \leq V(x, T(x))+V(T(x), T(y))+V(T(y), y) \\
& \leq 2 h_{k}+\alpha V(x, T(x))+\beta V(y, T(y))+\gamma V(x, y) \\
& \leq \frac{\alpha+\beta+2}{1-\gamma} h_{k}
\end{aligned}
$$

This gives $\operatorname{Diam}\left(G_{k}\right) \leq \frac{\alpha+\beta+2}{1-\gamma} . h_{k}$ and right hand side tends to θ as $k \rightarrow \infty$.
By routine exercise we show that $T\left(G_{k}\right) \subset G_{k}, k=1,2, \ldots$. Thus $\left\{G_{k}\right\}$ is a decreasing chain of non-empty closed sets in (X, V) with $\operatorname{Diam}\left(G_{k}\right) \rightarrow \theta$ as $k \rightarrow \infty$.

By Theorem 2.3, $\bigcap_{k=1}^{\infty} G_{k}$ is a singleton, say $=\{u\}$ for some $u \in X$. So $T(u)=u$; Uniqueness of u is now clear.
Corollary: Theorem 3.1 gives Theorem 1 of Lahiri and Das [4] and well-known Kannan fixed point Theorem [3]. We now invite a Ćricić operator T over a vector metric space (X, V).
$T: X \rightarrow X$ is said to be a Ćririć operator if

$$
V\left(T^{n}(x), T^{n}(y)\right) \leq q^{n}(x, y) \boldsymbol{\delta}(x, y), n=1,2 \ldots
$$

and $x, y \in X$ where $q: X \times X \rightarrow R^{+}$and $\delta: X \times X \rightarrow R^{+} \quad\left(R^{+}=\right.$set of non-negative reals) satisfy $q(x, y)<1$ with $\sup _{x, y \in X} q(x, y)=1$ and $\delta(x, y)$ is a member $\{\delta(x, y), \delta(x, y), \ldots \delta(x, y) \ldots\}$ in S for $(x, y) \in X \times X$.
Theorem 3.2: Let T be a Ćirić operator over a complete vector metric space satisfying

$$
\begin{aligned}
V(T(x), T(y)) \leq & \alpha[V(x, T(x))+V(y, T(y))]+\beta V(x, y) \\
& +\gamma \max \{V(x, T(y)), V(y, T(x))\}
\end{aligned}
$$

for all $x, y \in X$ where α, β and $\gamma \geq 0$ are such that $\max \{\alpha, \beta\}+\gamma<1$, then T has a unique fixed point in X.
Proof: Take any $x_{0} \in X$ and any natural numbers m, n; Then by a routine calculation,

$$
\begin{aligned}
V\left(T^{m}\left(x_{0}\right), T^{n}\left(x_{0}\right)\right) & \leq \frac{2 \max \{\alpha, \beta\}+\gamma}{1-\beta-\gamma}\left[V\left(T^{m-1}\left(x_{0}\right), T^{m}\left(x_{0}\right)\right)+V\left(T^{n-1}\left(x_{0}\right), T^{n}\left(x_{0}\right)\right)\right] \\
& \leq \frac{2 \max \{\alpha, \beta\}+\gamma}{1-\beta-\gamma}\left[q^{m-1}\left(x_{0}, T\left(x_{0}\right)\right)+q^{n-1}\left(x_{0}, T\left(x_{0}\right)\right)\right] \times \delta\left(x_{0}, T\left(x_{0}\right)\right)
\end{aligned}
$$

and right hand side tends to θ as $m, n \rightarrow \infty$. That makes $\left\{T^{n}\left(x_{0}\right)\right\}$ cauchy in (X, V) and if $\lim _{n \rightarrow \infty} T^{n}\left(x_{0}\right)=u$ for some $u \in X$, we write

$$
\begin{aligned}
& V\left(T^{n}\left(x_{0}\right), T(u)\right) \leq \alpha\left[V\left(T^{n-1}\left(x_{0}\right), T^{n}\left(x_{0}\right)\right)+V(u, T(u))\right] \\
& +\beta V\left(T^{n-1}\left(x_{0}\right), u\right)+\gamma \max \left\{V\left(T^{n-1}\left(x_{0}\right), T(u)\right), V\left(u, T^{n}\left(x_{0}\right)\right)\right\} .
\end{aligned}
$$

As $n \rightarrow \infty$, we derive $V(u, T(u)) \leq(\alpha+\gamma) V(u, T(u))$ and hence $u=T(u)$; Further if, $v=T(v)$ for some $v \in X$, we have,

$$
V(u, v)=V\left(T^{n}(u), T^{n}(v)\right) \leq q^{n}(u, v) \delta(u, v) \rightarrow \theta \text { as } n \rightarrow \infty .
$$

So $u=v$. The proof is complete.
Corollary: Theorem 3.2 gives Theorem 1 of Saha and Baisnab (See [6]) as a special case.

REFERENCES:

[1] A.Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (1-2), 2000, 31-37.
[2] Lj. B. Ćirić, A Generalisation of Banach's contraction principle, Proc. Amer. Math. Soc., 45(2), 1974, 267-73.
[3] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60, Nos. 1 and 2, 1968, 71-76.
[4] B. K. Lahiri, and P. Das, Banach's Fixed point Theorem in a vector - Metric space in a Generalized vector - Metric space, Jour. Cal. Math. Soc., 1, 2004, 69-74.
[5] B. K. Lahiri : Elements of Functional Analysis - World Press. Private Limited, Kolkata - 1996.
[6] M. Saha and A.P. Baisnab: On Ćirić's contraction operator and Fixed Points, Indian J. Pure Appl. Math., 27 (2), 1996, 177-182.
[7] T.K.Sreenivasan, Some properties of distance functions, Jour. Indian Math. Soc., 11, 1947, 38-43.

