International Journal of Mathematical Archive-2(4), Apr. - 2011, Page: 424-428 Available online through www.ijma.info ISSN 2229 - 5046

*ÿ***-REGULAR AND** *ÿ***-NORMAL SPACES**

¹O. Ravi* and ²S. Ganesan

¹Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India ²Department of Mathematics, N. M. S. S. V. N College, Nagamalai, Madurai, Tamil Nadu, India

E-mail: siingam@yahoo.com, sgsgsgsgsg77@yahoo.com

(Received on: 04-02-2011; Accepted on: 21-03-2011)

ABSTRACT

 \pmb{T} he concept of \ddot{g} -closed sets was introduced by Ravi and Ganesan [9]. The aim of this paper is to introduce and characterize \ddot{g} -regular spaces and \ddot{g} -normal spaces via the concept of \ddot{g} -closed sets.

2000 Mathematics Subject Classification: 54C10, 54C08, 54C05

Keywords and Phrases: \ddot{g} -closed set, \ddot{g} -open set, \ddot{g} -regular space, \ddot{g} -normal space, \ddot{g} -continuous function, \ddot{g} -irresolute function.

1. INTRODUCTION:

As a generalization of closed sets, in 1970, Levine [6] initiated the study of so called g-closed sets. As the strong forms of g-closed sets, the notion of \hat{g} -closed sets (= ω closed sets) were introduced and studied by Veerakumar [18] (Sheik John [16]). Using g-closed sets, Munshi [8] introduced g-regular and g-normal spaces in topological spaces. In a similar way, Sheik John [16] introduced ω -regular and ω normal spaces using ω -closed sets in topological spaces.

In this paper, we introduce \ddot{g} -regular spaces and \ddot{g} -normal spaces in topological spaces. We obtain several characterizations of \ddot{g} -regular and \ddot{g} -normal spaces and some preservation theorems for \ddot{g} -regular and \ddot{g} -normal spaces.

2. PRELIMINARIES:

Throughout this paper, (X, τ) and (Y, σ) (or X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For any subset A of a space (X, \tau), the closure of A, the interior of A and the complement of A are denoted by cl(A), int(A) and Ac respectively.

We recall the following definitions which are useful in the sequel.

Definition: 2.1

A subset A of a space (X, τ) is called: semi-open set [5]

if $A \subseteq cl(int(A))$

The complement of semi-open set is semi-closed.

Corresponding author: O. Ravi

*E-mail: siingam@yahoo.com

The semi-closure [3] of a subset A of X, denoted by scl(A), is defined to be the intersection of all semi-closed sets of (X, τ) containing A. It is known that scl(A) is a semi-closed set. For any subset A of an arbitrarily chosen topological space, the semi-interior [3] of A, denoted by sint(A), is defined to be the union of all semi-open sets of (X, τ) contained in A.

Definition: 2.2

A subset A of a space (X, τ) is called:

- (i) a \hat{g} -closed set [18] (= ω -closed set [16]) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) . The complement of g-closed set is called g-open set;
- (ii) a semi-generalized closed (briefly sg-closed) set [1] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) . The complement of sg-closed set is called sg-open set;
- (iii) a \ddot{g} -closed set [9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and Uis sg-open in (X, τ) . The complement of \ddot{g} -closed set is called \ddot{g} -open set.

The collection of all \ddot{g} -closed sets of X is denoted by \ddot{G} C(X).

Definition: 2.3

A function $f:(X, \tau) \to (Y, \sigma)$ is called:

- (i) a \ddot{g} -continuous [11] if $f^{-1}(V)$ is \ddot{g} -closed in (X, τ) for every closed set V in (Y, σ) .
- (ii) a \ddot{g} -irresolute [11] if $f^{1}(V)$ is \ddot{g} -closed in (X, τ) for every \ddot{g} -closed set V in (Y, σ) .

- (iii) a pre-sg-open [12] if f(V) is sg-open in (Y, σ) for every sg-open set V of (X, τ) .
- (iv) an sg-irresolute [2, 17] if $f^{-1}(V)$ is sg-closed in (X, τ) for each sg-closed set V of (Y, σ) .
- (v) a \ddot{g} -closed [13] if the image of every closed set in (X, τ) is \ddot{g} -closed in (Y, σ) .
- (vi) Weakly continuous [7] if for each point $x \in X$ and each open set V in (Y, σ) containing f(x), there exists an open set U containing x such that $f(U) \subseteq cl(V)$.

Definition: 2.4 [14]

Let (X, τ) be a topological space. Let x be a point of X and G be a subset of X. Then G is called an \ddot{g} -neighbourhood of x (briefly, \ddot{g} -nbhd of x) in X if there exists an \ddot{g} -open set X of X such that $X \in X$ such that $X \in X$ of X such that $X \in X$ such that X

Definition: 2.5 [15]

A space (X, τ) is called a gT \ddot{g} -space if every g-closed set in it is \ddot{g} -closed.

Definition: 2.6 [6]

A topological space (X, τ) will be termed symmetric if and only if for x and y in (X, τ) , $x \in cl(y)$ implies that $y \in cl(x)$.

Definition: 2.7 [10]

For every set $A \subseteq X$, we define the \ddot{g} -closure of A to be the intersection of all \ddot{g} -closed sets containing A.

In symbols, \ddot{g} -cl(A) = \cap {F : A \subseteq F \in \ddot{G} C(X)}.

Definition: 2.8 [19]

For a subset A of a topological space (X, τ) , $cl_{\theta}(A) = \{x \in X: cl(U) \cap A \neq \emptyset, U \in \tau \text{ and } x \in U\}.$

Theorem: 2.9 [11]

A set A is \ddot{g} -open if and only if $F \subseteq int(A)$ whenever F is sg-closed and $F \subseteq A$.

Theorem: 2.10 [6]

The space (X, τ) is symmetric if and only if $\{X\}$ is g-closed in (X, τ) for each point x of (X, τ) .

Theorem 2.11 [11]

If f: $(X,\tau) \to (Y,\sigma)$ is bijective, pre-sg-open and \ddot{g} -continuous, then f is \ddot{g} -irresolute.

Theorem: 2.12 [13]

If $f: (X, \tau) \to (Y, \sigma)$ is sg-irresolute \ddot{g} -closed and A is a \ddot{g} -closed subset of (X, τ) , then f(A) is \ddot{g} -closed.

3. \ddot{g} -REGULAR AND \ddot{g} -NORMAL SPACES:

We introduce the following definition.

Definition: 3.1

A space (X, τ) is said to be \ddot{g} -regular if for every \ddot{g} -closed set F and each point $x \notin F$, there exist disjoint open sets U and V such that $F \subset U$ and $x \in V$.

Theorem: 3.2

Let (X, τ) be a topological space. Then the following statements are equivalent:

- (i) (X, τ) is a \ddot{g} -regular space.
- (ii) For each $x \in X$ and \ddot{g} -neighbourhood W of x there exists an open neighbourhood V of x such that $cl(V) \subseteq W$.

Proof: (i) \Rightarrow (ii). Let W be any \ddot{g} -neighbourhood of x. Then there exist a \ddot{g} -open set G such that $x \in G \subseteq W$. Since G^c is \ddot{g} -closed and $x \notin G^c$, by hypothesis there exist open sets U and V such that $G^c \subseteq U$, $x \in V$ and $U \cap V = \emptyset$ and so $V \subseteq U^c$. Now, $cl(V) \subseteq cl(U^c) = U^c$ and $G^c \subseteq U$ implies $U^c \subseteq G \subseteq W$. Therefore $cl(V) \subseteq W$.

(ii) \Rightarrow (i). Let F be any \ddot{g} -closed set and $x \notin F$. Then $x \in F^c$ and F^c is \ddot{g} -open and so F^c is a \ddot{g} -neighbourhood of x. By hypothesis, there exists an open neighbourhood V of x such that $x \in V$ and $cl(V) \subseteq F^c$, which implies $F \subseteq (cl(V))^c$. Then $(cl(V))^c$ is an open set containing F and $V \cap (cl(V))^c = \phi$. Therefore, X is \ddot{g} -regular.

Theorem: 3.3

For a space (X, τ) the following are equivalent:

- (i) (X, τ) is normal.

Proof: (i) \Rightarrow (ii). Let A and B be disjoint closed subsets of (X, τ) . By hypothesis, there exist disjoint open sets (and hence \ddot{g} -open sets) U and V such that $A \subseteq U$ and $B \subseteq V$.

(ii) \Rightarrow (i). Let A and B be closed subsets of (X, τ) . Then by assumption, $A \subseteq G$, $B \subseteq H$ and $G \cap H = \emptyset$, where G and H are disjoint \ddot{g} -open sets. Since A and B are sg-closed, by Theorem 2.9, $A \subseteq \text{int}(G)$ and $B \subseteq \text{int}(H)$. Further, $\text{int}(G) \cap \text{int}(H) = \text{int}(G \cap H) = \emptyset$.

Theorem: 3.4

A gT \ddot{g} -space (X, τ) is symmetric if and only if $\{x\}$ is \ddot{g} -closed in (X, τ) for each point x of (X, τ) .

Proof: Follows from Definitions 2.5., 2.6 and Theorem 2.10.

Theorem: 3.5

A topological space (X, τ) is \ddot{g} -regular if and only if for each \ddot{g} -closed set F of (X, τ) and each $x \in F^c$ there exist open sets U and V of (X, τ) such that $x \in U$, $F \subseteq V$ and $cl(U) \cap cl(V) = \phi$.

Proof: Let F be a \ddot{g} -closed set of (X, τ) and $x \notin F$. Then there exist open sets U_0 and V of (X, τ) such that $x \in U_0$, $F \subseteq V$ and $U_0 \cap V = \emptyset$, which implies $U_0 \cap \operatorname{cl}(V) = \emptyset$. Since $\operatorname{cl}(V)$ is closed, it is \ddot{g} -closed and $x \notin \operatorname{cl}(V)$. Since (X, τ) is \ddot{g} -regular, there exist open sets G and H of (X, τ) such that $x \in G$, $\operatorname{cl}(V) \subseteq H$ and $G \cap H = \emptyset$, which implies $\operatorname{cl}(G) \cap H = \emptyset$. Let $U = U_0 \cap G$, then U and V are open sets of (X, τ) such that $x \in U$, $F \subseteq V$ and $\operatorname{cl}(U) \cap \operatorname{cl}(V) = \emptyset$. Converse part is trivial.

Corollary: 3.6

If a space (X, τ) is \ddot{g} -regular, symmetric and gT \ddot{g} -space, then it is Urysohn.

Proof: Let x and y be any two distinct points of (X, τ) . Since (X, τ) is symmetric and $gT\ddot{g}$ -space, $\{x\}$ is \ddot{g} -closed by Theorem 3.4. Therefore, by Theorem 3.5, there exist open sets U and V such that $x \in U$, $y \in V$ and $cl(U) \cap cl(V) = \phi$.

Theorem: 3.7

Let (X, τ) be a topological space. Then the following statements are equivalent:

- (i) (X,τ) is \ddot{g} -regular.
- (ii) For each point x ∈ X and for each ḡ -neighbourhood W of x, there exists an open neighbourhood V of x such that cl(V) ⊆ W.
- (iii) For each point $x \in X$ and for each \ddot{g} -closed set F not containing x, there exists an open neighbourhood V of x such that $cl(V) \cap F = \phi$.

Proof: (i) \Leftrightarrow (ii). It is obvious from Theorem 3.2.

(ii) \Rightarrow (iii). Let $x \in X$ and F be a \ddot{g} -closed set such that $x \notin F$. Then F^c is a \ddot{g} -neighbourhood of x and by hypothesis, there exists an open neighbourhood V of x such that $cl(V) \subseteq F^c$ and hence $cl(V) \cap F = \emptyset$.

(iii) \Rightarrow (ii). Let $x \in X$ and W be a \ddot{g} -neighbourhood of x. Then there exists a \ddot{g} -open set G such that $x \in G \subseteq W$. Since G^c is \ddot{g} -closed and $x \notin G^c$, by hypothesis there exists an open neighbourhood V of x such that $cl(V) \cap G^c = \phi$. Therefore, $cl(V) \subseteq G \subseteq W$.

Theorem: 3.8

The following are equivalent for a space (X, τ) .

- (i) (X, τ) is \ddot{g} -regular.
- (ii) $cl_{\theta}(A) = \ddot{g} cl(A)$ for each subset A of (X, τ) .
- (iii) $cl_{\theta}(A) = A$ for each \ddot{g} -closed set A.

Proof: (i) \Rightarrow (ii). For any subset A of (X, τ) , we have always $A \subseteq \ddot{g} \text{-cl}(A) \subseteq \text{cl}_{\theta}(A)$. Let $x \in (\ddot{g} \text{-cl}(A))^c$. Then there exists a \ddot{g} -closed set F such that $x \in F^c$ and $A \subseteq F$. By assumption, there exist disjoint open sets U and V such that $x \in U$ and $F \subseteq V$. Now, $x \in U \subseteq \text{cl}(U) \subseteq V^c \subseteq F^c \subseteq A^c$ and therefore $\text{cl}(U) \cap A = \phi$. Thus, $x \in (\text{cl}_{\theta}(A))^c$ and hence $\text{cl}_{\theta}(A) = \ddot{g} \text{-cl}(A)$.

 $(ii) \Rightarrow (iii)$. It is trivial.

(iii) \Rightarrow (i). Let F be any \ddot{g} -closed set and $x \in F^c$. Since F is \ddot{g} -closed, by assumption $x \in (cl_{\theta}(F))^c$ and so there exists an open set U such that $x \in U$ and $cl(U) \cap F = \phi$. Then $F \subseteq (cl(U))^c$. Let $V = (cl(U))^c$. Then V is an open such that $F \subseteq V$. Also, the sets U and V are disjoint and hence (X, τ) are \ddot{g} -regular.

Theorem: 3.9

If (X, τ) is a \ddot{g} -regular space and $f: (X, \tau) \to (Y, \sigma)$ is bijective, pre-sg-open, \ddot{g} -continuous and open, then (Y, σ) is \ddot{g} -regular.

Proof: Let F be any \ddot{g} -closed subset of (Y, σ) and $y \notin F$. Since the map f is \ddot{g} -irresolute by Theorem 2.11, we have f $^{1}(F)$ is \ddot{g} -closed in (X, τ) . Since f is bijective, let f(x) = y, then $x \notin f^{1}(F)$. By hypothesis, there exist disjoint open sets U and V such that $x \in U$ and $f^{1}(F) \subseteq V$. Since f is open and bijective, we have $y \in f(U)$, $F \subseteq f(V)$ and $f(U) \cap f(V) = \phi$. This shows that the space (Y, σ) is also \ddot{g} -regular.

Theorem: 3.10

If $f: (X, \tau) \to (Y, \sigma)$ is sg-irresolute \ddot{g} -closed continuous injection and (Y, σ) is \ddot{g} -regular, then (X, τ) is \ddot{g} -regular.

Proof: Let F be any \ddot{g} -closed set of (X, τ) and $x \notin F$. Since f is sg-irresolute \ddot{g} -closed, by Theorem 2.12, f(F) is \ddot{g} -closed in (Y, σ) and $f(x) \notin f(F)$. Since (Y, σ) is \ddot{g} -regular and so there exist disjoint open sets U and V in (Y, σ) such that $f(x) \in U$ and $f(F) \subseteq V$. i.e., $x \in f^1(U)$, $F \subseteq f^1(V)$ and $f^1(U) \cap f^1(V) = \emptyset$. Therefore, (X, τ) is \ddot{g} -regular.

Theorem: 3.11

If $f:(X,\tau)\to (Y,\sigma)$ is weakly continuous \ddot{g} -closed injection and (Y,σ) is \ddot{g} -regular, then (X,τ) is regular.

Proof: Let F be any closed set of (X, τ) and $x \notin F$. Since f is \ddot{g} -closed, f(F) is \ddot{g} -closed in (Y, σ) and $f(x) \notin f(F)$. Since (Y, σ) is \ddot{g} -regular by Theorem 3.5 there exist open sets U and V such that $f(x) \in U$, $f(F) \subseteq V$ and $cl(U) \cap cl(V) = \emptyset$. Since f is weakly continuous it follows that [7, Theorem 1], $x \in f^1(U) \subseteq \text{int}(f^1(cl(U)))$, $F \subseteq f^1(V) \subseteq \text{int}(f^1(cl(V)))$ and $\text{int}(f^1(cl(U))) \cap \text{int}(f^1(cl(V))) = \emptyset$. Therefore, (X, τ) is regular.

We conclude this section with the introduction of \ddot{g} -normal space in topological spaces.

Definition: 3.12

A topological space (X, τ) is said to be \ddot{g} -normal if for any pair of disjoint \ddot{g} -closed sets A and B, there exist disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

We characterize \ddot{g} -normal space.

Theorem: 3.13

Let (X, τ) be a topological space. Then the following statements are equivalent:

- (i) (X, τ) is \ddot{g} -normal.
- (ii) For each \ddot{g} -closed set F and for each \ddot{g} -open set U containing F, there exists an open set V containing F such that $cl(V) \subseteq U$.
- (iii) For each pair of disjoint \ddot{g} -closed sets A and B in (X, τ) , there exists an open set U containing A such that $cl(U) \cap B = \emptyset$.
- (iv) For each pair of disjoint \ddot{g} -closed sets A and B in (X, τ) , there exist open sets U containing A and V containing B such that $cl(U) \cap cl(V) = \phi$.

Proof: (i) \Rightarrow (ii). Let F be a \ddot{g} -closed set and U be a \ddot{g} -open set such that $F \subseteq U$. Then $F \cap U^c = \phi$. By assumption, there exist open sets V and W such that $F \subseteq V$, $U^c \subseteq W$ and $V \cap W = \phi$, which implies $cl(V) \cap W = \phi$. Now, $cl(V) \cap U^c \subseteq cl(V) \cap W = \phi$ and so $cl(V) \subseteq U$.

- (ii) \Rightarrow (iii). Let A and B be disjoint \ddot{g} -closed sets of (X, τ) . Since $A \cap B = \emptyset$, $A \subseteq B^c$ and B^c is \ddot{g} -open. By assumption, there exists an open set U containing A such that $cl(U) \subseteq B^c$ and so $cl(U) \cap B = \emptyset$.
- (iii) \Rightarrow (iv). Let A and B be any two disjoint \ddot{g} -closed sets of (X, τ) . Then by assumption, there exists an open set U containing A such that $cl(U) \cap B = \phi$. Since cl(U) is closed, it is \ddot{g} -closed and so B and cl(U) are disjoint \ddot{g} -closed sets in (X, τ) . Therefore again by assumption, there exists an open set V containing B such that $cl(V) \cap cl(U) = \phi$.
- (iv) \Rightarrow (i). Let A and B be any two disjoint \ddot{g} -closed sets of (X, τ) . By assumption, there exist open sets U containing A and V containing B such that $cl(U) \cap cl(V) = \phi$, we have $U \cap V = \phi$ and thus (X, τ) is \ddot{g} -normal.

Theorem: 3.14

If $f: (X, \tau) \to (Y, \sigma)$ is bijective, pre-sg-open, \ddot{g} -continuous and open and (X, τ) is \ddot{g} -normal, then (Y, σ) is \ddot{g} -normal.

Proof: Let A and B be any disjoint \ddot{g} -closed sets of (Y, σ) . The map f is \ddot{g} -irresolute by Theorem 2.11 and so $f^1(A)$ and $f^1(B)$ are disjoint \ddot{g} -closed sets of (X, τ) . Since (X, τ) is \ddot{g} -normal, there exist disjoint open sets U and V such that $f^1(A)$ © 2010, IJMA. All Rights Reserved

 \subseteq U and $f^{-1}(B)$ \subseteq V. Since f is open and bijective, we have f(U) and f(V) are open in (Y, σ) such that $A \subseteq f(U)$, $B \subseteq f(V)$ and $f(U) \cap f(V) = \phi$. Therefore, (Y, σ) is \ddot{g} -normal.

Theorem: 3.15

If $f: (X, \tau) \to (Y, \sigma)$ is sg-irresolute \ddot{g} -closed continuous injection and (Y, σ) is \ddot{g} -normal, then (X, τ) is \ddot{g} -normal.

Proof: Let A and B be any disjoint \ddot{g} -closed subsets of (X,τ) . Since f is sg-irresolute \ddot{g} -closed, f(A) and f(B) are disjoint \ddot{g} -closed sets of (Y,σ) by Theorem 2.12. Since (Y,σ) is \ddot{g} -normal, there exist disjoint open sets U and V such that $f(A) \subseteq U$ and $f(B) \subseteq V$. i.e., $A \subseteq f^1(U)$, $B \subseteq f^1(V)$ and $f^1(U) \cap f^1(V) = \phi$. Since f is continuous, $f^1(U)$ and $f^1(V)$ are open in (X,τ) , we have (X,τ) is \ddot{g} -normal.

Theorem: 3.16

If $f: (X, \tau) \to (Y, \sigma)$ is weakly continuous \ddot{g} -closed injection and (Y, σ) is \ddot{g} -normal, then (X, τ) is normal.

Proof: Let A and B be any two disjoint closed sets of (X, τ) . Since f is injective and \ddot{g} -closed, f(A) and f(B) are disjoint \ddot{g} -closed sets of (Y, σ) . Since (Y, σ) is \ddot{g} -normal, by Theorem 3.13, there exist open sets U and V such that $f(A) \subseteq U$, $f(B) \subseteq V$ and $cl(U) \cap cl(V) = \emptyset$. Since f is weakly continuous, it follows that [7, Theorem 1], $A \subseteq f^1(U) \subseteq \text{int } (f^1(cl(U)))$, $B \subseteq f^1(V) \subseteq \text{int } (f^1(cl(V)))$ and $\text{int}(f^1(cl(U))) \cap \text{int } (f^1(cl(V))) = \emptyset$. Therefore, (X, τ) is normal.

REFERENCES:

- Bhattacharya, P. and Lahiri, B. K.: Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382
- [2] Caldas, M.: Semi-generalized continuous maps in topological spaces, Portugaliae Mathematica., 52 Fasc. 4(1995), 339-407.
- [3] Crossley, S. G. and Hildebrand, S. K.: Semi-closure, Texas J. Sci., 22(1971), 99-112.
- [4] Crossley S. G. and Hildebrand S. K.: Semi-topological properties, Fund Math., 74 (1972), 233-254.
- [5] Levine N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [6] Levine N.: Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (1970), 89-96.
- [7] Levine N.: A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68 (1961), 44-46.
- [8] Munchi B. M.: Separation axioms, Acta Ciencia Indica., 12 (1986), 140-144.
- [9] Ravi, O. and Ganesan, S.: \ddot{g} -closed sets in topology (Submitted).

^{1}O . Ravi* and ^{2}S . Ganesan / \ddot{g} -REGULAR AND \ddot{g} -NORMAL SPACES / IJMA- 2(4), Apr.-2011, Page: 424-428

- [10] Ravi, O. and Ganesan, S.: \ddot{g} -interior and \ddot{g} -closure in topological spaces (submitted).
- [11] Ravi, O. and Ganesan, S.: On \ddot{g} -continuous functions in topological spaces. (To be appeared in Bessel Journal of Mathematics)
- [12] Ravi, O. and Ganesan, S.: On weakly \ddot{g} -closed sets in topology (submitted).
- [13] Ravi, O. and Ganesan, S.: On \ddot{g} -closed and \ddot{g} -open maps in topological spaces. (To be appeared in Archimedes Journal of Mathematics)
- [14] Ravi, O. and Ganesan, S.: \ddot{g} -closed sets and decomposetion of continuity. (To be appeared in Antarctica Journal of Mathematics)

- [15] Ravi, O. and Ganesan, S.: On T \ddot{g} -space in topological spaces. (To be appeared in Journal of advanced studies in topology)
- [16] Sheik John, M.: A study on generalizations of closed sets And continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.
- [17] Sundaram, P., Maki, H. and Balachandran, K.: Semigeneralized continuous maps and semi-T_{1/2}-spaces, Bull. Fukuoka Univ. Ed. III, 40 (1991), 33-40.
- [18] Veera Kumar M. K. R. S.: \hat{g} closed sets in topological spaces, Bull. Allahabad Math. Soc., 18 (2003) 99-112.
- [19] Veličko N. V.: H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.
